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Continued genome sequencing has fueled progress in
statistical methods for understanding the action of natural
selection at the molecular level. This article reviews various
statistical techniques (and their applicability) for detecting
adaptation events and the functional divergence of proteins.
As large-scale automated studies become more frequent,
they provide a useful resource for generating biological null
hypotheses for further experimental and statistical testing.
Furthermore, they shed light on typical patterns of lineage-
specific evolution of organisms, on the functional and

structural evolution of protein families and on the interplay
between the two. More complex models are being developed
to better reflect the underlying biological and chemical
processes and to complement simpler statistical models.
Linking molecular processes to their statistical signatures in
genomes can be demanding, and the proper application of
statistical models is discussed.
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Introduction

Genomic change underlies the biodiversity found on
Earth. Rapid genome sequencing coupled with the
development of statistical methods for comparative
genomics has enabled the examination of forces driving
lineage-specific divergence at the molecular level. In an
early study focusing on a comparison of human and
chimpanzee, the low levels of sequence divergence
suggested the hypothesis that evolutionary changes in
gene regulation have driven phenotypic divergence
between species (King and Wilson, 1975). More recently,
the rewiring of a regulatory pathway from the last
common ancestor of the sea urchin and starfish toward
both extant species (Hinman et al., 2003) and the
evolution of pigmentation in Drosophila (Prud’homme
et al., 2006) gave further support to this view. Although
changes in coding sequences can be compensatory
(Haag, 2007), changes at the protein-coding level clearly
also play a vital role in phenotypic divergence, as
experimental evidence of lineage-specific functional
change of proteins has been found in a growing number
of cases (Benner et al., 2007). Detecting genes targeted by
selection in the genome became an efficient strategy for
finding causes of species differences and identifying
genomic regions of functional, and potentially medical,
significance. Rather than focus on the controversy
surrounding the genomic basis of phenotypic evolution,
we will assume that evolution of protein-coding

sequences contributes to changes in the phenotype and
fitness of the organism and proceed with a discussion
of computational methods to detect selection-driven
changes leading to changes in molecular phenotype
(protein function).

Several views exist of how gene sequence maps to
protein function. From a gradualist viewpoint, proteins
accumulate substitutions and this gradual change corre-
sponds to a steady evolution of protein function. This is
largely consistent with a neutralist view of protein
evolution, in which functional change is not being driven
by positive selection and is due to a random accumula-
tion of mutations, but this scenario is now commonly
incorporated into a selectionist viewpoint. With bursts of
lineage-specific positive selection, punctuated periods of
rapid sequence change may occur on a few branches
(Gould and Eldredge, 1993), whereas negative selection
and functional stasis are seen on others (Messier and
Stewart, 1997). Both gradualist and punctuated views of
protein sequence evolution are consistent with protein
structure dictating sites where substitution can occur and
those where any change would radically diminish
protein fitness, on the basis of both binding interactions
and folding constraints (Bloom et al., 2007; Lin et al.,
2007). Functionally important sites are expected to evolve
slowly, whereas rapid changes are expected at sites that
have little impact on the structure and function of the
protein (neutral positions) or at sites where diversifica-
tion is favored through increased fitness of the organism
or necessitated as compensatory changes (Depristo et al.,
2005; Lin et al., 2007). Such heterogeneity across sites is
frequently modeled with a g distribution (Yang, 1996;
Stern and Pupko, 2006). Changes to protein function can
be altered not just by changes in specific amino acids
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(positive selection), but also by the substitution rates at
some sites as a result of changes in functional and
structural constraints at specific residues (Gaucher et al.,
2002). Debate is currently open on whether detection
of such shifts of selective pressures at individual sites
frequently occurs neutrally (Lopez et al., 2002) or is
linked to functional divergence (Abhiman and Sonn-
hammer, 2005b; Gu et al., 2007). A further question is
whether changes in selective pressure are directed by
coevolutionary processes dictated by structure (Pollock
et al., 1999; Suzuki, 2004; Berglund et al., 2005; Parisi and
Echave, 2005) or are occurring neutrally and indepen-
dently from protein structure (Galtier and Jean-Marie,
2004; Dutheil et al., 2005). This depends on the amount of
selection dictated by function compared with structural
compensatory evolution without functional shifts
(Depristo et al., 2005).

Underlying questions of gradualism versus punctu-
ated behavior includes what the fitness landscape looks
like and how easily a new function can evolve. Golding
and Dean (1998) pointed to cases in which adaptive
functional change can occur with only a single point
substitution. Consistent with a punctuated view, func-
tional adaptation may be driven by single changes or by
small numbers of changes. This would make such events
difficult to detect statistically. Although a small number
of substitutions can alter function, more changes might
be expected to be seen as a result of several processes.
These processes include coevolving residues that opti-
mize a new function and selective sweeps bringing
linked nonadaptive changes to fixation. From a gradu-
alist viewpoint, the power to detect lineage-specific
changes may be additionally weakened by a slower
response to selection and a dilution of selected residues
by those evolving at the neutral background.

Discussion about the way proteins evolved has been
reflected in the development of computational methods
incorporating new angles of this biological complexity. We
dedicate the remaining space to reviewing such methods
and their applicability at a comparative genomic level.

