Powered by
|
| © November 2006 Lorentz JÄNTSCHI |
Up
It compute & display Distance Matrices & (Characteristic & Counting) Polynomials for vertex cutings for this molecule.
| Di\{1} | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 1 | 0 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
| 2 | 16 | 0 | 1 | 1 | 2 | 2 | 3 | 4 | 4 | 5 |
| 3 | 16 | 1 | 0 | 1 | 2 | 2 | 3 | 4 | 4 | 5 |
| 4 | 16 | 1 | 1 | 0 | 1 | 1 | 2 | 3 | 3 | 4 |
| 5 | 16 | 2 | 2 | 1 | 0 | 1 | 1 | 2 | 2 | 3 |
| 6 | 16 | 2 | 2 | 1 | 1 | 0 | 1 | 2 | 2 | 3 |
| 7 | 16 | 3 | 3 | 2 | 1 | 1 | 0 | 1 | 1 | 2 |
| 8 | 16 | 4 | 4 | 3 | 2 | 2 | 1 | 0 | 1 | 1 |
| 9 | 16 | 4 | 4 | 3 | 2 | 2 | 1 | 1 | 0 | 1 |
| 10 | 16 | 5 | 5 | 4 | 3 | 3 | 2 | 1 | 1 | 0 |
| Di\{2} | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 1 | 0 | 16 | 1 | 2 | 3 | 3 | 4 | 5 | 5 | 6 |
| 2 | 16 | 0 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
| 3 | 1 | 16 | 0 | 1 | 2 | 2 | 3 | 4 | 4 | 5 |
| 4 | 2 | 16 | 1 | 0 | 1 | 1 | 2 | 3 | 3 | 4 |
| 5 | 3 | 16 | 2 | 1 | 0 | 1 | 1 | 2 | 2 | 3 |
| 6 | 3 | 16 | 2 | 1 | 1 | 0 | 1 | 2 | 2 | 3 |
| 7 | 4 | 16 | 3 | 2 | 1 | 1 | 0 | 1 | 1 | 2 |
| 8 | 5 | 16 | 4 | 3 | 2 | 2 | 1 | 0 | 1 | 1 |
| 9 | 5 | 16 | 4 | 3 | 2 | 2 | 1 | 1 | 0 | 1 |
| 10 | 6 | 16 | 5 | 4 | 3 | 3 | 2 | 1 | 1 | 0 |
| Di\{3} | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 1 | 0 | 1 | 16 | 2 | 3 | 3 | 4 | 5 | 5 | 6 |
| 2 | 1 | 0 | 16 | 1 | 2 | 2 | 3 | 4 | 4 | 5 |
| 3 | 16 | 16 | 0 | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
| 4 | 2 | 1 | 16 | 0 | 1 | 1 | 2 | 3 | 3 | 4 |
| 5 | 3 | 2 | 16 | 1 | 0 | 1 | 1 | 2 | 2 | 3 |
| 6 | 3 | 2 | 16 | 1 | 1 | 0 | 1 | 2 | 2 | 3 |
| 7 | 4 | 3 | 16 | 2 | 1 | 1 | 0 | 1 | 1 | 2 |
| 8 | 5 | 4 | 16 | 3 | 2 | 2 | 1 | 0 | 1 | 1 |
| 9 | 5 | 4 | 16 | 3 | 2 | 2 | 1 | 1 | 0 | 1 |
| 10 | 6 | 5 | 16 | 4 | 3 | 3 | 2 | 1 | 1 | 0 |
| Di\{4} | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 1 | 0 | 1 | 1 | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
| 2 | 1 | 0 | 1 | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
| 3 | 1 | 1 | 0 | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
