
INTERNATIONAL JOURNAL OF CLIMATOLOGY
Int. J. Climatol. 28: 401–420 (2008)
Published online 18 June 2007 in Wiley InterScience
(www.interscience.wiley.com) DOI: 10.1002/joc.1529

Downscaling precipitation to river basin in India for IPCC
SRES scenarios using support vector machine

Aavudai Anandhi,a V. V. Srinivas,a Ravi S. Nanjundiahb and D. Nagesh Kumara*
a Department of Civil Engineering, Indian Institute of Science, Bangalore, India

b Center for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore, India

ABSTRACT: This paper presents a methodology to downscale monthly precipitation to river basin scale in Indian context
for special report of emission scenarios (SRES) using Support Vector Machine (SVM). In the methodology presented,
probable predictor variables are extracted from (1) the National Center for Environmental Prediction (NCEP) reanalysis
data set for the period 1971–2000 and (2) the simulations from the third generation Canadian general circulation model
(CGCM3) for SRES emission scenarios A1B, A2, B1 and COMMIT for the period 1971–2100. These variables include
both the thermodynamic and dynamic parameters and those which have a physically meaningful relationship with the
precipitation. The NCEP variables which are realistically simulated by CGCM3 are chosen as potential predictors for
seasonal stratification. The seasonal stratification involves identification of (1) the past wet and dry seasons through
classification of the NCEP data on potential predictors into two clusters by the use of K-means clustering algorithm
and (2) the future wet and dry seasons through classification of the CGCM3 data on potential predictors into two clusters
by the use of nearest neighbour rule. Subsequently, a separate downscaling model is developed for each season to capture
the relationship between the predictor variables and the predictand. For downscaling precipitation, the predictand is chosen
as monthly Thiessen weighted precipitation for the river basin, whereas potential predictors are chosen as the NCEP
variables which are correlated to the precipitation and are also realistically simulated by CGCM3. Implementation of the
methodology presented is demonstrated by application to Malaprabha reservoir catchment in India which is considered to
be a climatically sensitive region. The CGCM3 simulations are run through the calibrated and validated SVM downscaling
model to obtain future projections of predictand for each of the four emission scenarios considered. The results show
that the precipitation is projected to increase in future for almost all the scenarios considered. The projected increase in
precipitation is high for A2 scenario, whereas it is least for COMMIT scenario. Copyright  2007 Royal Meteorological
Society
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1. Introduction

It is necessary to access the past and assess the future
precipitation and its variability at different timescales
to study the impact of climate change on the follow-
ing: (1) hydrology (Cohen et al., 2000; Gosain et al.,
2006; Menzel et al., 2006; Yaning et al., 2006); (2)
water resources management (Krasovskaia, 1995; Risby
and Entekhabi, 1996; Kabat and van Schaik, 2003); (3)
agriculture (Darwin et al., 1995; Adams et al., 1998;
Selvaraju, 2003); (4) forestry (Kirilenko and Solomon,
1998); (5), floods (Mirza et al., 1998; Reynard et al.,
1998; Miller et al., 2004); (6) droughts (Vicente–Serrano
and Lopez–Moreno, 2006); (7) soil erosion (Valentin,
1996; Gregory et al., 1999); (8) land use change (IPCC,
2001); (9) groundwater (Sandstrom, 1995; Allen and
Scibek, 2006); (10) environment (Jones and Jongen,
1996; Coughenour and Chen, 1997); (11) tourism (More,
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1988; Richardson, 2003; Wamukonya, 2003); (12) human
and animal population (Brotton and Wall, 1997; Fergu-
son, 1999) and their health (Tyler, 1994; Hamilton, 1995;
Pounds et al., 1999).

A proper assessment of probable future precipitation
and its variability is to be made for various climate sce-
narios. These scenarios refer to plausible future climates
which have been constructed for explicit use in investigat-
ing the potential consequences of anthropogenic climate
change and natural climate variability. Since climate sce-
narios envisage assessment of future developments in
complex systems, they are often inherently unpredictable,
insufficiently assessed, and have high scientific uncertain-
ties (Carter et al., 2001). So, it is preferable to consider
a range of scenarios in climate impact studies as such
an approach better reflects the uncertainties of the possi-
ble future climate change (Houghton et al., 2001). The
scenarios considered in this study are relevant to the
fourth assessment report of the Intergovernmental Panel
on Climate Change (IPCC), which is to be released in
2007.
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General circulation models (GCMs) are among the
most advanced tools, which use transient climate simu-
lations to simulate climatic conditions on earth hundreds
of years into the future. In a transient simulation, anthro-
pogenic forcings, which are mostly decided on the basis
of IPCC climate scenarios, are changed gradually in a
realistic fashion. The GCMs are usually run at coarse grid
resolution and as a result they are inherently unable to
represent sub-grid scale features like orography and land
use, and dynamics of mesoscale processes. Consequently,
outputs from these models cannot be used directly for
climate impact assessment on a local scale. Hence in
the past decade, several downscaling methodologies have
been developed to transfer the GCM simulated informa-
tion to local scale. In general, local scale is defined on
the basis of geographical, political or physiographic con-
siderations.

This study is motivated by a desire to develop effective
downscaling model using a novel machine learning
technique called Support Vector Machine (SVM), to
assess implications of climate change on precipitation in
Malaprabha river basin of India, which is considered to be
a climatically sensitive region. Herein a river basin refers
to the portion of land drained by many streams and creeks
that flow downhill to form tributaries to the main river.
It is necessary to assess the impact of climate change
on river basin scale, as such a scale integrates some of
the important systems like ecological and socioeconomic
systems and is closely linked with the availability of
drinking water which is one of the most vulnerable
resources of the world.

The remainder of this paper is structured as follows:
Section 2 presents an overview of downscaling models
and the underlying principle of SVM which is used in this
study to translate information from GCMs to local scale.
Section 3 provides a description of the study region and
motivation for its selection. Section 4 provides details
of data used in the study. Section 5 describes probable
predictor variables considered in the study and explains
the reasons behind their selection. Section 6 presents
the procedure proposed for seasonal stratification. Sec-
tion 7 describes the methodology proposed for develop-
ment of SVM model for downscaling precipitation to a
river basin. Section 8 presents the results and discus-
sion. Finally, Section 9 provides a summary of the work
presented in this paper and conclusions drawn from the
study.

2. Methods of downscaling

This section briefly outlines the various downscaling
methods available in literature. The two downscaling
approaches that are being pursued currently are dynamic
downscaling and statistical downscaling. In the dynamic
downscaling approach, a Regional Climate Model (RCM)
is nested into GCM. The RCM is essentially a numerical
model in which GCMs are used to fix boundary condi-
tions. The major drawback of RCM, which restricts its

use in climate impact studies, is its complicated design
and high computational cost. Moreover, RCM is inflex-
ible in the sense that expanding the region or moving
to a slightly different region requires redoing the entire
experiment (Crane and Hewitson, 1998). Dynamic down-
scaling can be further subdivided into one-way nesting
and two-way nesting (Wang et al., 2004).