Detecting selection at the population genetic
level

Many methods have been proposed for population data.
Tajima’s D-test (for DNA data) compares the estimate of
the population-scaled mutation rate based on the
number of pairwise differences with that based on the
number of segregating sites in a sample (Tajima, 1989).
Under neutrality, Tajima’s DE0, and significant devia-
tions may indicate a selective sweep (Do0) or balancing
selection (D40). Several other neutrality tests, based on
slightly different summary statistics, use a similar idea
(Fu and Li, 1993; Fay and Wu, 2000). The Hudson–
Kreitman–Aguade test for DNA data evaluates the
neutral hypothesis by comparing variability within and
between species for two or more loci (Hudson et al.,
1987). Under neutrality, levels of polymorphism (varia-
bility within species) and divergence (variability be-
tween species) should be proportional to the mutation
rate, resulting in a constant polymorphism-to-divergence
ratio. Tests of selective neutrality based solely on simple
summary statistics seem to be powerful enough to
reject the strictly neutral model but are sensitive to

demographic assumptions (constant population size,
absence of population structure and migration), making
it difficult to obtain unambiguous evidence for selection
(Wayne and Simonsen, 1998; Nielsen, 2001). The Mc-
Donald–Kreitman test for protein-coding data has been
more successful at detecting selection (McDonald and
Kreitman, 1991). Exploiting the underlying idea of the
Hudson–Kreitman–Aguade test, the McDonald–Kreit-
man test compares the ratio of nonsynonymous (amino
acid altering) to synonymous (silent) substitutions within
and between species, which should be the same in the
absence of selection. This test is more robust to
demographic assumptions, as the effect of the demo-
graphic model should be the same for both nonsynon-
ymous and synonymous sites (Nielsen, 2001).

However, neutrality tests do not distinguish between
different forms of natural selection and so cannot
provide explicit evidence for adaptive evolution (Yang
and Bielawski, 2000). Various modifications of the
McDonald–Kreitman test (Templeton, 1996; Akashi,
1995, 1999b) proved more informative about the nature
of selective forces. In particular, Akashi suggested a way
to differentiate between the types of selection by
examining the frequency distribution of observed silent
and replacement changes compared with the neutral
expectation. However, the power of the test is low when
selection is weak or the fraction of adaptive mutations is
small. Moreover, deviations from neutrality may be
equally attributed to a population expansion or bottle-
neck (Eyre-Walker, 2002; Smith and Eyre-Walker, 2002).
Whereas the population demographic process is ex-
pected to affect all genomic loci, selection should be
nonuniform. Several studies (Eyre-Walker, 2002; Fay
et al., 2001, 2002; Smith and Eyre-Walker, 2002) took a
genomic approach and confirmed that polymorphism to
divergence ratios differed significantly only for a few
genes, although the high amounts of inferred adaptation
exceeded expectations.

Unlike neutrality tests that do not explicitly model
selection, the Poisson random-field framework (Sawyer
and Hartl, 1992; Hartl et al., 1994; Akashi, 1999a) enables
estimation of mutation and selection parameters in
various population genetics scenarios. The rationale
behind the approach is that natural selection alters the
site-frequency spectrum, making it possible to estimate
the strength of selection that has contributed to the
observed deviation from neutrality. On the downside,
the assumption of site independence makes the method
vulnerable to violation of this assumption (Bustamante
et al., 2001). Zhu and Bustamante (2005) relaxed the
assumption of site independence by incorporating
recombination within a composite likelihood approach.
Their composite likelihood ratio test showed good power
to detect recurrent directional selection and was rela-
tively robust to estimation bias of local recombination
rate but not to population growth or a recent bottleneck.
The power of Poisson random-field methods (as well as
the composite likelihood method) can be increased by
considering multiple loci, maximizing information about
species divergence time and population sizes, which are
shared among loci.

Tests based on the idea of between-species and within-
species comparisons require population data as well as
species sampling. This is not always feasible in macro-
evolutionary studies.
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Comparative genomic methods at the
protein-coding DNA level

The dN/dS measure
The most direct way of obtaining evidence for adaptive
evolution on a protein-coding gene is by comparing the
nonsynonymous substitution rate dN with the synon-
ymous rate dS (Yang and Bielawski, 2000). These rates are
defined as numbers of nonsynonymous or synonymous
substitutions per nonsynonymous or synonymous site,
respectively. Selective pressure at the protein level is
measured by the ratio o¼ dN/dS. If the amino acid
change is deleterious, purifying selection reduces its
fixation rate so that oo1. When substitution has no effect
on fitness, nonsynonymous substitutions occur at the
same rate as synonymous ones and o¼ 1, suggesting
neutral evolution. Only when amino acid changes offer a
selective advantage are nonsynonymous changes fixed
at a higher rate than synonymous changes and o41
provides the evidence for recurrent diversifying
selection.

The methods for estimating dN and dS used in early
studies were so-called approximate methods, developed
for pairwise calculations. Although they greatly differ in
detail, the basic procedure is the same: count the
numbers of synonymous and nonsynonymous sites in
the observed sequences; count the numbers of synon-
ymous and nonsynonymous differences by considering
all possible evolutionary pathways between the homo-
logous codons; and correct for multiple substitutions at
the same sites by using a standard evolutionary model
(Yang, 2006).

Estimating dN/dS by maximum likelihood
Since the development of approximate pairwise meth-
ods, a more accurate maximum likelihood method has
gained in popularity (Yang and Nielsen, 2000). The
maximum likelihood framework is convenient for
hypotheses testing via likelihood ratio tests. The Baye-
sian prediction approach, easily adapted within a
probabilistic framework, can be used to evaluate prob-
able scenarios by quantifying the uncertainty of various
predictions in an easily interpretable form. Although in
some cases the maximum likelihood approach can be
computationally intensive, approximate alternatives
such as composite likelihood are possible (Fearnhead
and Donnelly, 2001; Hudson, 2001; Zhu and Bustamante,
2005; Wilson and McVean, 2006).

