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Summary

The recently proposed WHIM (Weighted Holistic Invariant Molecular) approach [Todeschini, R.,
Lasagni, M. and Marengo, E., J. Chemometrics, 8 (1994) 263] has been applied to molecular surfaces
to derive new 3D theoretical descriptors, called MS-WHIM. To test their reliability, a 3D QSAR study
has been performed on a series of steroids, comparing the MS-WHIM description to both the original
WHIM indices and CoMFA fields. The analysis of the statistical models obtained shows that MS-
WHIM descriptors provide meaningful quantitative structure–activity correlations. Thus, the results
obtained agree well with those achieved using CoMFA fields. The concise number of indices, the ease
of their calculation and their invariance to the coordinate system make MS-WHIM an attractive tool
for 3D QSAR studies.

Introduction

The Comparative Molecular Field Analysis (CoMFA)
[1] approach is one of the most widely used techniques
for 3D QSAR studies. The possibility to merge structural-
ly heterogeneous compounds, the accurate description in
terms of steric and electrostatic fields and the easy inter-
pretability of the statistical results are undoubtedly the
main reasons for its success. On the other hand, the large
number of descriptor variables to handle and the strict
dependence of statistical results on molecular alignment
are the major drawbacks of CoMFA. Holistic descriptors
could in principle overcome these problems, as they allow
to condense 3D chemical information into a brief numeri-
cal vector, describing each molecular structure per se (i.e.,
its 3D orientation with respect to any reference system
does not have to be considered). Examples of this type of
description include topological indices [2], autocorrelation
function-based indices [3,4] and the recently proposed
Weighted Holistic Invariant Molecular (WHIM) indices

[5–7]. In particular, the latter consist of 12 statistical
parameters, calculated from the x,y,z coordinates of a
molecule within different weighting schemes, and contain
information about the whole molecular structure in terms
of size, shape, symmetry and atom distribution. These
indices were successfully correlated to the toxicity of
heterogeneous organic molecules [7] and to molecular
properties such as total accessible surface area [5], log P,
and boiling and melting points [6]. Although the results
were shown to be superior to those obtained with tradi-
tional QSAR methods, WHIM indices have not been used
to solve structure–activity problems involving highly
specific biological interactions.

Although the WHIM approach efficiently vectorizes
the atomic x,y,z coordinates of a given molecular struc-
ture and their related physicochemical features, it is in
principle applicable to any set of coordinates weighted by
any kind of property. Thus, for 3D QSAR purposes, a
new approach (G-WHIM, Grid-Weighted Holistic Invar-
iant Molecular descriptors) has been recently proposed,
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based on scalar interaction fields computed on a grid of

Fig. 1. Structures of the 21 steroids contained in the training set. T1, T2 and T3 represent the side-chain torsional angles that were rotated for
estriol (compound 6).

points where each molecule is embedded [8].
In this paper we propose new WHIM-based indices

named MS-WHIM, which are derived directly from Mol-
ecular Surface (MS) properties. They were developed in
an attempt to consider the contribution arising from
molecular surface recognition in specific ligand–receptor

interactions. To test the validity of this new approach,
MS-WHIM was applied to a well-known biological prob-
lem and the results were compared with those from the
CoMFA description and the original WHIM description.
The steroid set previously analyzed by Cramer et al. [9] in
the first publication on CoMFA, and subsequently used
to propose other 3D QSAR methods such as MTD [10],
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similarity matrices [11,12] and COMPASS [13], was em-

