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1. Summary. The statistical problem treated is that of testing the hypothesis
that » independent, identically distributed random variables have a specified
continuous distribution function F(z). If F.(x) is the empirical cumulative dis-

tribution funetion and () is some nonnegative weight function (0 £ ¢ £ 1),

we consider 7' SUP_w<zcw || F@) — Fu(z) | z,b%[F(x)]} and n [ [F(z) — F.(2)]

Y[F(x)] dF(x). A general method for calculating the limiting distributions of
these criteria is developed by reducing them to corresponding problems in
stochastic processes, which in turn lead to more or less classical eigenvalue and
boundary value problems for special classes of differential equations. For certain
weight functions including ¢ = 1 and ¢ = 1/[¢(1 — )] we give explicit limit-
ing distributions. A table of the asymptotic distribution of the von Mises w’
criterion is given.

2. Introduction. One method of testing the hypothesis that n observations
have been drawn from a population with specified distribution function F(x) is
to compare the empirical histogram based on dividing the real line into inter-
vals with the hypothetical histogram by means of the x” tests. A test which daes
not involve a subjective grouping of the data consists of comparing the empirical
cumulative distribution function with the hypothetical distribution function.
Let F.(z) be the empirical distribution function based on n observations; that
is, F.(x) = k/n if k observations are £z fork = 0, 1, - -- | n. We wish to con-
sider a convenient measure of the discrepancy or ‘“‘distance” between two dis-
tribution functions. (For a more detailed discussion e¢f. Wald and Wolfowitz [21].)
In accordance with the usual notions of a metric in function space, we treat the
following measures:

(2.1) n ["Fue) ~ F@IIF@IF = W,
(2.2) S V| Faa) = F@) [ VYIFE)] = K,

where ¢(¢) (Z0) is some preassigned weight function.

1f a measure W2 is adopted, the hypothesis is rejected for those samples for
which W% > z, say, and if a measure K, is adopted, the hypothesis is rejected
when K, > z, say. The numbers z and 2 are to be chosen so that when the
hypothesis is true the probability of rejection is some specified number (for

1 This work was done mainly at the Rand Corporation.
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example, .01 or .05). The main purpose of this paper is to give methods for find-
ing the asymptotic distributions of W ; and K., and, hence, approximate values
of the significance points, 2; and 2z, . We assume that the hypothetical distribu-
tion is continuous.

The fundamental ideas for tests of this nature are due to Kolmogorov [11],
Smirnov [17], Cramér [2], and von Mises [19], and for large n certain tests have
been developed by them. The present paper treats these tests in somewhat
more detail, the analysis being greatly expedited by reducing the problems to
straightforward considerations in the theory of continuous Gaussian stochastic
processes. This reduction was developed by Doob [6], and used by him to give
a simplified proof of Kolmogorov’s fundamental result.

The principal innovation in this paper is the incorporation of a weight func-
tion to allow more flexibility in the tests. Although we are able to make explicit
calculations for only a few simple types of weight functions, the principal mathe-
matical problems are reduced to classical problems in the theory of differential
equations. ,

The function ¢(t), 0 < ¢ < 1, is to be chosen by the statistician so as to weight
the deviations according to the importance attached to various portions of the
distribution funetion. This choice depends on the power against the alternative
distributions considered most important. The selection of ¢(f) = 1 yields nw’,
the criterion of von Mises, for W%, and the criterion of Kolmogorov for K, . For
W3 to exist for all samples except a set with probability zero, it is necessary
and sufficient that the following integrals exist:

vy
(2.3) [ wvtau
. 0

for every w;(0 < u, < 1),

1
(2.4) [ a - i

ug
for every u; (0 < ux < 1).

Given the data z;, 72, --- , T, arranged in increasing magnitude (with prob-

ability one there are no equalities between any two of them, since the distribu-

tion is assumed continuous), we obtain for practical computations the simpler
variants of (2.1) and (2.2),

n . 1
@5 Wi-23 {4»2 (P — 2= ¢,[F<x,~>1} raf A - oo

2n

j=1,-

26) K,= ;/1-; max {V¥[F(z;)] max [nF(z;) — (j — 1),5 — nF(z)]},
where

@7 &(t) = fo ‘ v(&)ds, &) = j; ‘ sy(s)ds.
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For (2.5) to hold the integrals ¢:(¢), ¢:(f) must exist; for (2.6) to hold it is nec-
essary and sufficient that

4
O
if ¥(¢) is differentiable (substituting the difference quotient in (2.8) if ¥(¢) is not
differentiable).

(28) (1 — 9@ =1

3. Reduction to a continuous stochastic process. Since F(z) is assumed con-
tinuous, we can make the transformation v = F(z). Then the observations are
u; = F(z;) (¢ = 1,2, ---, n), and under the null hypothesis these can be con-
sidered as drawn from the uniform distribution between 0 and 1. Let Ga(u) be

the empirical distribution derived from u;, ---, u.. Then W% and K, are,
respectively,
1
@1) Wi =n [ 166) — Wb du,
0
(3.2 K, = sup V1| Gaw) — u| V().