The first models of codon evolution were formulated
as a continuous-time Markov process of substitution
along the phylogeny relating the sequences (Goldman
and Yang, 1994; Muse and Gaut, 1994), and thus were
applicable to multiple sequence alignments. Muse and
Gaut incorporated only variable base frequencies and
separate dN and dS rates. Goldman and Yang accounted
for nonuniform codon frequencies and transition/trans-
version bias and used a separate parameter to measure
gene variability (later simplified to include the o ratio
explicitly; Nielsen and Yang, 1998).

Several assumptions are commonly made for compu-
tational convenience rather than to reflect biological
reality. The substitution process is commonly assumed to
be independent at each site, time reversible (as the
direction of change in the observed data is unknown),

homogeneous (that is, the same throughout time) and
stationary (that is, remains at the equilibrium throughout
time; for example, codon frequencies are the same over
the course of the evolution). Models relaxing such
common assumptions were proposed (Galtier and Gouy,
1998; Galtier, 2001; Lartillot and Philippe, 2004; Pagel and
Meade, 2004 among others; some will be discussed later).

Partitioning of sites in dN/dS estimation
Methods that assume a constant o ratio for all sites and
over time detect positive selection only if the average o is
greater than 1 (Yang and Bielawski, 2000). The first study
that successfully detected positive selection by account-
ing for rate variability among sites partitioned residues
in the Major Histocompatibility Complex class I into
those from the antigen-recognition region and those
outside this region, and compared dN and dS rates in each
partition (Hughes and Nei, 1988). Yang and Swanson
(2002) implemented a maximum likelihood method for
pre-partitioned datasets, using a separate o for each
partition. As a priori information on site functionality is
not often available, most other methods for detecting
positive selection do not require a priori knowledge.
Several non-likelihood approaches partition sites in a
sequence—for example, based on shifting conservation
of sites under a covarion-like process (Siltberg and
Liberles, 2002), by close linkage in gene structure (Fares
et al., 2002) or by using a tertiary windowing approach to
lump together sites found in proximity in a protein’s
three-dimensional structure (Suzuki, 2004; Berglund
et al., 2005). Remaining methods may be subdivided into
those that estimate o separately for each site (Fitch et al.,
1997; Suzuki and Gojobori, 1999; Nielsen and Huelsen-
beck, 2002; Suzuki, 2004; Massingham and Goldman,
2005; Kosakovsky Pond and Frost, 2005b) and those that
use a prior distribution to describe the selective pressure
and use a Bayesian approach to classify sites (Nielsen
and Yang, 1998; Yang et al., 2000; Kosakovsky Pond and
Muse, 2005).

Ancestral sequences and dN/dS

Early non-likelihood methods accounting for variable
selective pressures reconstruct sequences of the extinct
ancestors; then, at each site, they count changes along the
tree to identify sites with an excess of nonsynonymous
substitutions (Fitch et al., 1997; Messier and Stewart,
1997; Benner et al., 1998; Bush et al., 1999; Suzuki and
Gojobori, 1999; Yamaguchi-Kabata and Gojobori, 2000;
Liberles, 2001). These so-called ‘counting’ methods need
large samples to ensure enough changes at codon sites.
For divergent sequences (with long branch lengths in a
corresponding phylogeny), the parsimonious ancestral
reconstruction is unreliable. In particular, the inferred
ancestral sequences would be less reliable at positively
selected sites along long branches, as these are often the
most variable sites in the alignment (Yang, 2006). Not
only can the parsimonious solution be unlikely but
nonparsimonious reconstructions can be much more
likely (Nielsen, 2002). As parsimony focuses on recon-
structions with minimum changes, it may seriously
underestimate the total number of changes (Whelan
and Goldman, 2001; Nielsen, 2002).
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Model testing and Bayesian site inference when dN/dS

varies among sites
As maximum likelihood models easily incorporate
various molecular biases (explicitly as parameters) and
avoid ancestral reconstruction, the existing codon
models were adapted to allow variable selective pressure
(Whelan and Goldman, 2001; Nielsen, 2002) and became
extremely popular (MacCallum and Hill, 2006). Site
codon models based on Goldman and Yang (1994)
describe among-site variation in selective pressure by
using a statistical distribution of o (implemented in
PAML by Yang, 1997; Nielsen and Yang, 1998; Yang et al.,
2000); they can be used to test for positive selection and
to detect affected sites by using Bayesian inference. To
test for positive selection, a likelihood ratio test (LRT) is
used to compare a null hypothesis that does not allow
o41 with a more general alternative hypothesis that
allows o41. A gene is under positive selection if such an
LRT is significant and one of the o estimates is 41 at a
nonzero proportion of sites. Such LRTs were found to be
accurate in simulations; their power correlates with data
information content as measured by sequence diver-
gence (Anisimova et al., 2001).

If the LRT for positive selection is significant, sites
under positive selection may be inferred with the
Bayesian approach. The posterior probability that a site
belongs to each o class of the model (given the data)
provides an intuitive measure of confidence in a
prediction. Sites with high posterior probabilities of
belonging to a class with o41 are likely to be under
positive selection. For data with low information content
(such as population data from slowly evolving closely
related species), the posterior probabilities can be
misleading (Anisimova et al., 2002). The choice of
parameter values describing the prior probabilities may
influence the inference. Yang et al. (2000) used the naive
empirical approach with maximum likelihood parameter
estimates as priors. To deal with estimation uncertainty,
Yang et al. (2005) implemented the Bayes empirical Bayes
approach, in which only the selection-related parameters
were numerically integrated over their prior distribu-
tions, whereas topology, branch lengths and codon
frequencies remained fixed to best estimates. The full
Bayesian solution obtained posterior probabilities by
Markov Chain Monte Carlo (MCMC) approximation,
integrating the conditional distribution over the assumed
prior distribution for all nuisance parameters, including
the tree and branch lengths (Huelsenbeck and Dyer,
2004). In simulations, the Bayes empirical Bayes ap-
proach outperformed the naive empirical approach and
was largely as accurate as the full Bayesian approach
(Scheffler and Seoighe, 2005; Aris-Brosou, 2006). Being
computationally intensive, the full Bayesian approach is
feasible only for small data sets; it may be beneficial for
data that are either very similar or very divergent. Many
cases of adaptation were detected with the site models of
Yang et al. (2000) and were subsequently extensively
studied in simulations (Anisimova et al., 2001, 2002, 2003;
Wong et al., 2004; Massingham and Goldman, 2005;
Scheffler and Seoighe, 2005).