The Statistical downscaling involves developing quan-
titative relationships between large-scale atmospheric
variables (predictors) and local surface variables (predic-
tands). There are three types of statistical downscaling
namely, weather classification methods, weather genera-
tors and transfer functions. The most common statistical
downscaling approaches are based on transfer functions,
which model direct relationships between predictors and
predictands (Schoof et al., 2007). The transfer functions
are conceptually simple means of representing linear
or nonlinear relationships between predictors and pre-
dictands. Examples of transfer function based statistical
downscaling methods include those which use linear and
nonlinear regression, artificial neural networks, canonical
correlation and principal component analysis (PCA).

In recent times, SVM approach is recognized for
its ability to capture nonlinear regression relationships
between variables (Vapnik, 1995; Vapnik, 1998; Haykin,
2003). The SVMs implement the structural risk mini-
mization principle which attempts to minimize an upper
bound on the generalization error, by striking a right
balance between the training error and the capacity of
machine (i.e. the ability of machine to learn any training
set without error). Global optimum solution is guaran-
teed with SVM (Haykin, 2003). Further, for the SVMs
the learning algorithm automatically decides the model
architecture (number of hidden units). The flexibility of
the SVM is provided by the use of kernel functions that
implicitly map the data to a higher, possibly infinite,
dimensional space. A linear solution in the higher dimen-
sional feature space corresponds to a nonlinear solution
in the original lower dimensional input space. This makes
SVM a feasible choice for downscaling problems which
are nonlinear in nature. Recently, Tripathi et al. (2006)
proposed the SVM approach for downscaling precipita-
tion to meteorological subdivisions in India.

The review of latest literature on downscaling of pre-
cipitation using transfer functions is presented in Table I.
For details pertaining to predictors and techniques that
have been used for downscaling precipitation in the past
century, readers are referred to Wilby and Wigley (2000).

There are also statistical approaches to space-time
downscaling of precipitation based on scale invariance
also referred in literature as dynamic scaling (Perica and
Foufoula-Georgiou, 1996; Venugopal et al., 1999a, b;
Nykanen et al., 2001). These studies have considered pre-
cipitation from several storm events for downscaling to
smaller time and space scales. The time scale considered
in the approach is of the order of a few minutes to several
hours, while the space scale is of the order of 2–64 km2.
This approach is yet to be extended for downscaling pre-
cipitation to river basin scale at longer time scales.
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Table I. Literature review of predictor selection in statistical downscaling using transfer functions.

SN Predictor Timescale Data Technique Region Reference

1 mslp and pr Monthly ECMWF, NCEP
reanalysis data sets

Regression model Norway Benestad et al.
(2007)

ECHAM5 GCM
2 slp Monthly ECHAM4.5 Two regression

based models
Southern Africa Shongwe et al.

(2006)
3 slp, rh 7, hus 7,

ta 7, ps, ta s,
hus s, rh s, ws,
wd, Z, Di, hus, rh,
zg

HadAM3P
SRES A2 and B2

Direct
method – CCA
Indirect
method – MLP,
single site MLP,
RBF, SDSM.

United Kingdom Haylock et al.
(2006)

4 mslp, afs s, afs 5,
afs 8, ua s, ua 5,
ua 8, va s, va 5,
va 8, Z s, Z 5,
Z 8, Di s, Di 8,
zg 5, zg 8, wd 5,
wd 8, rh ns,
hus ns, hus 5,
hus 8, ta 2m

Daily CGCM1 using the
IPCC ‘IS92a’,
NCEP reanalysis
data sets

TNN and SDSM;
Correlation and
scatter plot to
select potential
predictors

Canada (single
station
representing river
basin)

Dibike and
Coulibaly (2006)

5 ua 7, va 7, hus, rh,
ta s

Daily NCEP reanalysis
data sets,
HadAM3,
ECHAM4.5,
CSIRO k2.

SOM defines the
atmospheric state.
Each unique
atmospheric state
is associated with
an observed
precipitation
probability density
function (PDF).

South Africa (0.1°

and 0.25° grid
scale)

Hewitson and
Crane (2006)

6 zg 5 Seasonal NCEP reanalysis
data sets, HadAM3

CCA, PCA Greece (point
station)

Tolika et al.
(2006).

7 pr, zg 0 Daily ECMWF, NCEP
reanalysis data sets

Statistical
downscaling by
Dynamical scaling,
LS, Dynamical
intensity scaling,
Local intensity
scaling

European Alps and
adjacent regions

Schmidli et al.
(2006)

8 ta, rh, hus, zg, ua,
va, wa, at various
pressure levels and
slp.

Monthly NCEP reanalysis
data sets, CGCM 2

SVM, Artificial
Neural Network

India
(metereological
regions)

Tripathi et al.
(2006)

9 zg 7 Daily NCAR reanalysis
data sets

Fuzzy rule-based
methodology

Germany (one rain
gauging station)

Bardossy et al.
(2005)

10 ta ns, slp, hus ns Monthly CSIRO/Mk2,
CCC/CGCM2,
UKMO/HadCM3,
DOE-NCAR/
PCM, and MPI-
DMI/ECHAM4-
OPYC3. SRES A2
and B2 emission
scenarios

The multi-way
partial least
squares regression

Central and
Western Europe
(climate region)

Bergant and
Kajfez–Bogataj
(2005)

11 zg 5, ta 8, hus 7 Daily ECHAM4/OPYC3
IPCC IS95a,
NCEP reanalysis
data sets

Regression method
where variability
is added by
randomization
model, inflation
model and
Expansion Model

Germany (rain
gauging stations in
river basins)

Burger and Chen
(2005)
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Table I. (Continued ).

SN Predictor Timescale Data Technique Region Reference

12 mslp, afs s, afs 5,
afs 8, ua s, ua 5,
ua 8, va s, va 5,
va 8, Z s, Z 5,
Z 8, Di s, Di 8,
zg 5, zg 8, wd 5,
wd 8, rh ns,
hus ns, hus 5,
hus 8, ta 2m

Daily CGCM1 using the
IPCC ‘IS92a’,
NCEP reanalysis
data sets

SDSM, weather
generator

Canada (single
station
representing river
basin)

Dibike and
Coulibaly, (2005)

13 pr Daily ECHAM4,
HadCM3, and
NCAR–PCM
SRES A2 and B2

LS USA (0.125° grid
scale)

Salathe (2005)

14 slp Daily, Monthly NCEP reanalysis
data sets

AM Central Sweden
Europe (rain
gauging stations in
a region)

Wetterhall et al.
(2005)

15 pr Daily Monthly HadCM3 for IPCC
‘IS95a’

Transfer function
bet GCM and
local for spatial
downscaling for
month, CLIGEN
for temporal
downscaling to
daily time step

USA (one rain
gauging station for
one region)

Zhang (2005)

16 slp Seasonal HadCM2, CGCM1
CSIRO–Mk2,
CCSR

SVDA with the
EOF, truncation to
correct the
systematic bias in
the dynamic
models.

Korea (rain
gauging stations in
a region)

Kim et al. (2004)

17 zg 5 Seasonal NCEP reanalysis
data sets

Linear regression
and multiple linear
regression.
Correlation by
Spearman’s rank
correlation.