TABLE 1
BINDING AFFINITIES OF 21 STEROIDS TO HUMAN CORTICOSTEROID-BINDING GLOBULINa

Molecule CBG CoMFA_FFD WHIM_FD MS-WHIM_FFD

01 Aldosterone 6.279 ♦ ♦ ♦
02 Deoxycorticosterone 7.653 − − −
03 Deoxycortisol 7.881 ♦ − ♦
04 Dihydrotestosterone 5.919 ♦ − −
05 Estradiol 5.000 − − ♦
06 Estriol 5.000 ♦ ♦ ♦
07 Estrone 5.000 ♦ − ♦
08 Etiocholanolone 5.255 ♦ ♦ ♦
09 Pregnenolone 5.255 ♦ − −
10 17-Hydroxypregnenolone 5.000 ♦ ♦ −
11 Progesterone 7.380 ♦ − ♦
12 Androstanediol 5.000 − − ♦
13 17-Hydroxyprogesterone 7.740 − − −
14 Testosterone 6.724 ♦ − ♦
15 Androstenediol 5.000 ♦ − −
16 Androstendione 5.763 ♦ ♦ −
17 Androsterone 5.613 ♦ ♦ ♦
18 Corticosterone 7.881 ♦ − −
19 Cortisol 7.881 − ♦ ♦
20 Cortisone 6.892 ♦ − ♦
21 Dehydroepiandrosterone 5.000 ♦ − ♦

The symbol ♦ indicates the compounds selected by means of experimental design strategies within each description matrix (see the text for a more
detailed explanation).
a Affinity data (log 1/k) from Ref. 14.

Fig. 2. Structures of the 10 steroids used as the test set.

ployed. The training set comprises 21 molecules (Fig. 1),
assayed for binding affinity (Table 1) [14] to corticoste-
roid-binding globulin (CBG). New CoMFA fields were

calculated adopting, with respect to the original work,
different criteria in selecting and aligning the starting
geometries. The selected steroid structures were then used
to compute WHIM and MS-WHIM indices. Each de-
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scription matrix was analyzed by means of a chemometric
strategy involving Principal Component Analysis (PCA)
[15], molecule selection by means of design criteria [16,17]
and Partial Least Squares (PLS) [18] regressions. Finally,
the predictive capability of each derived statistical model
was verified on an additional test set of 10 compounds
(Fig. 2) [19].

WHIM from molecular surface (MS-WHIM)

Structure–activity data correlations require an accurate
molecular description. Although atomic coordinates are
themselves a sort of basic description, biological recogni-
tion is an event that occurs at the molecular surface level;
thus, it is at the solvent-accessible surface level that the
key forces (van der Waals interactions, hydrophobic ef-
fects and electrostatics) driving the binding process play
their critical roles [20].

Based upon this consideration we developed new
WHIM-based indices, computed from the x,y,z coordi-
nates of Connolly surface points [21] instead of the atom-
ic coordinates. The mathematical algorithm is common to
both approaches, differing only in the starting coordinates
and in the weighting schemes adopted.

WHIM descriptors
WHIM indices [5–7] are aimed at extracting and quan-

tifying the information contained in the x,y,z atomic
coordinates of a molecule. Two types of matrices are
initially defined: a molecular matrix M(n × 3) containing
the x,y,z coordinates of the n atoms, and four diagonal
matrices W(n × n) containing the ‘weights’. The latter are
physicochemical properties associated with the n atoms of
the molecule (see below). The following procedure [5] is
then applied to each molecular conformation within each
W matrix:

(1) The atomic x,y,z coordinates are centered with
respect to their weighted mean.

(2) Weighted PCA is performed on the centered data
to obtain the score matrix T in the three principal compo-
nent axes.

(3) The following weighted statistical parameters are
computed from the T matrix (i = 1, ..., n; m = 1,2,3): (i)
variance (λm) = PCA eigenvalues; (ii) the eigenvalue pro-
portion:

θm = λm / Σm
λm

(iii) the skewness:

γm = | [ Σi
(wi t3

im) / Σi
wi ] | ∗ 1/ λm

3/2

and (iv) the kurtosis:

κm = [ Σi
(wi t4

im) / Σi
wi ] ∗ 1/ λ2

m

The PCA eigenvalues are correlated with the molecular
size, as they refer to the coordinate extension. Eigenvalue
proportions are easily related to molecular shape, as
planar molecules will have only two components. Instead
of using θ3, the acentric factor ω = θ1 − θ3 is used [6];
spherical molecules have a null acentric factor, while lin-
ear ones will have ω = θ1 = 1. Skewness represents the mol-
ecular symmetry along each component. Since this is a
third-order moment, it can assume negative values; to
preserve the invariance to rotation, the absolute value is
taken into account. The fourth-order moment, kurtosis,
is related to the atomic distribution and the density
around the center and along principal axes. To avoid
problems related to infinite κ3 values obtained when deal-
ing with planar compounds, the reciprocal of this entity,
ηm = 1/κm, was defined [7]; ηm may be viewed as the un-
filled space per atom. A total of 12 WHIM indices are
thus computed for each weight, i.e., λ1, λ2, λ3, θ1, θ2, ω,
γ1, γ2, γ3, η1, η2 and η3.