LRTs for positive selection were found to be increas-
ingly inaccurate with increases of recombination rate
(Anisimova et al., 2003). Two possible reasons for this
inaccuracy are that the method relies on a single inferred
phylogeny and that only the nonsynonymous rate

variation was incorporated in the model, whereas the
synonymous rate was assumed to be constant. Conse-
quently, Kosakovsky Pond and Muse (2005) incorporated
both nonsynonymous and synonymous rate variation in
their codon models (based on Muse and Gaut, 1994;
implemented in HYPHY by Kosakovsky Pond et al.,
2005). Conceptually very similar to the site models of
Yang et al. (2000), these models often produce nearly
identical results. Accounting for dS variation generally
improves the fit of the model, yet the constancy of the
synonymous rate may often be assumed without
compromising accuracy. However, when certain aspects
of the substitution process vary significantly among sites,
failure to accommodate such variability can have a
negative impact on maximum likelihood estimation (Bao
et al., 2007). In addition to dS variation, Scheffler et al.
(2006) allowed topology and branch lengths to vary
across inferred recombination breakpoints, greatly im-
proving the robustness of the test in simulations. When
the method was applied to genes from human immuno-
deficiency virus (HIV)-1 with frequent recombination,
positive selection reported in previous studies could not
be confirmed. This led to a conclusion that positive
selection on these genes was inferred falsely, as a result
of reliance on a single phylogeny.

Unlike counting methods, the popular maximum
likelihood models (Yang et al., 2000; Kosakovsky Pond
and Muse, 2005) make assumptions about the distribu-
tion of synonymous and nonsynonymous rates across
sites. Other maximum likelihood methods estimate the o
ratio for each site independently, making no assumptions
about the underlining distribution of dN and dS (Huel-
senbeck, 2002; Nielsen, 2002; Suzuki, 2004; Massingham
and Goldman, 2005; Kosakovsky Pond and Frost, 2005b).
Testing the null hypothesis ‘o¼ 1’ at each site, such
methods may prove more robust to recombination if at
each site they use a phylogeny consistent with the site
history instead of relying on a single topology. Even
when testing ‘o¼ 1’ at each site, short bursts of adaptive
evolution may be difficult to detect while averaging over
the history of a sample. Whether any sites in three-
dimensional protein structures really evolve purely
neutrally is unclear; this remains a subject for study,
which affects the utility of this test.

In a novel approach, Wilson and McVean (2006) used a
likelihood approximation to the coalescent process with
recombination and used reversible-jump MCMC to
perform Bayesian inference simultaneously on selection
and recombination parameters, allowing each to vary
among sites. Computer simulations showed that the
method was accurate and had the power to detect
positive selection in the presence of recombination.

Nielsen and Huelsenbeck (2002) proposed a counting-
like Bayesian approach that avoids the problems caused
by focusing on a single parsimonious ancestral recon-
struction. Numbers of nonsynonymous and synonymous
changes were formulated as functions of the mapping of
mutations on a phylogeny (a reconstruction) and were
inferred for any mapping directly. As the true mapping is
unknown, all mapping possibilities are considered and
weighted accordingly. Whereas the maximum likelihood
method relies on the known phylogeny, Nielsen and
Huelsenbeck treated it as a nuisance parameter, integrat-
ing it out through MCMC. In this framework, hypotheses
are tested by comparing the posterior and posterior
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predictive (expected) distributions of the statistic of
interest (Meng, 1994). As with other Bayesian applica-
tions, the choice of prior distribution for the parameters
of the model may influence the inference. Both Nielsen
and Huelsenbeck (2002) and Yang et al. (2000) detected
largely the same sites under positive selection in a subset
of hemagglutinin (HA) flu data (Fitch et al., 1997). In
another attempt to use the advantages of likelihood,
Suzuki (2004) used maximum likelihood to reconstruct
ancestral amino acid sequences and parsimony to map
codon states restricted by amino acid inferences. The o
ratio was estimated for each codon with maximum
likelihood, and an LRT was used to verify if o was
significantly greater than 1. Kosakovsky Pond and Frost
(2005b) implemented several counting maximum like-
lihood-based methods based on the ideas from Suzuki
and Gojobori (1999) and Suzuki (2004); they used a
likelihood-based analog of the site-by-site counting
methods but estimated the o ratio for each site in a
sequence alignment. A similar site-by-site maximum
likelihood estimation method was proposed by Massing-
ham and Goldman (2005). Kosakovsky Pond and Frost
(2005b) explored several counting methods based on
ancestral reconstruction, comparing these with methods
assuming an a priori distribution of dN and dS rates and
those estimating dN and dS at each site without relying on
ancestral reconstruction. All tested methods were mod-
ifications of already existing techniques, in order to make
fair comparisons and reconcile the performance differ-
ences among existing site methods. The conclusion ‘not
so different after all’ confirmed that different approaches,
when carefully implemented, generally led to almost
identical results.