Greece
(metereological
regions)

Maheras et al.
(2004)

18 slp, zg 8, zg 7,
zg 5, zg 3, pr

Seasonal NCEP reanalysis
data sets

EOF and CCA Mediterranean
Region (rain
gauging stations in
a region)

Xoplaki et al.
(2004)

19 pr, zg 5, zg 7, slp,
w 5, zgt 5-0.

Monthly NCEP – NCAR
reanalysis data sets

The Sampson
correlation ratio to
predictors,
preprocessing by
independent
component
analysis.
Downscaling by
RNN model.

Turkey (point
downscaling)

Tatli et al. (2004)

20 slp, ta 8, pwr,
zg 0, zg 5,
zgt 0–5

Daily NCEP reanalysis
data sets, BMRC,
CSIRO, LMD

AM France (17 point
station
downscaling)

Timbal et al.
(2003)

21 pr, zg 0.
AM–zg 0.

Daily NCEP reanalysis
data sets

LS of the
simulated
large-scale
precipitation;

USA (river basin
50 km grid)

Salathe (2003)
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Table I. (Continued ).

SN Predictor Timescale Data Technique Region Reference

22 Lag-1 predictand,
Wet, T mean,
hus ns, RH ns,
mslp, ua, va, F, Z,
zg 5,

NCEP reanalysis
data sets, CGCM1-
greenhouse-gas-
plus-sulphate-
aerosols
experiment

SDSM Canada (region
Toronto)

Wilby et al. (2002)

23 zg 7, zg 5, pr Daily Observed stations Classification
pattern based on
fuzzy rule.
Multivariate
stochastic
downscaling for
each pattern.

Germany (8 point
stations), Greece
(21 point stations)

Stehlik and
Bardossy (2002)

24 Indices such as
CAPE, CI, BRN,
WS, SWTI

Minutes, hours 47 selected radar
scans, MM5

Spatial-temporal
downscaling.
Relation between
indices and scale
independent
parameter.

Central USA
(single storms of
2 days, 4–64 km)

Nykanen et al.
(2001)

Note: Abbreviations are explained in Appendix.

In the current study, the objective is to effectively
downscale precipitation from tens of thousands of km2

(i.e. spatial domain of predictor variables) to a river
basin with an area of 2500 km2 at monthly timescale.
To the knowledge of the authors, no studies have been
carried out in India on downscaling precipitation to a
river basin scale nor are we aware of any prior work
aimed at downscaling third generation Canadian general
circulation model (CGCM3) simulations to river basin
scale for various IPCC scenarios using SVM approach.

2.1. Least square support vector machine

The Least Square Support Vector Machine (LS-SVM)
has been used in this study to downscale precipitation.
The LS-SVM provides a computational advantage over
standard SVM (Suykens, 2001). This section presents an
underlying principle of the LS-SVM

Consider a finite training sample of N patterns
{(xi , yi), i = 1, . . . , N}, where xi denoting the ‘i-th’ pat-
tern in n-dimensional space (i.e. xi = [x1i , . . . , xni] ∈
�n) constitutes input to LS-SVM and yi ∈ � is the cor-
responding value of the desired model output. Further,
let the learning machine be defined by a set of possible
mappings x �→ f (x, w), where f (·) is a deterministic
function which, for a given input pattern x and adjustable
parameters w (w ∈ �n), always gives the same output.
Training phase of the learning machine involves adjust-
ing the parameters w. The parameters are estimated by
minimizing the cost function �L(w, e). The LS-SVM
optimization problem for function estimation is formu-
lated by minimizing the cost function.

�L(w, e) = 1

2
wT w + 1

2
C

N∑
i=1

e2
i

subject to the equality constraint

yi − ŷi = ei i = 1, . . . , N (1)

where C is a positive real constant and ŷ is the
actual model output. The first term of the cost function
represents weight decay or model complexity-penalty
function. It is used to regularize weight sizes and
to penalize large weights. This helps in improving
generalization performance (Hush and Horne, 1993).
The second term of the cost function represents penalty
function.

The solution of the optimization problem is obtained
by considering the Lagrangian as

L(w, b, e, α) = 1

2
wTw + 1

2
C

N∑
i=1

e2
i −

N∑
i=1

αi{ŷi + ei − yi}

(2)

where αi are Lagrange multipliers and b is the bias term.
The conditions for optimality are given by




∂L
∂w = w − ∑N

i=1 αiφ(xi ) = 0
∂L
∂b

= ∑N
i=1 αi = 0

∂L
∂ei

= αi − Cei = 0 i = 1, . . . , N

∂L
∂αi

= ŷi + ei − yi = 0 i = 1, . . . , N

(3)

The above conditions of optimality can be expressed
as the solution to the following set of linear equations
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after elimination of w and ei .[
0 �1T

�1 � + C−1I

] [
b

α

]
=

[
0

y

]

where y =




y1

y2
...

yN


 ; �1 =




1
1
...

1




N×1

;

α =




α1

α2
...

αN


 ; I =




1 0 . . . 0
0 1 . . . 0
...

...
...

...

0 0 . . . 1




N×N

(4)

In Equation (4), � is obtained from the application of
Mercer’s theorem.

�i,j = K(xi , xj ) = φ(xj )
T φ(xj ) ∀i, j (5)

where φ(·) represents nonlinear transformation function
defined to convert a non linear problem in the original
lower dimensional input space to linear problem in a
higher dimensional feature space.

The resulting LS-SVM model for function estimation
is:

f (x) =
∑

αi
∗ K(xi , x) + b∗ (6)

where α∗
i and b∗ are the solutions to Equation (4) and

K(xi , x) is the inner product kernel function defined
in accordance with Mercer’s theorem (Mercer, 1909;
Courant and Hilbert, 1970) and b∗ is the bias. There
are several possibilities for the choice of kernel function,
including linear, polynomial, sigmoid, splines and radial
basis function (RBF). The linear kernel is a special case
of RBF (Keerthi and Lin, 2003). Further, the sigmoid
kernel behaves like RBF for certain parameters (Lin
and Lin, 2003). In this study RBF is used to map the
input data into higher dimensional feature space, which
is given by:

K(xi , xj ) = exp

(
−‖xi − xj‖2

σ

)
(7)

where, σ is the width of RBF kernel, which can be
adjusted to control the expressivity of RBF. The RBF
kernels have localized and finite responses across the
entire range of predictors.