In relation to the kind of weights assigned to the atoms,
different types of information can be obtained. From the
original papers, the first weighting scheme applied is
represented by the unitary case (i.e. wii = 1; i = 1, ..., n),
where purely geometrical information can be extracted
because different atom types are not distinguished. To
achieve a physicochemical description, the following prop-
erties were introduced: (i) atomic mass; (ii) van der Waals
atomic volume; and (iii) Mulliken atomic electronegativ-
ity. The information obtained within these schemes may
be referred to (i) the mass distribution (in this case the
three principal axes coincide with the directions of the
inertia principal axes); (ii) the volume distribution; and,
to a certain extent, (iii) the charge distribution. Scaling of
the weights onto the carbon values is applied to assure
comparable numbers for all the schemes.

Apart from the capability to condense 3D chemical
information in a brief numerical vector, the WHIM ap-
proach appears a new promising tool for 3D QSAR
studies as it provides a molecular description which is
invariant to the roto-translation. Thus, step 1 (i.e., center-
ing the atomic coordinates) assures invariance to transla-
tion, while step 2 (i.e., PCA) assures invariance to rota-
tion. Consequently, the 3D orientation of a molecular
structure with respect to either the coordinate system or
any other molecule does not affect the WHIM descrip-
tion.

MS-WHIM descriptors
The 12 statistical parameters described above are com-

puted starting from the x,y,z coordinates of Connolly
surface points rather than from atomic coordinates and
using different weighting schemes (i.e., properties associ-
ated with the surface points).

The unitary value and the Molecular Electrostatic
Potential (MEP) [22] values computed at each point of
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the Connolly surface are considered as weights. The uni-

Fig. 3. Standard deviation of PCA eigenvalues (weight 1) evaluated within 20 random 3D orientations of deoxycortisol (compound 3 in Fig. 1)
for different density levels (points per Å2).

tary scheme maintains the geometrical information rela-
tive to the molecular surface shape, while the second
weighting scheme provides the electrostatic information
about the electron density distribution.

As the electrostatic potential can be either positive or
negative, while statistical weights must be semipositive
definite, MEP values are separated into two different
matrices, one containing only positive MEP values and
the other the absolute value of the negative ones, setting
to zero the missing points of each matrix. Three definite
weighting schemes for a total of 36 (12 × 3) indices are
used.

Although the application of the WHIM approach to
coordinates different from the atomic ones could in prin-
ciple have some advantages (i.e., a reduced number of
indices in spite of a larger number of collected points and
a more accurate starting description), a new problem
occurs. The sampling error inherent when representing a
continuous surface as a collection of a finite number of
points could affect MS-WHIM values in two ways. First,
the indices are sensitive to the surface point density ap-
plied. Second, the Connolly algorithm samples points
depending on the 3D orientation of the molecule exam-
ined. In this way, different spatial positions of the same
molecular structure could lead to different surface point
distributions and consequently to different MS-WHIM
vectors, even if the same density value is applied. (It is
worth to point out that the computation of the molecular
surface, not the WHIM approach, is sensitive to the mol-
ecular orientation!) In principle, increasing the point
density on the surface, MS-WHIM indices should con-

verge to their theoretical value and the point distribution
dependence on molecular orientation should become
lower and lower. To find the minimum density value that
allows a good compromise between result stability and
computational time, several tests were executed on refer-
ence steroid structures by computing MS-WHIM indices
for different density values and for different spatial orien-
tations. The standard deviations of λ1, λ2 and λ3 (weight
1), evaluated within 20 different 3D orientations for a
given conformation of deoxycortisol (compound 3 in Fig.
1), are represented in Fig. 3 as a function of density (from
0.5 to 12 points per Å2). The relative positions of the
curves are consistent with the calculation method (PCA):
the standard deviation decreases on going from λ1 to λ3.
The final result is as expected: the curves show common
profiles and in all three cases the standard deviation
lowers at higher density values. Similar trends were ob-
served by considering all other descriptors and different
steroid molecules as well. On the basis of these results, we
can assume the MS-WHIM descriptors to be independent
from molecular orientation when computed on highly
dense surfaces. In the present work all MS-WHIM indices
were computed by using a density value of 10 points per
Å2 (i.e., about 2500 points per molecule).