Even when dN variation was modeled in a more
flexible way through a Dirichlet process mixture model
(Huelsenbeck et al., 2006), the sites inferred under
positive selection were in strong concordance with those
inferred by Yang et al. (2000). The full Bayesian approach
of Huelsenbeck et al. (2006) currently offers the most
flexible description of o variation across sites while
accounting for uncertainty in parameter estimates.
However, the study also shows that increasing model
complexity does not always contribute to more accurate
inference.

Lineage-specific dN/dS variation and the development of

branch and branch-site codon models
The first to offer a way of detecting episodic positive
selection on specific lineages was the study of primate
lysozyme (Messier and Stewart, 1997) that reconstructed
sequences of extinct ancestors in a primate phylogeny by
using parsimony and maximum likelihood methods.
Both reconstructed and observed sequences were used to
estimate the average pairwise dN and dS rates for each
branch of the tree. This analysis detected positive
selection in two lineages: a lineage leading to the
common ancestor of foregut fermenting colobine mon-
keys and a lineage leading to the common ancestor of the
modern hominoid lysozymes. Crandall and Hillis (1997)
took a similar approach based on maximum likelihood
reconstruction to test the variability of selective con-
straints between the rhodopsin genes of cave-dwelling
and surface-dwelling crayfishes. Although explicit re-
construction of ancestral sequences may be useful for

experimental testing of hypotheses in the laboratory, it
may also introduce biases into the inference of positive
selection, especially if single inferred ancestral sequences
are treated as observed (Zhang et al., 1997; Williams et al.,
2006; Pollock and Chang, 2007).

Yang (1998) implemented maximum likelihood codon
models of independent o ratios for different branches of
a tree, in which transition probabilities for different
branches were calculated using instantaneous rate
matrices with different o ratios. The most flexible
lineage-specific model is the free-ratio model, which
assumes a separate o parameter for each branch,
whereas the simplest has the same o for all lineages.
Intermediate models are constructed by specifying
sets of branches with different o ratios. Yang (1998)
used the lysozyme data to test hypotheses that made
different assumptions about the o ratios on the branches
reported under positive selection by Messier and
Stewart, relative to the ratio on all the other branches.
For example, a two-ratio model might assume that a
branch ancestral to colobine monkeys has an o ratio
different from others. An LRT is used to test whether a
two-ratio model fits data significantly better than a one-
ratio model. Recently, Kosakovsky Pond and Frost
(2005a) developed a genetic algorithm to assign o ratios
to lineages on a tree by ‘evolving’ the model to be tested
through maximizing its fit. Such an approach is useful as
a priori specification of lineages is not required, although
the procedure does not offer a statistical test for positive
selection (merely providing the estimates of selective
pressure). Correction for multiple testing may be
necessary if one is interested in a conservative set of
candidate genes under positive selection with fewer false
positives than false negatives (Yang, 2006; Anisimova
and Yang, 2007).

All the mentioned branch methods assume a constant
selection pressure among sites, and so have low power to
detect episodic positive selection that has occurred at a
few sites. Incorporating variability of selective con-
straints across sites and over time simultaneously was
essential for successfully detecting episodic selection
operating at a few sites. Yang and Nielsen (2002)
proposed the first such models, in which selective
pressure varied across sites, although at a subset of sites
it also changed along a set of branches specified a priori
(the foreground). Using an LRT, a branch-site model with
positive selection on the foreground can be compared
with a model that does not allow positive selection. As
the initial branch-site tests (Yang and Nielsen, 2002)
exhibited excessive false positives (Zhang, 2004), mod-
ifications were proposed (Yang et al., 2005). Zhang et al.
(2005) suggested the LRT based on modified models,
with satisfactory accuracy and power.

Forsberg and Christiansen (2003) developed a model
applicable if the branches of the phylogeny could be
grouped a priori into two clades. An LRT compared the
divergence in selective pressure between the clades.
Bielawski and Yang (2004) implemented several clade
models with two or three discrete o classes, inspired by
the site models of Yang et al. (2000). One such model
assumes three site classes. In two classes, the o ratio is
constant in all lineages (a conserved site class with oo1
and a neutral class with o¼ 1). In the third class, sites
may evolve under different selective pressures in the two
clades; their o ratios are not constrained. Estimates of
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o41 for this class suggest positive selection due to
clade-specific differences in selective pressure. Clade
models are very effective for studying the dynamics of
host-specific adaptations or the evolution of gene
families by discovering the differences in selective
regimes during the evolution of two paralogs following
a duplication event (see Roth et al., 2007 for a discussion
of gene evolution after gene duplication).

One limitation of methods that require a priori
specification of branches to be tested for positive
selection (Yang and Nielsen, 2002; Forsberg and Chris-
tiansen, 2003; Bielawski and Yang, 2004; Yang et al., 2005)
is that a prespecified biological hypothesis may not
always be available—for example, when the gene
function is poorly understood or during an automatic
genome-scale scan for positive selection. Anisimova
and Yang (2007) suggested a possible approach whereby
several or all branches on the tree are tested, with
every branch treated in turn as a foreground branch.
To avoid excessive false positives, a correction for
multiple hypotheses testing has to be applied, such as
the Benjamini and Hochberg (1995) procedure control-
ling the false-discovery rate. Despite the non-
independence of tests, multiple tests correction was
shown to be applicable in simulations, but exceptions
may arise as a result of forces not considered in the study
(Anisimova and Yang, 2007). For example, Johnston et al.
(2007) suggest that positive selection on different
branches in a gene family may not be independent. The
application of corrections for multiple testing is still
debated in the research community and deserves further
study.