The advantage with RBF kernel is that it nonlinearly
maps the training data into a possibly infinite-dimensional
space and thus it can effectively handle the situations
when the relationship between predictors and predictand
is nonlinear. Moreover, the RBF is computationally sim-
pler than polynomial kernel, which has more parameters.
It is worth mentioning that developing LS-SVM with
RBF kernel involves selection of RBF kernel width σ

and parameter C.
In the present study the LS-SVM model, which has

been proven to be effective for downscaling precipitation

to Indian meteorological subdivisions in an earlier work
(Tripathi et al., 2006), is developed for implementation
at river basin scale. The scale of meteorological subdi-
vision used by Tripathi et al. (2006) is much larger than
that of the river basin used in the present study. The effec-
tiveness of the developed model is demonstrated through
application to downscale precipitation in catchment of
Malaprabha reservoir from simulations of the third gen-
eration CGCM3 for latest IPCC scenarios namely, A1B,
A2, B1 and COMMIT. In the earlier work (Tripathi et al.,
2006), simulations of second generation Canadian Gen-
eral Circulation Model for IS92a scenario are used for
downscaling precipitation. The IS92a scenario, which
is also known as Business-as-usual scenario, considers
emissions to grow at the present rate. The scenarios A1B,
A2, B1 and COMMIT which are considered in the present
study provide a more meaningful basis for impact esti-
mates because they are based on different viewpoints on
possible future development pathways and include the
major driving forces behind human development such as
economic, demographic, social and technological change
other than anthropogenic emissions. Each of the scenarios
is explained briefly in Table II. Further, issues associated
with seasonal stratification and downscaling using SVM
model are also discussed in the present study.

3. Study region

The study region is the catchment of Malaprabha river,
upstream of Malaprabha reservoir in Karnataka state
of India. It has an area of 2564 km2 situated between
15°30′N and 15°56′N latitudes and 74°12′E and 75°15′E
longitudes. It receives an average annual precipitation
of 1051 mm. It has a tropical monsoon climate where
most of the precipitation is confined to a few months of
the monsoon season (Figure 1). The south–west (sum-
mer) monsoon has warm winds blowing from the Indian
Ocean causing copious amount of precipitation during
June–September months. The Malaprabha basin is one of
the major lifelines for the arid regions of north Karnataka
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Figure 1. Thiessen Weighted Precipitation (TWP) for the study region.
This figure is available in colour online at www.interscience.wiley.

com/ijoc
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Table II. A brief explanation of the scenarios considered in the study.

Name of
IPCC
scenarios

Data
set

Description Duration

20C3M Climate of the 20th century
(20c3m)

Atmospheric CO2 concentrations and other input data are
based on historical records or estimates beginning around the
time of the Industrial Revolution.

1870–2000

COMMIT Year 2000 CO2 maximum
(COMMIT)

Atmospheric CO2 concentrations are held at year 2000 levels.
This experiment is based on conditions that already exist (e.g.
‘committed’ climate change).

2001–2100

SRES B1 550 ppm CO2 maximum
(SRES B1)

Atmospheric CO2 concentrations reached 550 ppm in the year
2100 in a world characterized by low population growth, high
GDP growth, low energy use, high land-use changes, low
resource availability and medium introduction of new and
efficient technologies.

2001–2100

SRES A1B 720 ppm CO2 maximum
(SRES A1B)

Atmospheric CO2 concentrations reach 720 ppm in the year
2100 in a world characterized by low population growth, very
high GDP growth, very high energy use, low land-use changes,
medium resource availability and rapid introduction of new
and efficient technologies.

2001–2100

SRES A2 850 ppm CO2 maximum
(SRES A2)

Atmospheric CO2 concentrations reach 850 ppm in the year
2100 in a world characterized by high population growth,
medium GDP growth, high energy use, medium/high land-use
changes, low resource availability and slow introduction of
new and efficient technologies.

2001–2100

(possibly the largest arid region in India outside the Thar
desert). Malaprabha reservoir supplies water for irrigation
to the districts of northern Karnataka with an irrigable
area of 218 191 hectares and the mean annual precipita-
tion in the reservoir command area is 576 mm (Suresh
and Mujumdar, 2004). The location map of the study
region is shown in Figure 2. The fact that the command
area has a much lower mean rainfall than the catchment
area indicates that though its origin is in a region of high
rainfall it feeds arid and semi-arid regions downstream.

Regions with an arid and semi-arid climate could
be sensitive to even insignificant changes in climatic
characteristics (Linz et al., 1990). In the past decade,
Lal et al. (1995) predicted a decrease in South Asian
monsoon precipitation owing to radiative cooling induced
by sulphate aerosols. In contrast, investigations of IPCC
(2001) indicate that the mean monsoon precipitation in
the region will intensify in future. The motivation of the
present study is the need to assess plausible impact of
climate change on precipitation in the study region, which
has implications on inflows into the Malaprabha reservoir
and water availability for irrigation in its command
area which is frequently prone to water shortage and is
considered to be a climatically sensitive region. To the
best of our knowledge, hardly any attempt has been made
in the past to downscale precipitation to river basin scale
in this part of the world.

4. Data extraction

For the study region, reanalysis data of the monthly mean
atmospheric variables prepared by National Center for

Environmental Prediction (NCEP; Kalnay et al., 1996), is
extracted for the period from January 1971 to December
2000 for nine grid points whose latitude ranges from
12.5 °N to 17.5 °N and longitude ranges from 72.5 °E to
77.5 °E at a spatial resolution of 2.5°.

Thiessen weighted precipitation (TWP) data is esti-
mated at a monthly timescale for the period from January
1971 to December 2003, using records available at 11
rain gauge stations which are well distributed in the study
region. Primary source of the data is from Department
of Economics and Statistics, Government of Karnataka,
India. The Thiessen polygons for the study were prepared
using ArcGIS 9.0.

The GCM data used in the study are simulations
obtained from CGCM3 of the Canadian Center for Cli-
mate Modeling and Analysis (CCCma), through web-
site http://www.cccma.bc.ec.gc.ca/. The data consisted of
present-day (20C3M) and future simulations forced by
four emission scenarios namely, A1B, A2, B1 and COM-
MIT. A brief description of these scenarios is provided
in Table II. The climate data is extracted at a monthly
timescale for the period from January 1971 to Decem-
ber 2100, for nine grid points whose latitude ranges from
12.99 °N to 20.41 °N and longitude ranges from 71.25 °E
to 78.75 °E. The CGCM3 grid is uniform along the lon-
gitude with grid box size of 3.75° and nearly uniform
along the latitude (approximately 3.75°). Herein, it is to
be mentioned that the spatial domain of climate variables
is chosen following the suggestions in Wilby and Wigley
(2000).

The development of downscaling model begins with
selection of probable predictors, followed by seasonal
stratification, and finally ends with training and validation
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Figure 2. Location map of the study region in Karnataka state of India. The latitude, longitude and scale of the map refer to Karnataka state.
This figure is available in colour online at www.interscience.wiley.com/ijoc

of the SVM model. The developed model is subsequently
used to obtain projections of precipitation for simulations
of CGCM3.

5. Probable predictor selection

The selection of appropriate predictors is one of the most
important steps in a downscaling exercise (Hewitson and
Crane, 1996; Cavazos and Hewitson, 2005). The choice
of predictors could vary from region to region depending
on the characteristics of the large-scale atmospheric
circulation and the predictand to be downscaled. Any
type of variable can be used as predictor as long as it
is reasonable to expect that there exists a relationship
between the predictor and the predictand (Wetterhall
et al., 2005). Often, in climate impact studies predictors
are chosen as variables that are as follows: (1) reliably
simulated by GCMs and are readily available from
archives of GCM output and reanalysis data sets and
(2) strongly correlated with the predictand.