| 4 | 16 | 16 | 16 | 0 | 16 | 16 | 16 | 16 | 16 | 16 |
| 5 | 16 | 16 | 16 | 16 | 0 | 1 | 1 | 2 | 2 | 3 |
| 6 | 16 | 16 | 16 | 16 | 1 | 0 | 1 | 2 | 2 | 3 |
| 7 | 16 | 16 | 16 | 16 | 1 | 1 | 0 | 1 | 1 | 2 |
| 8 | 16 | 16 | 16 | 16 | 2 | 2 | 1 | 0 | 1 | 1 |
| 9 | 16 | 16 | 16 | 16 | 2 | 2 | 1 | 1 | 0 | 1 |
| 10 | 16 | 16 | 16 | 16 | 3 | 3 | 2 | 1 | 1 | 0 |
| Di\{5} | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 1 | 0 | 1 | 1 | 2 | 16 | 3 | 4 | 5 | 5 | 6 |
| 2 | 1 | 0 | 1 | 1 | 16 | 2 | 3 | 4 | 4 | 5 |
| 3 | 1 | 1 | 0 | 1 | 16 | 2 | 3 | 4 | 4 | 5 |
| 4 | 2 | 1 | 1 | 0 | 16 | 1 | 2 | 3 | 3 | 4 |
| 5 | 16 | 16 | 16 | 16 | 0 | 16 | 16 | 16 | 16 | 16 |
| 6 | 3 | 2 | 2 | 1 | 16 | 0 | 1 | 2 | 2 | 3 |
| 7 | 4 | 3 | 3 | 2 | 16 | 1 | 0 | 1 | 1 | 2 |
| 8 | 5 | 4 | 4 | 3 | 16 | 2 | 1 | 0 | 1 | 1 |
| 9 | 5 | 4 | 4 | 3 | 16 | 2 | 1 | 1 | 0 | 1 |
| 10 | 6 | 5 | 5 | 4 | 16 | 3 | 2 | 1 | 1 | 0 |
| Di\{6} | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 1 | 0 | 1 | 1 | 2 | 3 | 16 | 4 | 5 | 5 | 6 |
| 2 | 1 | 0 | 1 | 1 | 2 | 16 | 3 | 4 | 4 | 5 |
| 3 | 1 | 1 | 0 | 1 | 2 | 16 | 3 | 4 | 4 | 5 |
| 4 | 2 | 1 | 1 | 0 | 1 | 16 | 2 | 3 | 3 | 4 |
| 5 | 3 | 2 | 2 | 1 | 0 | 16 | 1 | 2 | 2 | 3 |
| 6 | 16 | 16 | 16 | 16 | 16 | 0 | 16 | 16 | 16 | 16 |
| 7 | 4 | 3 | 3 | 2 | 1 | 16 | 0 | 1 | 1 | 2 |
| 8 | 5 | 4 | 4 | 3 | 2 | 16 | 1 | 0 | 1 | 1 |
| 9 | 5 | 4 | 4 | 3 | 2 | 16 | 1 | 1 | 0 | 1 |
| 10 | 6 | 5 | 5 | 4 | 3 | 16 | 2 | 1 | 1 | 0 |
| Di\{7} | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 1 | 0 | 1 | 1 | 2 | 3 | 3 | 16 | 16 | 16 | 16 |
| 2 | 1 | 0 | 1 | 1 | 2 | 2 | 16 | 16 | 16 | 16 |
| 3 | 1 | 1 | 0 | 1 | 2 | 2 | 16 | 16 | 16 | 16 |
| 4 | 2 | 1 | 1 | 0 | 1 | 1 | 16 | 16 | 16 | 16 |
| 5 | 3 | 2 | 2 | 1 | 0 | 1 | 16 | 16 | 16 | 16 |
| 6 | 3 | 2 | 2 | 1 | 1 | 0 | 16 | 16 | 16 | 16 |
| 7 | 16 | 16 | 16 | 16 | 16 | 16 | 0 | 16 | 16 | 16 |
| 8 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 0 | 1 | 1 |
| 9 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 1 | 0 | 1 |
| 10 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 1 | 1 | 0 |
| Di\{8} | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 1 | 0 | 1 | 1 | 2 | 3 | 3 | 4 | 16 | 5 | 6 |