In the absence of an a priori hypothesis, the application
of a multiple test correction makes the branch-sites
models of Yang et al. overly conservative. An alternative
branch-site approach generalized the site models with
discrete classes (Yang et al., 2000, 2005) to allow changes
between the selection regimes (Guindon et al., 2004). This
approach is similar to the covarion model for site-specific
variation of substitution rates, in which every site may
switch between high and low rates (Tuffley and Steel,
1998; Galtier, 2001; Huelsenbeck, 2002). Zhai et al. (2007)
extended the site approach of Nielsen and Huelsenbeck
(2002) based on mutational mappings to include lineage-
specific variation, but only a single inferred phylogeny
was used to increase the computational efficiency. Like-
wise, the genetic algorithm branch approach (Kosakovs-
ky Pond and Frost, 2005a) based on model selection can
be extended to simultaneously accommodate site-to-site
rate variation by adjusting site rates for the entire tree,
but this becomes computationally expensive. A new
codon-based serial model of evolution will permit
changes to the selection intensities at sites (and the
proportions of sites under different selective pressures)
simultaneously across all lineages and will therefore be
ideal for exploring the dynamics of disease progression
after a specified time point (A Rodrigo, personal
communication). This would be particularly relevant
during environmental change that affects all lineages
simultaneously or after the start of an antiretroviral
therapy or other treatment. Methods allowing both
spatial and temporal variation of selective pressures are
in their infancy, and work remains to be done toward
validating these new methods in simulations, as well as
on real data.

Comparative power of codon methods
Branch, site and branch-site tests may or may not detect
positive selection, depending on the fraction of sites
affected and the time during which selection was
operating, as well as its strength. The shorter the
adaptive episode, the more difficult it is to detect it with
sites models, especially when selection acted on very few
sites or a small percentage of branches, as seems to be the
case in the reanalysis of selection reported in myostatin
(Tellgren et al., 2004; Pie and Alvares, 2006; Massey, MA,
and DAL, manuscript in preparation). Equally, branch
models may fail to detect positive selection on a branch
as a result of averaging across sites when only a fraction
of sites were affected by positive selection. Models
allowing both spatial and temporal variation of selective
pressure are expected to be more powerful than either
site or branch tests performed separately (Yang et al.,
2005; Zhang et al., 2005; Guindon et al., 2004).

Studies focusing on properties of the protein changes
may also want to consider using codon-based methods
that evaluate the selective effects on physicochemical
properties of amino acids rather than simply detecting
excess nonsynonymous changes (Xia and Li, 1998;
McClellan and McCracken, 2001; Sainudiin et al., 2005;
Wong et al., 2006). An early version of this idea was the
use of the PAM/dS statistic in place of dN/dS (Liberles,
2001).

Methods acting at the amino acid level

Selective pressure on dS and the need for amino

acid-level models
Methods comparing dN and dS are not suitable for fast
evolving genes from species of deep divergences, as
silent sites become quickly saturated over time (Smith
and Smith, 1996; Yang and Nielsen, 2000; Fares et al.,
2002). Moreover, the convenient positive selection criteria
dN/dS41 is applicable if synonymous substitutions are
neutral, which may not always be the case (Chamary
et al., 2006). Any selective effects on dS that are different
from effects on dN are of concern. Increasing evidence
suggests that synonymous changes might affect splicing
and mRNA stability (Chamary et al., 2006; Parmley et al.,
2006). For example, codon bias received particular
attention with respect to this problem. In mammals,
codon bias is static—that is, intragenic codon usage is
nonrandom but not significantly different across most
species (Nakamura et al., 2000). This can be thought of as
stable selection on dS that reduces the amount of
mutation that becomes fixed through negative selection
acting on synonymous sites (Liberles, 2001). However,
codon usage may change in a lineage-specific manner,
which will have the opposite effect of inflating dS and
may lead to an underestimation of o, also biasing it as a
measure of selective pressure. No methods are currently
available to deal with this problem at the codon level.
Beyond traditional codon bias, dS may actually affect
protein folding, through a novel and poorly understood
process (Kimchi-Sarfaty et al., 2007). Whether such a
phenomenon is common is unclear, but its effect on o
may be similar to that of static codon bias, assuming that
the process itself is constant across lineages. Finally,
the existence of overlapping reading frames may addi-
tionally complicate the notion of the dN/dS ratio, as
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synonymous substitutions in one frame may be con-
strained to avoid nonsynonymous changes in another
reading frame. Early models dealing with measuring
selection in overlapping coding regions have been
developed using Hidden Markov Model methodology
(McCauley and Hein, 2006; McCauley et al., 2007).

Detecting functional divergence with amino acid-level

models
The problems associated with codon data may be
avoided by using approaches that consider the replace-
ment amino acid rate alone. In a similar fashion to codon
methods, amino acid-based methods search for site- or
lineage-specific rate accelerations and residues subject to
altered functional constraints. Such sites are likely to be
contributing to the change in protein function over time.
The heterogeneity of rates among sites is typically
described as a g distribution with an a-shape parameter
(Uzzel and Corbin, 1971; Yang, 1993; Gu et al., 1995,
2001), or by using site-specific matrices (Bruno, 1996;
Halpern and Bruno, 1998) and mixture models (Koshi
and Goldstein, 1995, 1997; Goldman et al., 1998; Lartillot
and Philippe, 2004; Soyer and Goldstein, 2004). Using
factors such as secondary structural unit and solvent
accessibility, context-dependent substitution matrices
were proposed (Koshi and Goldstein, 1996). Because
evolutionary rates may depend not only on structural
factors such as secondary structural unit or solvent
accessibility, simpler fitness site-class models that instead
define a substitution process dependent on the relative
fitness of the amino acid in a particular position are an
interesting development (Dimmic et al., 2005).