For every 0 < u = 1, Y,(u) = +/n[G.(u) — u)] is a random variable and
the set of these random variables may be considered a stochastic process with
parameter u. Putting

(3.3) A.(z) = Pr {j;l Yi(wywdu < z} =Pr (W <2},
(34 B.(z) = Pr { ,Sup | Yalw) | V(@) < 2} = Pr {K, < 2},

we wish to calculate A(2) = lim A.(2), n» — «, and B(z) = lim B.(2), n — =,
if these limits exist.

For fixed u , 4, -+ - , w the joint distribution of ¥Yn(u), Ya(us), « - - , Yalws)
approaches a k-variate normal distribution as n — «. Thus the asymptotic
process is Gaussian (normal) and is specified by its mean and covariance func-
tions. For finite n we have

E(Y.(w) = 0,
E(Y,.(@)Y.(»)) = min (u, v) — u.
The limiting process is a Gaussian process y(u), 0 < u < 1, for which
E(y(w) =0,
E(y(wy@)) = min (v, v) — w,

3.5)

(3.6)
such that the probability is 1 that y(w) is continuous [6]. Putting

(3.7 a(z) = Pr{‘l;l V) du = z},
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(3.8) b(z) = Pr {ogug1 [y | Vg(u) £ 2,

we wish to conclude that A(z) = a(z) and B(z) = b(z). Having established these
equalities we shall be in a position to use certain representation theorems for
stochastic processes to great advantage.

In [4] Donsker has given the following theorem: Let R be the space of real,
single-valued functions g(t) which are continuous except for at most a finite
number of finite jumps, and let C be the space of continuous functions. Let
F(g) be a-functional defined on R and continuous in the uniform topology,
v.e., SuPogi<i | ga() — 9o(t) | — 0, n — oo, implies | F(ga) — F(g) | > 0,n — o,
gn € R, go € C, except for a set of go(t) with O probability according to the probability
assoctated with y(t). Then
(3.9 lim Pr {F[Y.()] £ 2} = Pr {Fly()] = 2}.

It follows from this result that if ¢(u) is bounded A(2) = a(z) and B(z) = b(z)"

To handle more general weight functions for the case of integrals we want to
extend this result. We shall assume that ¥(w) is continuous in any interval
0 <y £ u = uy < 1. Secondly we assume that

wy 1 1 1
(3.10) j; v()t log log 7 di, fu 1 YO {1 — D log log = dt

exist for every w; (0 < w; < 1). It is shown in Section 5 that
1+ y/1 + 0) = X(©
is the Wiener process which has the property ([12] p. 242 and p. 247)

(3.11) Pr {there exists a & such that X*(f) < 2¢log log % for0 <t < to} = 1.
This implies that

Pr{there exists a u, such that

3.12) 1
y*(w) < 2u(l — u) log log ; “for0 < u < uo} = 1.

Thus with probability 1 y(£)y*(f) is majorized by ky(@)tloglog(l/t) for
k = 2(1 — uo). Thus if the first integral in .(3.10) exists

(3.13) j; - TROIIOK

exists with probability 1 (taking the principal value when the integral is im-
proper). A similar argument holds for the existence of :

(3.14) f SOV dt.
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1
Thus f ¥ (OY(t) dt exists with probability 1. This defines a functional continuous
o

in the uniform topology. Hence from Donsker’s theorem A(z) = a(z).

4. The limiting distribution of the integral criterion. In this section we show
how to find a(z) in terms of the solution of a certain differential equation and
give two examples of this method. The statistic W? is essentially that introduced
by Cramér [2]; in the case of ¢(f) = 1, it is n times the «’ criterion studied by
von Mises [19] and Smirnov [17].

The method we use is analogous to the technique of Kac and Siegert [10]. We
shall sketch briefly the extension of their results.

By Mercer’s theorem a symmetric continuous correlation function k(s, ),
0 < s,¢ £ 1, which is square integrable (in one variable and in both variables),
can be expressed as

@D koD = 3 - O,

where A, is an eigenvalue and f(t) is the corresponding normalized eigenfunction
of the integral equation

(4.2) A fo k(s, )f(s) ds = f(8),
and
3) [ 5050 @t = s,

the Kronecker delta. In most cases £(0, 0) = £(1, 1) = 0; hence f:(0) = f.(1) = 0.
Since k(s, t) is positive definite, A\; > 0. The series (4.1) converges absolutely
and uniformly in the unit square.