| 2 | 1 | 0 | 1 | 1 | 2 | 2 | 3 | 16 | 4 | 5 |
| 3 | 1 | 1 | 0 | 1 | 2 | 2 | 3 | 16 | 4 | 5 |
| 4 | 2 | 1 | 1 | 0 | 1 | 1 | 2 | 16 | 3 | 4 |
| 5 | 3 | 2 | 2 | 1 | 0 | 1 | 1 | 16 | 2 | 3 |
| 6 | 3 | 2 | 2 | 1 | 1 | 0 | 1 | 16 | 2 | 3 |
| 7 | 4 | 3 | 3 | 2 | 1 | 1 | 0 | 16 | 1 | 2 |
| 8 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 0 | 16 | 16 |
| 9 | 5 | 4 | 4 | 3 | 2 | 2 | 1 | 16 | 0 | 1 |
| 10 | 6 | 5 | 5 | 4 | 3 | 3 | 2 | 16 | 1 | 0 |
| Di\{9} | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 1 | 0 | 1 | 1 | 2 | 3 | 3 | 4 | 5 | 16 | 6 |
| 2 | 1 | 0 | 1 | 1 | 2 | 2 | 3 | 4 | 16 | 5 |
| 3 | 1 | 1 | 0 | 1 | 2 | 2 | 3 | 4 | 16 | 5 |
| 4 | 2 | 1 | 1 | 0 | 1 | 1 | 2 | 3 | 16 | 4 |
| 5 | 3 | 2 | 2 | 1 | 0 | 1 | 1 | 2 | 16 | 3 |
| 6 | 3 | 2 | 2 | 1 | 1 | 0 | 1 | 2 | 16 | 3 |
| 7 | 4 | 3 | 3 | 2 | 1 | 1 | 0 | 1 | 16 | 2 |
| 8 | 5 | 4 | 4 | 3 | 2 | 2 | 1 | 0 | 16 | 1 |
| 9 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 0 | 16 |
| 10 | 6 | 5 | 5 | 4 | 3 | 3 | 2 | 1 | 16 | 0 |
| Di\{10} | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 1 | 0 | 1 | 1 | 2 | 3 | 3 | 4 | 5 | 5 | 16 |
| 2 | 1 | 0 | 1 | 1 | 2 | 2 | 3 | 4 | 4 | 16 |
| 3 | 1 | 1 | 0 | 1 | 2 | 2 | 3 | 4 | 4 | 16 |
| 4 | 2 | 1 | 1 | 0 | 1 | 1 | 2 | 3 | 3 | 16 |
| 5 | 3 | 2 | 2 | 1 | 0 | 1 | 1 | 2 | 2 | 16 |
| 6 | 3 | 2 | 2 | 1 | 1 | 0 | 1 | 2 | 2 | 16 |
| 7 | 4 | 3 | 3 | 2 | 1 | 1 | 0 | 1 | 1 | 16 |
| 8 | 5 | 4 | 4 | 3 | 2 | 2 | 1 | 0 | 1 | 16 |
| 9 | 5 | 4 | 4 | 3 | 2 | 2 | 1 | 1 | 0 | 16 |
| 10 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 0 |
| Di | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 1 | 0 | 1 | 1 | 2 | 3 | 3 | 4 | 5 | 5 | 6 |
| 2 | 1 | 0 | 1 | 1 | 2 | 2 | 3 | 4 | 4 | 5 |
| 3 | 1 | 1 | 0 | 1 | 2 | 2 | 3 | 4 | 4 | 5 |
| 4 | 2 | 1 | 1 | 0 | 1 | 1 | 2 | 3 | 3 | 4 |
| 5 | 3 | 2 | 2 | 1 | 0 | 1 | 1 | 2 | 2 | 3 |
| 6 | 3 | 2 | 2 | 1 | 1 | 0 | 1 | 2 | 2 | 3 |
| 7 | 4 | 3 | 3 | 2 | 1 | 1 | 0 | 1 | 1 | 2 |
| 8 | 5 | 4 | 4 | 3 | 2 | 2 | 1 | 0 | 1 | 1 |
| 9 | 5 | 4 | 4 | 3 | 2 | 2 | 1 | 1 | 0 | 1 |
| 10 | 6 | 5 | 5 | 4 | 3 | 3 | 2 | 1 | 1 | 0 |