One class of methods for detecting functional diver-
gence, analogous to branch models, searches for a
lineage-specific change in a (Miyamoto and Fitch, 1995;
Lockhart et al., 1998; Penny et al., 2001; Siltberg and
Liberles, 2002). Other methods search for evidence of
clade-specific rate shifts at individual sites (Lichtarge
et al., 1996; Armon et al., 2001; Gu, 1999; Gaucher et al.,
2002; Pupko and Galtier, 2002; Blouin et al., 2003; Landau
et al., 2005). This is analogous to branch-site codon
models and similar in idea to covarion-like models
(Galtier, 2001; Guindon et al., 2004). For example, Gu
(1999) proposed a simple stochastic model for estimating
the degree of divergence between two prespecified
clusters and testing its statistical significance, whereby
a site-specific profile based on a hidden Markov model
was used to identify amino acids responsible for these
functional differences between two gene clusters. More
flexible evolutionary models were incorporated in the
maximum likelihood approach applicable to the simul-
taneous analysis of several gene clusters (Gu, 2001). This
was extended (Gu, 2006) to evaluate site-specific shifts in
amino acid properties, in comparison with site-specific
rate shifts. Pupko and Galtier (2002) used the LRT to
compare the maximum likelihood estimates of the
replacement rate of an amino acid site in distinct
subtrees. Illustrating the technique on mammalian
mitochondrial protein sequences, they showed that the
primate lineage reached its current adaptive landscape
through episodes of positive selection at a few sites,
enabling the fine-tuning of the three-dimensional protein
structure to optimize its conserved function. The authors
argued that adaptive change on the level of a protein

sequence may not necessarily correspond to an adaptive
change in protein function but rather to the peaks in
protein adaptive landscape reflecting the optimization of
the protein function in a particular species or to long-
term environmental changes. Galtier and Jean-Marie
(2004) extended the covarion approach to allow switch-
ing between more than two classes of sites by using time-
continuous space-discrete Markov-modulated Markov
chains. In the maximum likelihood framework, Wang
et al. (2007) combined features of two earlier models
(Galtier, 2001; Huelsenbeck, 2002) into a general covarion
model that allows evolutionary rates to switch not only
between variable and invariable classes but also among
different rates even when they are in a variable state. To
validate the accuracy of functional shift methods, Abhi-
man and Sonnhammer (2005a, b) analyzed large datasets
of proteins with known enzymatic functions and found
that combining methods that detect sites conserved in
two subfamilies and those with significantly different
rates (using linear discriminant analysis) improved the
accuracy of classification. As with codon tests, most tests
for temporal amino acid rate variation assume a priori
partitioning of sequences into groups and test for
homogeneity of rate among the groups. In contrast,
Dorman (2007) proposed a Bayesian method to infer
significant shifts in selective pressure affecting many
sites simultaneously without a priori specifying the
branch expected to contain the divergence point. To
demonstrate the power of the method, a divergence
point separating two HIV subtypes was successfully
detected between genetically distinct viral variants that
have spread into different human populations with the
AIDS epidemic. On the downside, the power is low for
sequences of insufficient divergence and only shifts of
considerable magnitude are detectable (Dorman, 2007).

Predicting a functional shift from sequence data alone
can be useful for large-scale protein annotation (for
example, databases FunShift by Abhiman and Sonnham-
mer, 2005a, and PhyloFacts by Krishnamurthy et al.,
2006). Most of the methods discussed so far can be used
in an automated manner in a preliminary examination of
the functional evolution of protein families. Considering
the current wealth of molecular data, many protein
families are large enough for an informative statistical
analysis of substitution patterns produced by adaptation
events. However, without knowledge of protein struc-
ture and the constraints imposed on each site, distin-
guishing neutral substitutions from those that
substantially modify the function is difficult.

Incorporating protein structural constraints

All the methods discussed above assume independence
of the evolution at sites—an unrealistic assumption given
that structure dictates evolutionary interdependence
between protein residues. A default structural scenario
is to analyze lineage-specific change in a structural
context, using a force field to examine energetic effects of
substitutions. Consequently, interest has increased in
developing integrated models with general interdepen-
dence between the protein residues through explicitly
incorporating structural constraints within an evolution-
ary phylogenetic framework. Such approaches require a
known tertiary structure of a reference protein and
involve measuring composition of site dependencies by
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using statistical potentials—an empirical energy function
relating the pseudoenergy terms to the plausibility of
spatial proximity for a given residue pair, derived in a
context of protein threading. This can be done by using a
simple force field (Parisi and Echave, 2001; Rastogi et al.,
2006) or pairwise interaction matrices (Miyazawa and
Jernigan, 1985; Jones et al., 1992; Bastolla et al., 2001). For
example, Parisi and Echave (2001) used a protein
evolution simulation that proposes amino acid replace-
ments dependent on statistical potentials and discards
sequences resulting in structurally divergent proteins.
This was extended to the use of several different
informational and force field methods by Rastogi et al.
(2006). Fornasari et al. (2002) exploited the original
simulation procedure to build replacement matrices
incorporated into a phylogenetic context, which led to
improved model fit (Parisi and Echave, 2004, 2005). Later
studies incorporated a set of statistical potentials directly
within a Markov substitution process (Robinson et al.,
2003; Rodrigue et al., 2005, 2006). Using Bayesian model
selection methods, alternative ways to explicitly model
structural constraints (or other site-interdependencies)
can be explored (Rodrigue et al., 2006). All such models
assume a conservation of protein structure over the
phylogenetic history of a sample, an assumption that is
unlikely to be problematic in most cases. Other models
incorporate site interdependence without explicitly using
structural information (Fares and Travers, 2006; Stern
and Pupko, 2006; Kalinina et al., 2007). Extension of
structural phylogenetic methods to the explicit detection
of functional change and the relationship between
thermodynamics and selection will be important future
directions.