Let X;, X;, - -+ be independently, normally distributed with means zero and
variances 1. If (¢, ) < <, then we can define

=1

(4.0 20 = 5 = X505

the series converges in the mean and with probability one for each ¢. Then
2(f) is a Gaussian process with Ez(f) = 0 and Ez(s)z(t) = k(s, f). Thus z(t)
gives the same stochastic process as \/¢(f) y(t) when k(s, £) = v/¥(s) V(0
[min (s, t) — st]. From this it follows that with probability 1

W = fo WO di = fo A0 dt = [0 1 [Z::l 71{‘ fj(t)X,-Tdt

1
1A

(4.5)

[Ms

x>,

-
]
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See [10] for details of this proof. Thus
Ele*™| = E [exp (z’u i Xf/x,-)]
7=l
(4.6) - }:’Il Elfexp iuX%/\]

= fl (1 — 26u/A)™

The infinite product converges absolutely and uniformly for all real %, and in
general 1/\, = O(1/n%.

We desire a more general result, however, because one weight function we
treat leads to a kernel that is not continuous at (0, 0) and (1, 1). We use the
following theorem of Hammerstein [9]: Let k(s, t) be continuous in the unit square
except possibly at the corners of the square; let 3k(s, {)/ds be continuous in the
interior of both triangles in which the square is divided by the line between (0, 0) and
(1, 1), and let the partial derivative be bounded in the domain ¢ £ s £ 1 — e and
0 = t = 1 for each (> 0). Then the series on the right of (4.1) converges uniformly
lo k(s, t) in every domain in the interior of the unit square.

Since k(s, ) = v/¥(s) V¥(¢) [min (s, {) — st], the condition is that ¢(¢) be
continuous for 0 < ¢ < 1 and

0] ,
@7 VR I~ 96 — 4]
be continuousfor0 < ¢t £ s £ 1 — eand

¢(t) P
48) Ve (L= OB © + o)

be continuous for e £ s < ¢t < 1.
In this case (4.4) converges in the mean and with probability one for every
te =t =1 — ¢, and 2(!) is the same process as z(f) in this interval.
1

It f k(t, £ dt < o, X%, 1/A; < o (by Bessel’s inequality) and 3 %, X%/\,
0

converges with probability one. Further, with probability one, D%, X;f;(t)/V/x;
converges in the mean (integral with respect to £) and it converges to z(¢). Thus
we have with probability one

(4.9) fo l ) dt = i X3/,
(4.10) [ T @ dt = f:"' 20 dt = f [2 7o f,(t)]

For e small enough

@“.11) E[ fo SO+ f A dt] - j; kG, O dt + f:_ k@, 9 dt < 5
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1
for any & > 0. Thus the distribution of W? = / z*(¢) dt is the limiting distribu-
0

1—e
tion of f 2*(t) dt. With a similar argument for the integral of 2*(f) we argue

that the distribution of W* is the distribution of _%; X%/\; with characteristic
function (4.6).
THEOREM 4.1. If

(4.12) k(s, ©) = V4(s) V¥(O) [min (s, 1) — sf]

18 continuous or if k(s, t) is continuous except at (0, 0) and (1, 1) with dk(s, t)/as
continuous for 0 < s,t < 1,8 # ¢, and bounded in e < s < 1 — 60 =1t =1for
every e (>0) then the characteristic function of W* is given by (4.6), where {\;} are
the eigenvalues of k(s, t) defined by (4.2).

In our case the integral equation is

(4.13) f@6) = /; l [min (¢, s) — &s] \/9(2) V¥(s) f(s) ds.

It can be shown that if f(f) satisfies (4.13) for some A, then A(f) = J OO
satisfies
(4.14) R + MW@ORE) =0
for that N (see [8], Sections 604 and 605) and h(0) = A(1) = O when k0, 0) =
k(1, 1) = 0. Let h(t, A) be the solution of (4.14) for which
RO, N\) = 0,
(4.15) oh(t, )
at
If (¢) is continuous (0 < ¢ < 1), such a solution exists and h{t, N) is continuous
in 40 = ¢ < 1). Since h(1, \) = 0 for X an eigenvalue of (4.13), the roots of
h(1, N) = 0 are the roots of the Fredholm determinant D(\) associated with
k(s, t). It can be shown that

= 1.

=0

_RILN P ( _ x)
(4.16) D(\) = i) = I_Il 1 )
The characteristic function (4.6) is
1
1 VD@D

The square root is taken so as to make (4.17) real and positive when the char-
acteristic function is real and positive. The details of this proof are given in [8],
Section 605.

TrEOREM 4.2. Let ¢(f) be continuous for 0 < t < 1. Then the equation (4.14)
has a unique solution h(t, \) for every A > 0 satisfying (4.15). Then the character-
istic function of W* is

)
(4.18) 1/ A(L, 330
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Thus we have reduced the problem of finding the characteristic funetion of
W? to finding the general solution of a differential equation.