Methods

Computational methods
Conformational search, CoMFA and all statistical

analyses were carried out within the SYBYL v. 6.03 mol-
ecular modelling package [23]. The cross-validation pro-
cedure suggested by the authors of GOLPE [24] and the
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selection of the most informative molecules, following
factorial and fractional factorial design strategies [16,17],
were carried out by means of internally developed SPL
(SYBYL Programming Language) macros. Similarity
scores and molecular alignments were obtained by means
of SEAL [25]. MS [21] was employed to generate Connol-
ly surfaces, and an in-house developed program (written
in the C programming language) was used to compute
MEP, WHIM and MS-WHIM descriptors. All calcula-
tions were performed on a Silicon Graphics Crimson
workstation.

Conformational analysis
Molecular models of 21 steroids were taken from the

SYBYL CoMFA Tutorial. The additional 10 structures
were built starting from the most similar steroid skeleton
available and adding the proper functional groups. Each
molecule was investigated by systematically varying the
side-chain torsional angles on a 30° grid and further
minimizing the structures obtained. The standard Tripos
force field [26] was used, including the electrostatic contri-
bution with Gasteiger–Marsili [27] partial atomic charges
and a distance-dependent dielectric constant. Geometry
optimization was carried out by means of the Powell
algorithm, until the rms gradient was less than 0.01 kcal/
mol Å. For each steroid, all minimum energy conforma-
tions within 4 kcal/mol of the global minimum were re-
tained.

Structure selection and molecular alignment
As in the original work by Cramer et al. [9] and be-

cause of its highest affinity to CBG, deoxycortisol (com-
pound 3 in Fig. 1) was taken as the lead compound.
Furthermore, its global minimum conformer was chosen
as the Template Structure (TS). The TS was then com-
pared to the conformational minima of all molecules by
means of a SEAL analysis. This allowed to select for each
molecule, of both the training set and the test set, the
most similar structure (i.e., the one characterized by the
best SEAL score) and its optimal alignment to the TS
[28]. SEAL allows a rapid pairwise comparison of dissimi-
lar molecules through an alignment function, which com-
prises a double sum over all the possible atom pairs be-
tween two molecules; a similarity score AF is computed as
follows:

AF = −Σi Σj
wij exp(−α rij)

2 (1)

where rij is the distance between atom i of the first struc-
ture and atom j of the second structure and α is the at-
tenuation range of this distance dependence. The wij pre-
exponential factor is computed as a function of atomic
partial charges and van der Waals radii:

wij = wE qi qj + wS vi vj (2)

For every SEAL comparison, the steric and electrostatic
proportions (wE and wS) were set to have the same
weight.

CoMFA fields
The data set of selected structures, properly aligned

with respect to the TS, was embedded in a regularly
spaced (1 Å) grid of dimensions 20 × 17 × 17 Å. Steric and
electrostatic field energies were computed by means of the
standard Tripos force field and Gasteiger–Marsili partial
atomic charges, as in the original work by Cramer et al.;
a C(sp3) probe atom with a charge of +1 and a distance-
dependent dielectric constant was used. An energy cutoff
of ± 30 kcal/mol was applied for all interactions and the
electrostatic contribution was ignored at sterically bad
points (DROP YES option).

WHIM and MS-WHIM descriptors
The data set of selected conformers, not aligned but

taken in their original 3D orientations, was used to com-
pute WHIM and MS-WHIM descriptions. Moreover, to
further highlight the invariance of MS-WHIM indices to
roto-translation, they were also computed on nine addi-
tional data sets, each obtained by randomly varying the
3D orientation of each molecular structure.

WHIM indices were calculated from atomic x,y,z coor-
dinates within four different weighting schemes: (i) the
unitary case; (ii) atomic mass; (iii) van der Waals atomic
volume; and (iv) Mulliken atomic electronegativity. A
total of 48 molecular descriptors were thus obtained.