Selecting adequate methods for comparative
genomic studies

It is worth looking back at several large-scale studies to
learn about the advantages and the drawbacks of the
methods used. In a landmark large-scale search for
positive selection, Endo et al. (1996) estimated pairwise o
ratios for 3595 genes, confirming positive selection for
only 0.45% of analyzed genes. Other large-scale scans for
positive selection using a non-likelihood branches
approach found a several-fold higher incidence of
positive selection (Liberles et al., 2001; Roth et al., 2005;
Roth and Liberles, 2006). Although neither applied a sites
approach, the later studies had better power to detect
positive selection as their approach used information
from more than two lineages for each gene. Successful
detection of positive selection, while averaging across
sites, may serve as evidence that sometimes evolution
does act in a punctuated manner.

Maximum likelihood and Bayesian methods were
used to test for adaptive changes and to estimate the
strength of selection in population data (Bustamante
et al., 2002, 2003). Bustamante et al. (2002) concluded that
in Drosophila substitutions were predominantly benefi-
cial, whereas in Arabidopsis they were predominantly
deleterious. The difference was attributed to partial self-
mating in Arabidopsis, making it difficult for the species
to eliminate deleterious mutations.

Many studies evaluating and modifying site and
branch-site LRTs (Anisimova et al., 2001, 2002, 2003;

Wong et al., 2004; Yang et al., 2005; Zhang et al., 2005;
Anisimova and Yang, 2007) demonstrate the use of these
methods in large-scale studies but also point out the
conditions causing them to become inaccurate and warn
against overgeneralizing. These methods and the popu-
lation genetics approaches discussed above complemen-
ted each other in inferences of adaptation in model
organisms. For example, the sources of human–chimp
divergence became a hot subject in comparative geno-
mics (Clark et al., 2003; Bustamante et al., 2005; Nielsen
et al., 2005; Arbiza et al., 2006). The combination of
methods used produced some disagreement among
evolutionary biologists (Arbiza et al., 2006); nevertheless,
the studies provided some important biological insights
into the nature of selective pressure during the diver-
gence of humans from their ancestors. Clark et al. (2003)
analyzed orthologous human–chimp–mouse trios with a
branch-site test comparing the neutral codon model with
a more general model that allowed sites with o41 in the
human lineage. Genes with accelerated evolution in the
human lineage included those involved in sensory
perception, amino acid catabolism and nuclear transport.
Continuing the search for human genes under positive
selection, Nielsen et al. (2005) used maximum likelihood
pairwise lineage comparisons across a larger set of genes,
including all human–chimp orthologs. Genes displaying
evidence for positive selection included immune de-
fense-related and sensory perception genes, as well as
those involved in spermatogenesis, tumor suppression
and apoptosis. An analysis of human polymorphism
data from genes with the strongest signal of positive
selection showed an excess of high-frequency derived
nonsynonymous mutations, confirming the signal of
positive selection in these genes. Bustamante et al.
(2005) used a comparative population genomics techni-
que (Sawyer and Hartl, 1992; Bustamante et al., 2002;
Sawyer et al., 2003) to compare DNA polymorphism
within humans with the human–chimp interspecies
divergence, identifying a partially overlapping list of
genes under positive natural selection along the human
lineage. The test is subject to different assumptions and
also has power over a different timescale. In the latest
comparative genomic study of humans, chimps and their
mural ancestors, Arbiza et al. (2006) used a more accurate
branch test (Zhang et al., 2005), aiming to differentiate the
positive selection events from those that may have been
caused by relaxation of selection constraints. Recently,
Ardawatia and Liberles (2007) extended the area of
human–chimp lineage comparison to include a systema-
tic analysis of lineage-specific evolution in metabolic
pathways by consolidating positive selection inferences
with Kyoto Encyclopedia of Genes and Genomes path-
way data (Kanehisa et al., 2004).

Conclusion

No recipe for a perfect comparative genomics analysis
exists, but using a variety of techniques as illustrated
above contributes to the gradual unraveling of the core
evolutionary mechanisms. The flowchart in Figure 1
summarizes the main categories of available techniques.
Essentially, the success in detecting positive selection
depends on the strength of the signal and other
evolutionary forces acting on the sequence in combina-
tion with the use of an appropriate method. For example,
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different methods will detect selective sweeps versus
direct selection on a binding pocket of a protein.
Understanding the applicability conditions for methods
used is clearly essential. Interpretation of the results is
equally important. For example, an excess of amino acid
substitutions may not always be sufficient to prove
adaptive evolution, as it can result from selection on
synonymous substitutions rather than positive selection
on a protein (Chamary et al., 2006). To verify the
consistency of results and their interpretation, use of
several methods making different assumptions is good
practice. Absence of evidence for positive selection with
one method does not imply its nonexistence or that
another method may not detect it. Equally, inferred cases
of positive selection are strengthened if they are
reconfirmed with diverse statistical and structural
approaches as well as experimental studies testing for
functional change. Ultimately, a fuller picture of the
natural forces generating the patterns observed at the
molecular level will emerge.

The era of genomics has proceeded hand in hand with
the development of novel large-scale tests for selection.
The age of comparative genomics is expected to extend

into the age of population genomics. This will enable the
application of statistical tests applied across populations
(population-level tests), between closely related species
(DNA-level tests for protein encoding genes, where dS

has not reached saturation) and in analysis of more
anciently diverged species (amino acid-level tests).
Through these various comparisons, we will gain under-
standing of the interplay between population genetics,
genomic forces, molecular and cellular constraints and
thermodynamics at the protein structural level, coupled
to lineage-specific adaptation to drive sequence evolu-
tion and species divergence.
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