The semi-invariants x, of W* are given quite easily (when they exist) through
the eigenvalues. Since

(4.19) o) = ﬁ (1 — 2it/,)},

the coefficient of (¢¢)"/n! in the power series expansion of log ¢(¢) is

(4.20) ' kn = 2" (n — 1) i (%) n, n

=1 J

It
=
N

Hence we obtain for the mean and variance, for instance,

1
Kx=#=z:)ty
J

12
K2=62=z§:(—>.
Aj

Even without knowing the eigenvalues, the moments can be calculated in terms
of the iterates of the kernel k(s, t). Putting %i(s, t) = k(s, £) = (min (s, t) —

1
st) YWY, knpa(s, ) = _/o. k. (s, w)k(u, t) du, we have by means of the bilinear

(4.21)

expansion
(4.22) ka(s, 8) = 20 N7 £,(8)f5(0).
Hence,
1
(4.23) k= 2" (0 — 1)1 fo ka(s, 5) ds

and, in particular,

1 1
p=[ ks ds = [ s~ (s ds,
0 0
(4‘24) 1,1 1 s
=2 [ Keodd=4] a4 -6 [ o0 dds.
0 0 (1 0
We now present two applications of this method.
Ezample 1. Let ¢(t) = 1; then W% = no’. The differental equation »”'(t) +
M(t) = 0 has a solution ‘
1 . -
(4.25) R(t,\) = 5 Sin V2t

satisfying (4.15). Taking h(1, 0) as limyo 2(1, ) = 1, we find that 1/4/D(2:1) is

(4.26) $it) = B = g/ V2 _ g/ V=2
sin 4/2it sinh v/ =2i¢
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This expression was given by Smirnov {15] and later by von Mises [20] using
entirely different methods. A formal method for finding the distribution (by
inverting the Fourier transform) was given later by Smirnov [16], but his ex-
pression is not amenable to numerical calculation. The following procedure ex-
presses a;(2) = Pr{W® £ 2} in terms of tabulated functions.

It appears convenient to work with the Laplace transform. We have

(427) D) = ¢:(it) = E(@*"") = Vv
sinh /2¢

Using integration by parts, we obtain

i

(4.28) fom ¢ ay(z) dz % £(t)

for the edf a;(z). We wish to invert this Laplace transform. Now

3/4
a0 Lo = (2 i v

We suppose in the sequel that the real part of ¢, R(t) > 0 and apply the bi-
nomial expansion to the last expression; thus

ggt_) = (2>3“ 3 :( ’%) - (23+1/21
(4.30) =3 ; (-1 ¢ )
-1 .
where( j"’) = (—1)T{G + 3)/[T(3)71]. It may be readily verified that the com-

plex inversion formula can be used termwise here since the abscissa of convergence
of £(¢)/t is R(t) = 0, and the above series converges absolutely and uniformly in
the half plane R(¢) = 8 > 0.

Since
(4.31) AV fo Qe 5 \/_ Y PN
me e "
we have
o e_t“:/ "f " $(2) d,
where

—A 2/ (4z)

(4.33) 9@ =5 ‘\/1r T(3/4) f m d
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by virtue of the convolution property of the Laplace transform. In this integral
we change variables, putting x = u sech’ 8 to give

A ¢ 3
#(z) = TG4 fo g (41U eosh®(0 ek g sinh 6)! df

Ae—A2/(82)
= 23/2 _\/7"_ r(3/4)z3/4

e—Azi(Bz) /‘/E X <‘i2>
Ver 2 i\8 )

where Kj(z) is the standard Bessel function [22].
Having inverted the typical term, we finally obtain by summing

1 & i —%
(4.35) @) = 27 & (=D ( j >
(4 4 1P UIEOHO g (45 4 1)/ (162).

(4.34) /0 g AM B cosh b p ) do

If

The convergence of this series is very rapid. If a;(2) = D% 4,(2), we find
that w1 (2)/u;(2) < ke” 0% (using the fact that K;(f) is a decreasing fune-
tion of ¢), where ko < 1.12, ky < 1.007, k; < 1.002, k; < 1.0007 for j = 3. Since
K, (2) is positive, u;(z) > 0. Using a crude geometric series bound for Ry(z) =
> .%.4u;(2), we can show that for z < 2, Ry(2) < .0002. Moreover, for z < 2,
Ri(z) < us(z) < us(2) < w(2). In computation, therefore, one need only take
as many terms in the series as are different from 0 in the number of decimal
places carried. We give below a table of 2z for equal increments (.01) of a,(z2)
with the 59, 19, and .19, significance points. The calculations have been car-
ried to 6 figures before rounding off. The authors are indebted to Mr. Jack
Laderman of Columbia University and the Numerical Analysis Department of
the Rand Corporation for their assistance in preparing the table.