Other examples of predictors include indices such as
‘Convective Available Potential Energy’ (CAPE, Per-
ica and Foufoula-Georgiou, 1996; Nykanen et al., 2001;
Nishiyama et al., 2002), ‘convergence of air’ (CONV)
and ‘precipitable water’ (PW, Nishiyama et al., 2002).
The CAPE is effective as an index to downscale precipita-
tion at timescale of the order of storm duration. However,
the relationship between CAPE and precipitation may not
be correctly represented at monthly timescale.

In this study, predictor variables are screened on
the basis that monsoon rain is dependent on dynamics
through advection of water from the surrounding seas and

thermodynamics through effects of moisture and tempera-
ture which can modify the local vertical static stability. In
a changed climate scenario, both the thermodynamic and
dynamic parameters may undergo changes. Therefore in
the present study, probable predictor variables (m1) which
incorporate both the effects are identified. The variables
are chosen to have a physically meaningful relationship
with the predictand. For example, winds during the south-
west monsoon season advect moisture into the region
while temperature and humidity are associated with local
thermodynamic stability and hence are useful as predic-
tors. The probable predictors extracted from the NCEP
reanalysis and CGCM3 data sets include air temperature
(at 925, 700, 500 and 200 mb pressure levels), geopoten-
tial height (at 925, 500 and 200 mb pressure levels), spe-
cific humidity (at 925 and 850 mb pressure levels), zonal
and meridional wind velocities (at 925 and 200 mb pres-
sure levels), precipitable water and surface pressure. The
GCM data is re-gridded to NCEP grid using Grid Analy-
sis and Display System (GrADS; Doty and Kinter, 1993).

6. Seasonal stratification

The climate of the study region can be broadly classified
into two seasons: a wet season (the monsoon season)
and a dry season. This section outlines the procedure
for seasonal stratification performed on the potential
predictors chosen from correlated NCEP and GCM
probable predictor variables.

The relationship between the predictor variables and
the predictand varies seasonally because of the seasonal
variation of the atmospheric circulation (Karl et al.,
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1990). Hence seasonal stratification has to be performed
to select the appropriate predictor variables for each
season to facilitate development of separate downscaling
model for each of the seasons. The seasonal stratification
can be carried out by defining the seasons as either
conventional (fixed) seasons or as ‘floating’ seasons. In
a fixed season, the starting dates and lengths of seasons
remain the same for every year. In contrast, in a ‘floating’
season, the date of onset and duration of each season is
allowed to change from year to year. Studies have shown
that floating seasons reflect ‘natural’ seasons contained
in the climate data better than fixed seasons, especially
under altered climate conditions (Winkler et al., 1997).
Therefore identification of the floating seasons under
altered climate conditions helps to effectively capture the
relationships between predictor variables and predictands
for each season, thereby enhancing the performance of
downscaling model. Hence floating method of seasonal
stratification is opted for in this study to identify dry
and wet seasons in a calendar year for both NCEP
and GCM data sets. In the floating method of seasonal
stratification, the NCEP data set is partitioned into two
clusters depicting wet and dry seasons by using K-means
clustering (MacQueen, 1967), while the GCM data set is
partitioned into two clusters by using nearest neighbour
rule (Fix and Hodges, 1951) and the results obtained with
K-means clustering.

The m2 climate variables which are realistically sim-
ulated by the GCM are selected from among the m1

probable predictors (listed in Section 5), by specifying a
threshold value (Tng1) for correlation between the prob-
able predictor variables in NCEP and GCM data sets.
For this purpose, product moment correlation (Pearson,
1896), Spearman’s rank correlation (Spearman, 1904a,b)
and Kendall’s tau (Kendall, 1951) are used as the three
measures of dependence. From NCEP data on the m2

variables, n principal components (PCs) which preserve
more than 98% of the variance are extracted to form fea-
ture vectors. The PCs, which are extracted along principal
directions obtained for the NCEP data, are used to form
feature vectors for GCM data. Subsequently, the feature
vectors of the NCEP data are partitioned into two clus-
ters (depicting wet and dry seasons) using the K-means
cluster analysis. In this analysis, each feature vector (rep-
resenting a month) of the NCEP data is treated as an
object having a location in space. The feature vectors are
partitioned into two clusters such that the feature vectors
within each cluster are as close to each other as pos-
sible in space, and are as far as possible in space from
the feature vectors in other clusters. The distance between
feature vectors in space is estimated using Euclidian mea-
sure. Subsequently, each feature vector (representing a
month) of the NCEP data is assigned a label that denotes
the cluster (season) to which it belongs. Following this,
the feature vectors prepared from GCM simulations (past
and future) are labeled using the nearest neighbour rule.
As per this rule, each feature vector formed using the
GCM data is assigned the label of its nearest neighbour
from among the feature vectors formed using the NCEP

data. To determine the neighbours for this purpose, the
distance is computed between NCEP and GCM feature
vectors using Euclidean measure.

Optimal Tng1 is identified as a value for which the
wet and dry seasons formed for the study region using
NCEP data correlate well with the true seasons for the
region. The seasons projected for future using GCM
data on potential predictors corresponding to the optimal
Tng1 are deemed acceptable. The plausible true wet and
dry seasons are identified in the study region for the
period from January 1971 to December 2000 using a
method based on truncation level (TL). In this method,
the dry season is viewed as consisting of months for
which estimated TWP value lies below the specified
TL, whereas the wet season is viewed as consisting of
months for which estimated TWP value lies above the
TL. Herein, two options have been used to specify the TL.
In the first option, the TL has been chosen as percentage
of the observed mean monthly precipitation (MMP) (70
to 100% MMP at intervals of 5% MMP). In the second
option, the TL has been chosen as the mean monthly
value of the actual evapotranspiration in the river basin.

Let the probable predictor and predictand for month t

be denoted as Xt and Yt respectively. Then the product
moment correlation which measures the linear relation-
ship between probable predictor and predictand is given
by

P =

N∑
t=1

(Xt − X)(Yt − Y )

NσXσY

(8)

where N refers to the number of months in the data sets;
X and Y represent the means of predictor and predictand
respectively, while σX and σY represent the standard
deviations of the same.

Spearman’s rank correlation and Kendall’s tau are the
two nonparametric correlations used in this study which
are estimated based on ranks assigned to data points
in predictor and predictand data sets. The advantage of
these rank correlations over the linear correlation stems
from the use of ranks rather than numerical values of
the predictor and the predictand variables for estimation
of the correlations (Press et al., 1992). The ranks are
assigned to the N data points in each data set after
arranging them in increasing order of magnitude, such
that the least value in the data has the first rank.
Spearman’s rank correlation (ρ) is computed using the
difference between the ranks of contemporaneous values
of predictor and predictand (Di).