MS-WHIM indices were calculated from the Connolly
surface points within three weighting schemes: (i) the
unitary case; (ii) positive MEP; and (iii) negative MEP
values, yielding a total of 36 molecular descriptors. Con-
nolly surfaces were generated using a 1.5 Å radius probe
atom and a density of 10 points per Å2. The MEP was
computed onto the surface points by means of the classi-
cal Coulomb formula, using a distance-dependent dielec-
tric constant (ε):

Vp = Σi
qi / ε |ri − p| (3)

where Vp is the MEP value relative to point p and ri the
distance between p and the ith atom.

Chemometric analysis
CoMFA columns were block-scaled with the

CoMFA_STD scaling option, to assure that the total
influence of each field on the PLS results was the same.
To minimize the influence of noisy columns, all analyses
were done with a column filter of 2 kcal/mol, i.e., any
region point column having a standard deviation less than
2 kcal/mol was excluded from the PLS analysis. WHIM
and MS-WHIM columns were autoscaled to assign unit
variance to each descriptor.
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The selection of the most informative structures in the

a

b

c

Fig. 4. Three molecular alignments found by SEAL for estriol (grey)
versus deoxycortisol (black). (a) Molecular skeletons optimally
aligned; (b) the estriol phenyl ring matched to the terminal five-mem-
bered ring of deoxycortisol; and (c) the estriol steroid nucleus flipped
so that the 19-methyl groups of the matched molecules point toward
opposite directions.

steroid series was achieved through Factorial Design (FD)
and Fractional Factorial Design (FFD) strategies. A PCA
was performed on each data matrix to derive the scores
in the n principal components space. The latent variable
hyperspace can be divided into 2n subspaces: one molecule
for each subspace (FD) was selected if n = 3, while a total
of 2(n−1) molecules (FFD) were considered if n > 3. In the
few cases where the subspace was empty, two molecules
in the nearest subspace were considered if possible.

The optimum number of components in each PLS final
model was determined through two cross-validation [29]
procedures: (i) Leave-One-Out (LOO); and (ii) Five Ran-
dom Groups (5RG). The latter protocol was repeated up
to 100 times and the associated parameters represent
mean values [24]. The predictive power of each statistical

model was evaluated by means of q2 and sPRESS, computed
as follows [30]:

q2 = 1 − Σ(ypred − yobs)
2 / Σ(yobs − ymean)

2 (4)

sPRESS = (Σ(ypred − yobs)
2 / (n − c − 1))1/2 (5)

where n is the number of compounds and c is the number
of components.

The SDEP [24,30] index was computed to check the
quality of the external predictions:

SDEP = (Σ(ypred − yobs)
2 / n)1/2 (6)

The reliability of WHIM-based statistical models was
further verified by scrambling several times the response
variable [1] (i.e., the activities of the training set com-
pounds were mixed so that each value was no longer
assigned to the right molecule) and repeating the LOO
PLS run.

Results

Structure selection and molecular alignment
As more and more successful applications have been

reported, it has become clear that what is critical in
CoMFA is the self-consistency of the molecular confor-
mations and their alignment within the data set. In other
words, improved CoMFA models can be obtained if con-
formations are chosen and aligned so that their electro-
static and steric fields are as similar as possible [1]. In the
series analyzed here, the relative rigidity of the steroid
nucleus allows the conformational variable to be ne-
glected; however, although the spatial orientation of an
OH group does not heavily affect the steric field, the
electrostatic field is strictly dependent on this orientation.
Thus, in an attempt to maximize the efficiency of
CoMFA, which was our main term of comparison, we
investigated the torsional space of the 21 + 10 steroids and
chose, for each molecule, the conformer having the largest
steric and electrostatic similarity to the global minimum
of the lead compound (TS). As described in the Methods
section, all conformational minima were compared to the
TS by means of the SEAL program and the conformer
characterized by the best similarity score was selected for
each molecule [28]. For all compounds, the best alignment
consisted in the optimal steroid skeleton superposition.
The only exceptions were the estrane analogues contain-
ing an aromatic ring, i.e., estradiol, estriol and estrone
(compounds 5–7, Fig. 1). For each of these molecules,
SEAL found three different alignments with the TS, which
were characterized by close similarity scores. These align-
ments, illustrated in Fig. 4 for estriol, are: (i) optimally
aligned molecular skeletons (Fig. 4a); (ii) the phenyl ring
matching the five-membered terminal ring of deoxycortisol
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(Fig. 4b); and (iii) matching of the steroid nuclei with the