The semi-invariants of this distribution are easily obtained since the eigen-
values are \; = 1/(x%"). Thus

2" M n — DI &1
2n ZW
™ i=1]

3n—2 (n - l)f
“en)t TV

Kn =
(4.36)
=2

where B, are the Bernoulli numbers: B; = 1/6, B, = 1/30, etc.

Ezample 2. () = 1/[t(1 — t)]. Since the variance of Y,.(f) = +/n [G.(t) — {]
is t(1 — t), an interesting weight function for Y%(¢) is the reciprocal of this vari-
ance.” In a certain sense, this function assigns to each point of the distribution

2 Thig suggestion was first made by L. J. Savage.
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TABLE 1

Limating Distribution of nw?
ai{z) = Hm Pri{ne® < 2}

n—

203

z a(z) z ai(z) 2z a(z)
.02480 .01 .08562 .34 17159 .67
.02878 .02 .08744 .35 .17568 .68
03177 .03 .08928 .36 .17992 .69
.03430 .04 .09115 .37 . 18433 .70
.03656 .05 .09306 .38 . 18892 .71
.03865 .06 .09499 .39 .19371 .72
.04061 .07 .09696 .40 . 19870 .73
.04247 .08 .09896 .41 .20392 .74
.04427 .09 .10100 .42 .20939 .75
.04601 .10 . 10308 .43 .21512 .76
.04772 11 .10520 .44 .22114 77
.04939 .12 .10736 .45 .22748 .78
.05103 .13 . 10956 .46 .23417 .79
.05265 .14 .11182 .47 .24124 .80
.05426 .15 .11412 .48 .24874 .81
.05586 .16 . 11647 .49 .25670 .82
.05746 17 . 11888 .50 .26520 .83
.05904 .18 .12134 .51 .27429 .84
.06063 .19 .12387 .52 . 28406 .85
.06222 .20 .12646 .53 .29460 .86
.06381 .21 .12911 .54 .30603 .87
.06541 .22 .13183 .55 .31849 .88
.06702 .23 . 13463 .56 .33217 .89
.06863 .24 .13751 .57 .34730 .90
.07025 .25 . 14046 .58 .36421 .91
.07189 .26 . 14350 .59 .38331 .92
.07354 .27 .14663 .60 .40520 .93
.07521 .28 . 14986 .61 .43077 .94
.07690 .29 .15319 .62 .46136 .95
.07860 30 . 15663 .63 .49929 .96
.08032 .31 .16018 .64 . 54885 .97
.08206 .32 . 16385 .65 .61981 .98
.08383 .33 .16765 .66 .74346 .99

1.16786 .999

F(z) equal weights. A statistician may prefer to use this weight funetion when
he feels that ¢(¢) = 1 does not give enough weight to the tails of the distribution.
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In this example
{1 — s)

k(t, S) = m, 4

=/‘/(l—t)s y
{1 —s)’

is not continuous at (¢, s) = (0, 0) or (1, 1); hence we need the extended result
of Theorem 4.1 to justify our procedure. It is known that the Ferrer associated
Legendre polynomials f,(t) = Pi(t) = t(1 — §)P«2t — 1) satisfy the integral
equation with A\; = 1/[i( + 1)] (see 23], p. 324). Thus the characteristic func-

tion of W*is
5 2t \™
t) = 1 —
$al) :I=Il< e +*l)>

(4.38) ~— 2wt

B ,‘/ cos(%x/l#}—&'t).

An analysis similar to that used in Example 1 shows that the cdf, a:x(z), can be
expressed as

ax(2) = Priw?® £ 2}

= /‘/":rli 3 (45 + 1) /1e("z)/8-((4i+l)27r2)/(Srz) _ar
22\ J 0 (1 — )t

er —% . ~ ((45+1)2r2) /(8 ® 8(w241))— ((47+1) 25 22
=\/ Z jz (4j+1)6 ((45+1) 27 2)/(82) ez/((w+)) ((J+)wu)/(82)dw'

0

A
©

(4.37)

1\%

8

bl

B. Theory of deviations. The second test criterion led to the calculation of

B.(2) = Pr{ sup A/n|G.(w) — u| V) < 2}

tgusgl

In order to handle the limiting distribution we consider the functional

(5.1) K = sup |yu)| V().

It follows from the theorem of Donsker [4] that for ¢ («) bounded we have
lim B,(z) = PriK < 2},

and the problem is reduced to that of calculating the distribution of (5.1). This
is the elegant idea of Doob [6], who treated the case ¢ = 1.

This is known as an “absorption probability’” problem on account of its very
suggestive analogy with a simple diffusion model. It is clear that the event that
{—z@ @)™ € y(u) < 2(0() ™}, 0 £ u < 1} is equivalent to the event {K < z};
thus the probability b(z) is, very crudely speaking, the “proportion” of all those
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paths y(u) of the diffusing particle which do not get “absorbed into” (i.e., inter-
sect) the “barriers” y = £z(p(w)) .