ρ = 1 −
6

N∑
i=1

D2
i

N(N2 − 1)
(9)

Estimation of the Kendall’s tau (τ ) for a pair of pre-
dictor and predictand data sets involves preparation of N

pairs of data ranks {(ui, vi), i = 1, . . . , N}, where ui and
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vi denote ranks of contemporaneous data points in the
predictor and predictand data sets at ith time step respec-
tively. Let two pairs of ranks be (uj , vj ) and (uk, vk). The
two pairs are concordant if uj > uk and vj > vk, or if
uj < uk and vj < vk , for which (uj − uk)(vj − vk) > 0.
The two pairs are discordant, if uj > uk and vj < vk, or if
uj < uk and vj > vk , for which (uj − uk)(vj − vk) < 0.
A tied pair is neither concordant nor discordant, i.e.
(uj − uk)(vj − vk) = 0. The Kendall’s τ is calculated
using the formula given below.

τ = 4λ

1

2
N(N − 1)

− 1 (10)

where λ is the difference between the number of con-
cordant pairs and the number of discordant pairs. So, a
high value of λ means that most pairs are concordant,
indicating that the two rankings are consistent. Further,
N(N –1)/2 - total number of possible pairs of ranks. If
there are a large number of tied pairs it should be adjusted
accordingly. A positive value of τ indicates that the ranks
of both the variables increase together, whilst a nega-
tive correlation indicates that as the rank of one variable
increases the rank of the other decreases. The Kendall
coefficient has advantages over the Spearman coefficient
(Leach, 1979). The first advantage of Kendall’s Tau is
that it is appropriate when a large number of ties are
present within ranks. The second advantage of the depen-
dence measure is its direct and simple interpretation in
terms of probabilities of observing concordant and discor-
dant pairs. The Spearman’s coefficient can be considered
as the regular Pearson’s correlation coefficient in terms
of the proportion of variability accounted for, whereas
Kendall’s coefficient represents a probability, i.e. the dif-
ference between the probabilities that the observed data
are in the same order and the observed data are not in the
same order. The advantages of Kendall coefficient makes
it useful to effectively interpret the relationship between
(1) the predictors in NCEP and GCM data sets and (2)
predictors in NCEP and the predictand.

7. Development of SVM downscaling model

Herein for downscaling precipitation, the m1 probable
predictor variables that have been selected for seasonal
stratification are considered at each of the nine grid
points surrounding and within the study region (shown
in Figure 2). Following this, cross-correlations are com-
puted between the probable predictor variables in NCEP
and GCM data sets and the probable predictor variables
in NCEP data set and the predictand. Subsequently, a
pool of potential predictors is identified for each season
by specifying threshold values for the computed cross-
correlations. In the discussion to follow, the threshold
value for cross-correlation between NCEP and GCM data
sets is denoted by (Tng2), whereas the same between
NCEP and predictand is depicted as (Tnp). The Tnp should

be reasonably high to ensure choice of appropriate predic-
tors for downscaling precipitation. Similarly, Tng2 should
also be reasonably high to ensure that the predictor vari-
ables used in downscaling are realistically simulated by
the GCM in the past, so that the future projections of the
predictand that are obtained from GCM are acceptable.

The downscaling model is calibrated to capture the
relationship between NCEP data on potential predictors
and the estimated TWP for the Malaprabha catchment.
The data on potential predictors is first standardized for
each season separately for a baseline period extending
from 1971 to 2000. Standardization is widely used prior
to statistical downscaling to reduce systemic bias (if any)
in the mean and variance of GCM predictors relative to
NCEP reanalysis data (Wilby et al., 2004). The procedure
typically involves subtraction of mean and division by
the standard deviation of the predictor for the baseline
period. The standardized NCEP predictor variables are
then processed using PCA to extract PCs which are
orthogonal and which preserve more than 98% of the
variance originally present in them. A feature vector is
formed for each month of the record using the PCs. The
feature vector forms the input to the SVM model, whereas
TWP (predictand) constitutes the output of the model.
The PCs account for most of the variance in the input
and also remove the correlations among the input data.
Hence, the use of PCs as input to a downscaling model
helps in making the model more stable and at the same
time reduces the computational burden.

To develop the SVM downscaling model, the available
feature vectors are partitioned into a training set and a
test set. The partitioning was initially carried out using a
multifold cross-validation procedure, which was adopted
from Haykin (2003) for use in an earlier work (Tripathi
et al., 2006). In this procedure, about 70% of the avail-
able feature vectors are randomly selected for training
the model and the remaining 30% are used for valida-
tion. However, in this study the multifold cross-validation
procedure is found to be ineffective because the time
span considered for analysis is small and there are more
extreme precipitation events in the period 1970–1990
than in the next 10 years. Therefore, feature vectors pre-
pared from the first 22 years (approximately 70% of
record) of data are chosen for calibrating the model and
the remaining feature vectors are used for validation. The
‘normalized mean squared error’ (NMSE) is used as an
index to assess the performance of the model.

The training of SVM involves selection of the model
parameters σ and C. The width of RBF kernel σ can give
an idea about the smoothness of the derived function.
Smola et al. (1998), in their attempt to explain the
regularization capability of RBF kernel, have shown that
a large kernel width acts as a low-pass filter in frequency
domain, attenuating higher order frequencies and thus
resulting in a smooth function. Alternatively, RBF with
small kernel width retains most of the higher-order
frequencies leading to an approximation of a complex
function by the learning machine. In this study, grid
search procedure (Gestel et al., 2004) is used to find
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the optimum range for the parameters. Subsequently,
the optimum values of parameters are obtained from
the selected range using stochastic search technique of
genetic algorithm (Haupt and Haupt, 2004).

The feature vectors prepared from GCM simulations
are run through the calibrated and validated SVM down-
scaling model to obtain future projections of predic-
tand for each of the four emission scenarios consid-
ered (i.e. SRES A1B, A2, B1 and COMMIT). Subse-
quently, for each scenario, the projected values of predic-
tand are divided into five parts (2001–2020, 2021–2040,
2041–2060, 2061–2080 and 2081–2100) to determine
the trend in the projected values of precipitation.

8. Results and discussion

In the context of seasonal stratification, the highly corre-
lated predictor variables between NCEP and GCM data
sets are selected from among the 15 probable predic-
tors listed in Section 5 using the three measures of
dependence described in Section 6. In this context, cross-
correlation is computed between data points of each prob-
able predictor in NCEP and GCM records using each of
the three dependence measures. Subsequently, the cross-
correlations computed using each dependence measure
are arranged in descending order of magnitude and ranks
are assigned to the predictors, such that the predictor
having the highest cross-correlation between NCEP and
GCM data sets has rank one. Results from the forego-
ing analysis showed similar (or nearly equal) rank for
any chosen predictor by all the three dependence mea-
sures considered, indicating that the ranking of predictors
is robust. Following this, the highly correlated probable
predictor variables between NCEP and GCM data sets
are identified as potential predictors. To aid in this task,
a threshold (Tng1) is chosen for product moment corre-
lation to segregate high and low correlations. In general,
the choice of threshold is subjective. A higher thresh-
old results in selecting a few of the probable predictors
as potential predictors. In contrast, a very low threshold

results in selecting almost all the probable predictors as
potential predictors. In this study, the effect of threshold
value on seasonal stratification is analyzed by varying
its value in the range −0.2 to 1.0. The set of predictors
selected for a few typical threshold values are shown in
Table III, for brevity. Results of the seasonal stratifica-
tion performed using three of the predictor sets, following
the procedure described in Section 6, are presented in
Figure 3. It can be seen from the figure that seasonal strat-
ification is sensitive to the choice of potential predictors,
which in turn depends on the choice of threshold Tng1.
In general, selection of a very few predictor variables
may be insufficient to represent the thermodynamics and
dynamics of the circulation in the region, whereas inclu-
sion of too many predictor variables creates noise as seen
in Figure 3(c), where the choice of too many predictors
resulted in classifying the entire year as wet season for
special report of emission scenarios (SRES) A2 for the
period 2081–2100. Hence, the task of selecting the opti-
mum number of predictor variables is crucial for proper
seasonal stratification.