TABLE 2
TORSIONAL VALUESa (Tn) AND SEAL SCORES RELATIVE TO ESTRIOL CONFORMERS COMPARED TO THE LOWEST EN-
ERGY STRUCTURE OF DEOXYCORTISOLb

Conformer T1a T2a T3a ∆Ec SEAL1d SEAL2e SEAL3f

01 178 −63 180 0.00 −−76.21 −74.92 −72.52
02 002 −63 180 0.04 −75.63 −−75.36 −74.17
03 178 178 −63 0.24 −76.84 −74.33 −−71.33
04 002 178 −63 0.28 −78.42 −77.10 −−71.59
05 179 179 180 0.37 −72.77 −70.45 −−70.09
06 002 179 180 0.40 −74.23 −73.10 −70.75
07 178 178 058 0.51 −75.56 −73.17 −−70.39
08g 178 −64 −64 0.53 −78.31 −−77.21 −75.76
09 002 178 058 0.54 −77.58 −76.70 −−71.28
10 002 −64 −64 0.57 −79.46 −78.18 −−76.51
11 178 −63 058 0.83 −77.01 −−76.55 −74.63
12 002 −63 058 0.86 −78.55 −77.73 −−75.81
13 178 065 179 1.33 −74.55 −−72.69 −72.58
14 002 065 179 1.36 −74.11 −73.89 −73.69
15 179 066 −64 1.91 −76.58 −75.65 −−73.95
16 001 066 −64 1.95 −78.04 −77.58 −−74.37
17 178 066 059 2.04 −75.41 −74.46 −−73.05
18 002 066 059 2.08 −77.49 −−76.67 −72.11

a The selected three rotatable bonds are illustrated in Fig. 1.
b SEAL solutions which well align the steroid nucleus (type-i superposition; see text and Fig. 4a) are highlighted in bold.
c Difference energy values calculated by the Tripos force field with respect to the estriol lowest energy structure.
d SEAL score for the best alignment.
e SEAL score for the second best alignment.
f SEAL score for the third best alignment.
g Chosen conformer of estriol.

TABLE 3
CROSS-VALIDATED RESULTS FOR CoMFA, WHIM AND
MS-WHIM ANALYSES ON THE WHOLE TRAINING SETa

Variable LOO 5RG

q2 sPRESS q2 sPRESS

CoMFA 0.840(3) 0.508 0.819(3) 0.536
0.057 0.078

Cramerb 00− 00− 0.750(2)c 00−
00− 00−

WHIM 0.667(3) 0.735 0.602(3) 0.799
0.092 0.087

MS-WHIM 0.631(2) 0.751 0.576(2) 0.801
0.084 0.078

a The data shown refer to Leave-One-Out (LOO) and Five Random
Groups repeated 100 times (5RG) cross-validation protocols. The
optimum number of components is indicated in parentheses, the
respective standard deviation values are reported below 5RG q2 and
5RG sPRESS.

b Values were taken from Table 5 of Ref. 9.
c Value obtained by means of four random cross-validation groups

formed just one time.

19-methyl groups pointing in opposite directions (Fig. 4c).
In Table 2 the scores corresponding to these align-

ments are reported for each conformer of estriol. To get
a consistent alignment for CoMFA field calculations
within the entire set, only the first superposition (type-i
superposition; see Fig. 4a) was considered, although it
ranked as the second or third SEAL solution. Thus, al-
though conformer no. 10 has the lowest score in the
table, conformer no. 8 was selected because it is charac-
terized by the best score within type-i alignments. The
same criterion was adopted for estrone and estradiol.

PLS on the whole training set
The steroid structures selected for CoMFA field calcu-

lations were used to compute WHIM and MS-WHIM
indices. PLS was then applied to each description matrix
to search for a structure–activity correlation. Cross-vali-
dated results for the CoMFA, WHIM and MS-WHIM
models are summarized in Table 3. The relative scatter
plots of predicted versus actual binding affinities are
reported in the left column of Fig. 5.