It is convenient to make a transformation due to Doob [6] which renders the
analysis simpler. If we put

Xt = + 0y (1),

it is easy to verify that X(¢) is the Wiener-Einstein process; that is, X(¢) is
Gaussian, X(0) = 0, B(X(#)) = 0, E(X(#X(s)) = min (s, {). Then

bz) = Pr{| X | = &), 0=t = =},

where

214+ 0

(5.2) ) = —F=——=.
5 RV

Thus we have the absorption probability problem for the free particle with
barriers z = 4£(¢) fort = 0.

The method of solution is to treat the corresponding diffusion problem as a
boundary value problem with the diffusion equation
(5.3) of _16f

. 29zt

assoclated with the region ¢t 2 0, | x| £ £@). In line with the preceding analogy
f(t, ) will be the “density” of paths X (u) which for 0 < » =< ¢ have not been
“absorbed” and for which X () = x; hence

f(t, z) dx
[z] <&(2)

will give the probability of nonabsorption up to time i. It is the limit of this
expression for { — o which will yield 5(z). For a more detailed discussion of
these points see Lévy [12], pp. 78 et séq.

We need the following existence and uniqueness theorem:

TuaeoreM 5.1. Given that £(t) of (5.2) has a bounded derivative for ty < t < t;,
there exists a unique function p(ly , y; i, x) such that for any continuous function

g, | y | < &(to), the function

(5.4) fha = [ e, vt dy
lwi<§(t)
has the following properties:
(1) f(¢, ) satisfies (5.3) in the domain t, < t < #1, |z | < £(1),

2) lim f@, z) = 0, th>t> b,
z—1£(t)
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(3) lim [t x) = g(n) [n] < &)

t—ty

Z+n

The proof of this theorem is contained quite explicitly in the fundamental
paper of Fortet [7] (especially e¢h. V), who considers in great detail the general
problem of absorption probabilities. Fortet treats only the case of one absorbing
barrier, but his results are easily extended to the above case of two barriers.
The differential p(t , ¥; ¢, ) dx can be interpreted, to terms of order (dz)’, as
the probability that if the diffusing particle starts at (o , y) it will not have been
absorbed in the barriers 3-£(¢) during the interval (& , ¢), and will lie between z
and z -+ dzx at time ¢.

We have not stated the best theorem possible. If £(¢) is merely continuous
the absorption probability density f(¢, ) exists. For the existence of a solution
to (5.3) satisfying (2) and (3) of Theorem 5.1 it is sufficient to require that £(¢)
satisfy a Lipschitz condition associated with the law of the iterated logarithm.
Finally we remark in passing that unless f(¢, z) is of the form (5.4) (the so called
“normal’’ solution of Fortet) its uniqueness is not assured (cf. Doetsch [3]).

If in the theorem £(¢) has a bounded derivative for ¢ = 0 then we plainly have

£ty
(5.5) b(z) = lim f |, 70,054, 2) d,
t—ow v—§(t)

but if £(¢) does not have a bounded derivative for ¢ = 0, (5.5) can no longer be
employed to determine b(z). However, if there are a finite number of intervals
in each of which £(¢) has a bounded derivative and between which £(¢) has a
simple jump discontinuity it is easy to modify the above result; in fact over
some of the intervals £(f) may be infinite. A piecewise determination can be
made and the solution can be continued to beyond the last discontinuity, and
then (5.5) can be used. Suppose the points of discontinuity of £(f) are
0<t <t < --- < ty, and suppose £(t) is, say, left continuous. In the region
(0, &) we have the solution g(¢, ) = po(0, 0; ¢, x) by the above theorem. Now
if 8(6) < &(t, + 0) we define g¥ (¢, z) by

gO(tl ’ 27), [ z { é E(tl):
0, gh) = |z| = &t + 0),

and if £t) > £t + 0) we define ¢¥(t , 2) = golt1, 2), |z | £ £t + 0). Then
gi(t , x) is continuous in | z | < #(t, + 0) and we have for & < ¢ < # a function
g1(¢, ) defined by Theorem 5.1;

gr(tl ] x) = {

aa) = [ g, vt dy
ly] < +0)

In the same way we can define a function g3 (fz , ) which will yield a function
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g2(t, x) for & < t < t3. This process will ultimately yield a unique function
galt, ) for t > t, . Finally

HO)
(5.6) b(z) = lim g. (¢, ) dx.
e JE(0)

It is clear that if £(f) = o« in some of the intervals the successive determina-
tion of the functions g(¢, x) may still be carried forward. This would correspond
to an absence of the absorbing barrier over the interval.