Optimal value of Tng1 is identified as 0.8 following
the procedure described in Section 6. Table IV presents
some of the typical results from this analysis. The results
of seasonal stratification obtained for the optimum Tng1

for the four scenarios namely, SRES A1B, SRES A2,
SRES B1 and COMMIT, indicate that the date of onset
and duration of seasons are likely to vary in the future
(Figure 3(b)). Selection of a higher threshold value would
have resulted in elimination of some of the important
predictors that influence the thermodynamic and dynamic
parameters in the study region. As a consequence, the
relationship between predictors and predictand could not
have been captured. For example, bias in precipitation
simulated by SVM is more for Tng1 equal to 0.9, than
for Tng1 equal to 0.8 as shown in Figures 4(i) and 5(i).
The ill-effect of using a low threshold value on seasonal
stratification has already been discussed.

In these figures, the precipitation simulated using
NCEP and GCM data sets are compared with the

Table III. Potential predictors selected for seasonal stratification using different values of threshold Tng1 for product moment
correlation between probable predictors in NCEP and CGCM3 data sets.

SN Tng1 Potential predictors selected for seasonal
stratification

1 1.0–0.93 –
2 0.83–0.92 ua 9
3 0.81–0.82 ua 9, ua 2, prw
4 0.77–0.8 ua 9, ua 2, prw, zg 9
5 0.76 ua 9, ua 2, prw, zg 9, hus 8
6 0.75 ua 9, ua 2, prw, zg 9, hus 8, ta 2
7 0.71–0.74 ua 9, ua 2, prw, zg 9, hus 9, hus 8, ta 2
8 0.68–0.7 ua 9, ua 2, prw, zg 9, zg 2, hus 9, hus 8, ta 2
9 0.63–0.67 ua 9, ua 2, prw, zg 9, zg 2, hus 9, hus 8, ta 7, ta 2
10 0.55–0.62 ua 9, ua 2, prw, zg 9, zg 2, hus 9, hus 8, ta 7, ta 5, ta 2
11 0.35–0.54 ua 9, ua 2, prw, zg 9, zg 2, hus 9, hus 8, ta 9, ta 7, ta 5, ta 2

Note: Abbreviations are explained in Appendix.
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Figure 3. Typical results of seasonal stratification performed using cluster analysis. Dry season is shown in black color, whereas the wet season
is shown in white color. The Tng1 values chosen are 0.9, 0.8 and 0.45 in Figure 3 (a)–(c) respectively.

Table IV. Selection of optimal value for threshold (Tng1)

between predictors in NCEP and GCM data sets. TL refers to
truncation level expressed as percentage of TWP for the study
region or as mean monthly Actual Evapotranspiration (MME).

Variable TL Tng1

0.9 0.8

TWP 0.70 0.70 0.75
0.75 0.70 0.76
0.80 0.70 0.76
0.85 0.70 0.78
0.90 0.71 0.78
0.95 0.71 0.78
1.00 0.72 0.77

MME – 0.64 0.67

estimated TWP for the study region at annual and
seasonal scales using boxplots. The span of the box
represents the interquartile range of the simulated (or
observed) precipitation. The whiskers extend from the
box to 5 and 95% quantiles on the lower and the
upper side of the box, respectively. Results for the past
(1971–2000) are shown in (i). Whereas, the projected
precipitation for 2001–2020, 2021–2040, 2041–2060,
2061–2080 and 2081–2100, for the four scenarios SRES
A1B, A2, B1 and COMMIT are shown in (ii), (iii), (iv)
and (v) respectively.

For downscaling precipitation, the potential predictor
variables were identified for each season following the
procedure described in Section 7. The selected potential
predictors are then used to develop the SVM downscaling
model. The optimal values of SVM parameters C and
σ are found to be 550 and 50 for wet season and 850
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Figure 4. Typical results from the SVM-based downscaling model for Tng1 equal to 0.8 graphed using box plots. Figure 4(a) denotes annual
scale, while Figures 4(b) and (c) refer to wet and dry seasons respectively. The horizontal line in the middle of the box represents median. The
circle denotes the mean value of annual TWP and the darkened square represents the mean value of simulated annual precipitation. In the figure,
the gap between darkened square and circle denotes bias in the precipitation simulated by the downscaling model for NCEP and GCM data sets.
In (ii), (iii), (iv) and (v) the solid line that joins the circles indicates the historical trend of TWP, while the line connecting the solid squares

depicts the mean trend of precipitation projected by GCM. This figure is available in colour online at www.interscience.wiley.com/ijoc

and 50 for dry season respectively, using the grid search
procedure described therein (Figure 6).

The robustness of the SVM downscaling model was
tested for various threshold values. Typical results of
this analysis are presented in Figures 7 and 8. Inter-
estingly, the projections of precipitation obtained from
downscaling are largely insensitive to the potential pre-
dictor variables considered for downscaling. Hence, for
better confidence in the results, we can consider the com-
bination of results as an ensemble.

In the Figures 7 and 8, the span of boxplots (from 5%
to 95% quantiles) prepared for precipitation downscaled
using from NCEP as well as GCM data sets is found
to be less than that of the observed data. This indicates

that the SVM model is not able to mimic a few extreme
observed precipitation events, which is further confirmed
from the results of the model calibration and validation
(Figure 9). The inability of the model to simulate high
rainfall could be because the regression-based statistical
downscaling models cannot often explain the entire
variance of the downscaled variable (Wilby et al., 2004;
Tripathi et al., 2006). Exploration of a longer record for
calibration of the SVM model could possibly provide
more insight into this problem. However, in the present
study, investigation in this direction is constrained by
the paucity of data. The results presented in Figures 7
and 8 show that precipitation is projected to increase
in future for A1B, A2, and B1 scenarios. The projected
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Figure 5. Typical results from the SVM-based downscaling model for Tng1 equal to 0.9 graphed using box plots. Figure 5(a) denotes annual
scale, while Figures 5(b) and (c) refer to wet and dry seasons, respectively. The horizontal line in the middle of the box represents median. The
circle denotes the mean value of annual TWP and the darkened square represents the mean value of simulated annual precipitation. In the figure,
the gap between darkened square and circle denotes bias in the precipitation simulated by the downscaling model for NCEP and GCM data sets.
In (ii), (iii), (iv) and (v) the solid line that joins the circles indicates the historical trend of TWP, while the line connecting the solid squares

depicts the mean trend of precipitation projected by GCM. This figure is available in colour online at www.interscience.wiley.com/ijoc

Figure 6. Illustration of the domain search performed to estimate optimal values of kernel width (σ ) and penalty (C) for the SVM for dry and
wet seasons.
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increase in precipitation is high for A2 scenario, whereas
it is least for B1 scenario. This is because among the
scenarios considered, the scenario A2 has the highest
concentration of carbon dioxide (CO2) equal to 850 ppm,
while the same for A1B, B2 and COMMIT scenarios are
720 ppm, 550 ppm and ≈370 ppm respectively. Rise in
concentration of CO2 in the atmosphere causes the earth’s
average temperature to increase, which in turn causes
increase in evaporation especially at lower latitudes.
The evaporated water would eventually precipitate. In
the COMMIT scenario, where the emissions are held
the same as in the year 2000, no significant trend in

the pattern of projected future precipitation could be
discerned. The overall results show that the projections
obtained for precipitation are indeed robust.