The first two columns of Table 3 list LOO parameters,
while the last two show the mean q2 and sPRESS values
obtained through 5RG made in 100 different ways. The
original steroid CoMFA analysis (Cramer et al. [9]),
which was cross-validated by forming four random
groups only one time, is also shown. The results corre-

sponding to the 1 Å grid-spacing analysis have been re-
ported, since in our CoMFA refinement we used this step
size. Moreover, the reported analysis is characterized by
a higher q2 value with respect to the standard parameter
setting of one.

Since different cross-validation procedures were used,
it is difficult to compare our CoMFA model with that
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obtained by Cramer et al.; in both cases, however, the q2

Fig. 5. Scatter plots of actual versus predicted activities for CoMFA, WHIM and MS-WHIM PLS models (LOO), computed both on the whole
(left side) and on the design-reduced data set (right side). In the latter case, closed circles represent the steroid molecules that were included in the
model, while open circles indicate the excluded compounds. As the optimal number of components for the WHIM_FD PLS model was evaluated
by means of SDEP on the 14 compounds held out, closed circles in this case refer to fitted and not to predicted values.

values are high, 0.819 (5RG) and 0.750, respectively.
WHIM and MS-WHIM analyses are characterized by
good 5RG q2, 0.602 and 0.576, but these values are lower
than those from CoMFA. The low standard deviation
values for 5RG q2 and 5RG sPRESS indicate that the PLS
models for each description are stable and not affected
significantly by the way in which the groups are formed.

Interestingly, the standard deviation associated with
CoMFA 5RG q2 is the lowest; furthermore, CoMFA gave
LOO q2 and 5RG q2 values of 0.840 and 0.819, respect-
ively; these values are closer to each other than in the
WHIM and MS-WHIM models. This may be a result
from the different scaling options adopted: for the
CoMFA matrix, the CoMFA_STD scaling procedure was
applied only once before cross-validation, while for the
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WHIM and MS-WHIM matrices the autoscaling pro-

TABLE 4
OBSERVED AND PREDICTED ACTIVITY DATA FOR THE
TEST SET OBTAINED BY USING THE WHOLE TRAINING
SETa

Molecule CoMFA Cramerb WHIM MS-WHIM Assayc

Test 1 8.084 6.629 07.617 7.228 7.512
Test 2 7.666 7.744 11.775 8.573 7.553
Test 3 6.538 6.594 07.460 7.061 6.779
Test 4 7.804 7.518 08.562 7.684 7.200
Test 5 6.396 6.650 06.019 6.218 6.114
Test 6 7.346 7.409 07.278 7.112 6.247
Test 7 7.010 5.247 05.692 6.487 7.120
Test 8 6.864 7.373 07.198 6.917 6.817
Test 9 7.970 7.908 08.508 7.810 7.688
Test 10 8.005 7.800 08.352 7.499 5.797

SDEP 0.837 1.022 01.750 0.742

a Predicted values for which |ypred − yobs| > 0.8 are highlighted in bold.
b Values were taken from Table 5 of Ref. 9.
c Affinity data (log 1/k) from Ref. 19.

TABLE 5
CROSS-VALIDATED RESULTS FOR MS-WHIM PLS ANA-
LYSES COMPUTED WITHIN DIFFERENT SETS

Set 5RG q2 5RG sPRESS ONCb

01a 0.576 0.801 2
02 0.562 0.814 2
03 0.582 0.795 2
04 0.513 0.859 2
05 0.565 0.811 2
06 0.505 0.866 2
07 0.515 0.857 2
08 0.516 0.856 2
09 0.557 0.819 2
10 0.530 0.844 2

Mean 0.542 0.832
Standard deviation 0.029 0.027

a The results obtained within this set have been reported in Table 3.
b Optimal number of components.