Using the relation (5.2) and the above remarks we have the following theorem
for the weight function y¥(u):

TrEOREM 5.2. Suppose there is a finite sequence 0 = uy < uy < up -+ <
Un < Unyr = 1 such that in the interval (ui , uri1) Y(t) 2s either (1) identically zero
or (2) 7s bounded away from zero and has a bounded derivative. Then there exists a
unique sequence of functions {pi(te, y; t, )} such that for ¢ in the interval
(/1 — ) = e < ¢ < by = Uen/(1 — wry1)) the conclusions of Theorem 5.1
hold for the functions pi(ti , y; ¢, x), k = 0, 1, -+, n, &) being defined by (5.2).

From this theorem we can generate a set of functions gv(¢, 2), & < ¢ < txq1,
k=0,1,---,n and anotherset g¢ (& , z), k = 1,2, - - - , n, as before. gap1 (i1 , z)
agrees with gi(fes1 , ) over the set of z for which the latter is defined; that is,
[ 2| < E(trsa), and is zero for other values; namely, £ty + 0) > | 2| > &(tes)
if £(¢) has a positive jump at £, . Putting

go(t’ x) = pO(O’ 0) t; x)} t é tl’

g (t, x) = f g, (e, g3 6, 2) dy, b <t < b, E=1,2 ... 1,
ly] <ECtx+0)

we finally have (5.8) for b(z).

In a formal way the problem is thus solved, but the analytical difficulties of
getting an explicit solution may be prohibitive. If £(f) consists of a set of linear
arcs (which implies that \/y(u) is of the form (au + 8)7" in a piecewise way)
then b(z) can be determined by quadratures (see, for example, Goursat [8], ch.
29, Ex. 3). We make an application of this remark below.

It is clear that if ¥(u) becomes infinite for some 0 < % < 1 then b(z) = 0 for
every z > 0. But since y(0) = y(1) = 0 it is possible that (%) may become
infinite for w = 0 or 1 and still yield a nondegenerate b(z). But in this case it is
necessary that ¥(u) not dominate [2u(1 — u) log log 1/(u(1 — %))} for u near
Oor 1. '

We shall consider several examples.

Example 1. Let ¢(u) be a constant over a set of intervals,

) =g =0, e < U= Upyy, U = 0, Upyy = 1, k=0,1,---n.

By choosing enough intervals, an arbitrary weight function can be dpproxi-
mated, in a manner of speaking.
It follows that the problem will be essentially solved if we can determine the
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functions px(x , y; ¢, ) of Theorem 5.2. In this case the function £(¢) becomes,
by (5.2),

U U
k <t§___i__,
1 — wu 1 — wp

£(t) = \—/z—;(l + 0,

and we must find the solution to equation (5.3) which satisfies the conditions
(2) and (3) of Theorem 5.1.

As before we put ¢, = u/(1 — w), and it follows by a classical procedure of
superposing an infinite system of sources and sinks along the line { = # that we
may get the Green’s solution. In fact, let us put a source at { = &,z = y;, of
strength s; , where

y; = 2] 72—,‘ (e + 1) + (=17,

(—1)"exp{— 2% (& + Df* — 2 ;/—; yj(—l)"}

8

forj = 0, =1, £2, -+- . Thenfor &y < ¢ < fiziand |y | < (/o) (L + &) we
obtain

heed
~ Y@y )2/ ()

57 ey 43 ,2) = 30 =
. Pie\le, Y5 L, X j=_wme ’

which may be directly verified by substitution to be a solution. It has been
tacitly assumed that g > 0;if ¢ = 0 we obtain only the term corresponding to
7 = 0 in the above solution, namely, the fundamental solution

1 — §(z—y) 2/ 2(t~tg)

plt, 43 4,2) = 7 2l — 1)
Now on putting

= min{\/ia (A48, =+ tk)}, k=12 ,n,

and using the method outlined above, we obtain

ga(t, ¥) = f

—p

™n

ro ry
f f po(O, 0, iy, 1‘1)1)1(11 , 15 b, xZ) e pn(tnxn ;b x)
—rg -1y

dzry drs -+ - AT

for pu(te , i ; tes1, Zegn) a8 in (5.7), and finally as an “explicit” solution,

by(z) = lim f g-(, x) dx.

t~s00

z
}xl(\-/qT';(1+t)

The resulting function b,(z) is a multiply infinite sum of integrals of an n-
variate Gaussian distribution over an n-dimensional rectangle.
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We consider now the following special case of the above result

1, 0<a<usbsl,
Y(u) = )

0, otherwise.
Thus the test of the hypothesis is confined to detecting discrepancies over only
a central portion of the interval [0, 1]. Using the preceding notation we have
n = 2 and

U =0 =0 %@ =0,
u = a, tl:lia’ =1,
b
uz—b, tz_i-———l;’ q2=0,
and hence
LCICIV
p(0,0; t,7) = m ’
. = S 8 dup¥a-
iy, 15 t2, 72) 7:;” 2t = b) e y
yi = 2j2(h + 1) + (—=1)’m,
(58) | T |
sj = (=1 exp {—2°(th + 1)j° — 2z2(—1)°},

e—}(z—-zz)z/(t— 3}

p(t x.t,x) = e
B V2r(t — b)