The results presented in this section demonstrate the
usefulness of SVM downscaling model as a feasible
choice for obtaining projections of future precipitation
at river basin scale in climate change scenarios.

9. Summary and conclusions

The SVM model which has been proven to be effec-
tive for downscaling precipitation at regional scale in

Figure 7. Typical results from the SVM-based downscaling model for Tng1 equal to 0.8. The values of Tng2 for the wet and the dry seasons
are chosen as 0.6 and 0.5, respectively. Whereas, the values of Tnp for the wet and the dry seasons are selected as 0.7 and 0.65, respectively.
Figure 7(a) denotes annual scale, while Figure 7(b) and (c) refer to wet and dry seasons respectively. This figure is available in colour online at

www.interscience.wiley.com/ijoc
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Figure 8. Typical results from the SVM-based downscaling model for Tng1 equal to 0.80. The values of Tng2 for the wet and the dry seasons
are chosen as 0.75 and 0.70 respectively. Whereas, the values of Tnp for the wet and the dry seasons are selected as 0.55 and 0.50 respectively.
Figure 8(a) denotes annual scale, while Figure 8(b) and (c) refer to wet and dry seasons respectively. This figure is available in colour online at

www.interscience.wiley.com/ijoc

an earlier work (Tripathi et al., 2006) is extended for
implementation at river basin scale. The effectiveness of
the model is demonstrated through application to down-
scale precipitation in the catchment of Malaprabha reser-
voir from simulations of the third generation CGCM3
for four IPCC scenarios namely SRES A1B, A2, B1 and
COMMIT. The results of validation clearly indicate that
the model is a feasible choice for downscaling precipita-
tion to river basin scale.

The variables which include both the thermodynamic
and dynamic parameters and which have a physically
meaningful relationship with the precipitation are cho-
sen as the probable predictors. Seasonal stratification
was performed to facilitate the development of separate

downscaling model for capturing relationship between
predictors and predictand for each season.

Seasonal stratification is found to be sensitive to the
choice of predictors and the projections obtained from
the SVM downscaling model are found to be sensitive
to the seasonal stratification. Hence plausible ‘true’ dry
and wet seasons obtained by analyzing records of past
precipitation and actual evapotranspiration were used
to identify the appropriate potential predictors and the
seasons projected for future using CGCM3 data on these
predictors are deemed acceptable.

The methodology presented for downscaling is found
to be robust in the selection of potential predictors
for downscaling. The results show that precipitation is
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Figure 9. Comparison of the monthly TWP with precipitation simulated using SVM downscaling model for NCEP in Figures 9(a) calibration
period, and (b) validation period.

projected to increase in future for almost all the scenarios
considered. The projected increase in precipitation is
high for A2 scenario, whereas it is least for COMMIT
scenario. These results appear to be robust with respect
to predictor variables, since many of the variables which
undergo changes in a changed climate scenario are
considered in predictor selection.

10. Scope of future research

In the present study, simulations from CGCM3 are con-
sidered to obtain projections of precipitation for the study
region. The future projections of hydrologic variables
provided by a downscaling model for a given climate
change scenario depend on the capability of GCM to
simulate future climate. A realistic simulation by GCM

could yield a pragmatic projection of the predictand,
while an inconsistent simulation could result in absurd
values of the predictand. It may be preferable to use
several GCMs and emission scenarios to cover the inher-
ent uncertainties in the scenarios and the possible biases
in the GCM simulations. Hence we propose to look for
more models in the IPCC Fourth Assessment report 4
(AR4) and check for inter-model robustness of the down-
scaled results. Besides this, there are uncertainties associ-
ated with the assumption that the empirical relationships
which are developed on the basis of the current state
of atmosphere remain valid for the future. In spite of
this assumption, statistical downscaling still remains the
most popular tool for hydrologists to assess the impact of
climate change on hydrological processes over a smaller
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region because its computational overheads are practi-
cally insignificant compared to dynamic downscaling.

Several avenues can be explored to further refine this
attempt to statistically downscale GCM simulations. This
proposed approach to statistical downscaling of precipita-
tion is planned to be extended to five other cardinal vari-
ables namely, maximum and minimum temperature, wind
speed, relative humidity and solar radiation. Extended
research work in this direction is underway.
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Appendix: Abbreviations

Abbreviations used in text

CCCma Canadian Center for Climate Modeling
and Analysis

CGCM3 Third generation Canadian General
Circulation Model

GCM General Circulation Model
IPCC Intergovernmental Panel on Climate

Change
LS-SVM Least Square-Support Vector Machine
MMP mean monthly precipitation
NMSE Normalized mean square error
PCA Principal component analysis
PC Principal component
RBF Radial basis function
SRES Special report of Emission scenarios
SVM Support Vector Machine
TL truncation level
TWP Thiessen Weighted precipitation

Abbreviations used in Tables I and III

Predictor Names

afs Airflow strength
BRN Bulk Richardson number
CAPE Convective Available Potential Energy
CI Convective inhibition
F Geostropic airflow
hus specific humidity
pr precipitation
prw precipitable water content
ps pressure
rh relative humidity

SWTI Severe weather threat index
ta air temperature
ua zonal wind
va meridional wind
wa vertical wind
wd wind direction
WS wind shear
W wind speed
zg geopotential height
zgt geopotential height thickness
Z vorticity

Measurement Height of Predictors

0 pressure height at 1000mb
2 pressure heights at 200mb
2m 2m from surface
5 pressure height at 500mb
7 pressure height at 700mb
8 pressure height at 850mb
9 pressure height at 925mb
ns near surface
s surface

Techniques

AM Analogue Method
CCA Canonical Correlation Analysis
EOF Empirical Orthogonal Function
LS Local scaling
MLP Multilayer perceptron
PCA Principal Component Analysis
RNN Recurrent Neural Network
SDSM Statisitical downscaling model
SOM Self Organizing Maps
SVDA Singular value decomposition analysis
TNN Temporal Neural Network

Data Source

BMRC Bureau of Meteorology Research Center
CGCM Canadian General Circulation Model
CSIRO Commonwealth Scientific and Industrial

Research Organization
ECMWF European Center for Medium-Range

Weather Forecasts
HadAM Hadley center Atmosphere Model
LMD Laboratoire de Météorologie Dynamique du.
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