Thus, putting b,(z) = P(a, b, 2),

o z(1+¢p) z(14+14)
P(a, b,z) = lim f f f p(0, 0; &y, x) pa(ty, 715 &, ) Palts, T2 ¢, )

t—so0 —z{(1+129) v—z(1+¢4)

dxidz.dx

]

z(14+¢3) z(1+¢y)
[ [ (0, 0; t1, 1) prly, 715 L2, 22 )d21d2s
(14 29) J—zep)

= j-»z—uo '\/21l't1(t2 — ll)
z(1+¢y) z(1+19) 2 2
T (2 ~ y;) )
exp| — == — 2 —— T Vdx.dx
~/—z<1+z1) -[—z(l-i-tg) p( 2t 2 — t) 2
for s; and y; as in (5.8).

The double integral is seen to be over a bivariate normal distribution, and if
we let n(z,, 22, m1, u2, 05 , 03, p) be the normal bivariate density in z, , 2, with
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. 2 . . o,
means u;, e, variances o3, o3 and correlation p we obtain by rewriting the
above integral

P(a, b, 2)

o 2iz z(1+¢y) z2(1+¢g) G G 2 .

i, — 2225 B J

= 2, (=% f f n(x1, T2y p1”, p2”, 01, 02, p)dT2dz1,
Jm=—o0 —z (14 ¢t1) J—z(1+¢t3)

where
l“'ij) = _zzj(_l)jtly #éj) = 22]} 0’% = t} o’% = t2, P; = (_1)’ /‘/?'

A somewhat simpler way of writing this result is as follows. Let M (u, v, £, 7, p)
be the volume under the normal bivariate surface with means zero and variances
1 and correlation p which is above the rectangle with vertices

z=u=£§
Yy =0

Then, remembering that & = a/(1 — a), & = b/(1 — b) and M{(u, v, & n,p) =
M(—u,v, & 5, — p), we obtain after a simple transformation of the above integral

P(a, b, 2) = i (___1)6_222:2

j=—w

.M<2jz,‘/1—fa,2jz V?’Va(i_a)’\/b(;—b)’_ 4/@>

There are tables available in which the function M is tabulated; see also Pélya,
[14]. Also, if either a = O or b = 1 then p = 0 and the function can be calculated
with the ordinary univariate Gaussian tables. Putting ¢ = 0, b = 1 simultane-
ously we obtain Kolmogorov’s result

(5.9

P(O: 1, Z) = E (_1)1 6—2:212’
joma—o0
which has been tabulated [18]. In the general case the convergence is very rapid
and good results can be obtained by using a few central terms (in (5.9) the terms
corresponding to 47 are clearly equal).

The formula (5.9) is in disagreement with a recent announcement (without
proof) of Maniya [13]. Maniya’s note appeared subsequent to a restricted paper
by the authors. '

By using the general formula above it is possible to get, for example, a weight
function to test discrepancies over only the tails of the distribution, ete.

Ezxample 2. We next investigate

u) =

0, otherwise,
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which is the weight function considered before with the W* test. By an earlier
remark we must have ¢ > 0 and b < 1, else absorption is certain and b(z) is
degenerate. The transformation (5.2) yields

ba(z) = Pr{lX(t)l <aVi ;- << %’},

where X (¢) is the Wiener-Einstein process. Here it appears convenient to make
another transformation. Let u(¢f) be the Uhlenbeck process with correlation
parameter B; that is, u(f) is stationary Gaussian and Markovian with
E(u(s)u(t)) = exp (—B|¢t — s|). Then from the known correspondence (cf.
Doob [5])

X0 = V7 u<§lﬁ log t)

we obtain

1 1
by(2) = {]u(t) | €2, — 55 log 1 - <t< 55 log i—;—b},
or since the process is strictly stationary

f 1, b(1— a)}
by(z) = Prllu(t)l 2,0 <t < 1 dd =5
which is an absorption probability with a uniform barrier.

The function by(2) is of some importance in the theories of communications
and statistical equilibrium (cf. Bellman and Harris [1]), and may eventually be
tabulated. It seems very difficult to give a complete analysis, but the following
partial result is given without proof.

Let « = 1 log (b(1 — a))/(a(l — b)) so that b(2) is a function of a. Then it
is possible to find the Laplace transform of be(2) in the following form:

w0 a —1 _ g G*zz
[ ete) aa = x{l 4/ 7 Da(v/22) + Da(—+/22)
foz e—fz{D_x(\/éf) + D (=29 df},

where D,(z) is the Weber function {23]. It seems very difficult to get even any
qualitative information from this formula.,
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