TABLE 6
EXTERNAL PREDICTIONS OBTAINED BY USING MS-WHIM WITHIN DIFFERENT SETS

Set Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test 10

01a 7.228 8.573 7.061 7.684 6.218 7.112 6.487 6.917 7.810 7.499
02 7.173 8.600 6.700 7.823 6.361 6.947 6.420 6.734 7.886 7.690
03 7.271 8.613 6.844 7.641 6.159 6.968 6.547 6.621 7.766 7.607
04 7.202 8.626 6.910 7.841 6.170 7.057 6.652 6.974 7.989 7.641
05 7.094 8.672 6.743 7.602 6.408 6.820 6.479 6.884 8.066 7.535
06 7.349 8.504 7.094 7.970 6.071 6.956 6.681 6.948 8.036 7.488
07 7.356 9.020 6.915 7.792 6.153 7.044 6.394 6.807 7.944 7.579
08 7.381 8.311 7.174 7.875 6.126 7.203 6.660 6.889 7.888 7.466
09 7.202 8.475 7.044 7.684 6.186 7.102 6.556 6.934 7.820 7.449
10 7.319 8.962 7.118 7.600 6.238 7.093 6.440 6.768 7.898 7.568

Mean 7.257 8.636 6.960 7.751 6.209 7.030 6.532 6.848 7.910 7.552
Standard deviation 0.093 0.213 0.163 0.127 0.104 0.109 0.105 0.112 0.098 0.079

a The results obtained within this set have been reported in Table 4.

cedure was repeated for each subgroup of molecules [1].
Test set predictions are listed in Table 4. A comparison

between our CoMFA results and those of Cramer et al.
indicates that considerable improvements were obtained.
These are particularly evident for molecules test 1 and
test 7, which are now well predicted; test 6 and test 10
are, however, still overpredicted.

With regard to the WHIM results, it should be noted
that, in spite of a good q2 value, test molecules 2, 4, 6, 7,
9 and 10 are poorly predicted, giving the highest final
SDEP (1.750). The MS-WHIM approach gave results
which, with the exception of molecule test 2, are compar-
able to those from the CoMFA analysis. Furthermore,
the SDEP is the lowest in the table (0.742).

MS-WHIM invariance to the coordinate system
MS-WHIM indices, if computed on highly dense

Connolly surfaces (see Fig. 3), are invariant to roto-trans-

lation. To further show that MS-WHIM does not necessi-
tate any preliminary alignment of molecular structures,
nine additional data sets were analyzed. Each set was
obtained by randomly varying the 3D orientation of each
molecular structure. The stability of the PLS models
obtained was then verified. Table 5 reports the 5RG q2

values obtained for all the analyses. The lowest and
highest q2 values associated with all analyses are 0.505
and 0.582, respectively. The standard deviation value,
which is as low as 0.029, indicates high stability. More-
over, all these PLS models are two-component models.
These results confirm that MS-WHIM descriptors are not
affected by the 3D orientation of a given molecular con-
formation with respect to either the coordinate system or
any other molecular structure. The consistency of the
results was further confirmed by predicting the test set
molecules by means of the PLS models obtained. Single
predictions, mean and standard deviation values within
the different data sets are reported in Table 6.
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PLS on design-reduced training sets

TABLE 7
CROSS-VALIDATED RESULTS (LEAVE-ONE-OUT) FOR
CoMFA, WHIM AND MS-WHIM ANALYSESa ON EXPERI-
MENTAL DESIGN-REDUCED TRAINING SETS

Variable INb LOO OUT c SDEP

q2 sPRESS

CoMFA_FFD 16 0.729(3) 0.614 05 0.365
WHIM_FDd 07 00− 00− 14 0.717(2)
MS-WHIM_FFD 13 0.605(2) 0.795 08 0.661

a The optimum number of components is indicated in parentheses.
b Number of compounds included in the designed-reduced data sets.
c Number of compounds excluded by experimental design.
d Because of the low number of compounds, the optimum number of

components for WHIM_FD was evaluated by means of SDEP on
the 14 compounds held out.

TABLE 8
OBSERVED AND PREDICTED ACTIVITY DATA FOR THE
TEST SET BY USING DESIGN-REDUCED TRAINING SETSa

Molecule CoMFA COMPASSb WHIM MS-WHIM Assayc

Test 1 7.883 7.062 07.244 7.300 7.512
Test 2 7.430 7.729 11.592 8.332 7.553
Test 3 6.642 6.462 06.869 6.821 6.779
Test 4 7.705 7.466 07.814 7.445 7.200
Test 5 6.495 5.994 05.533 6.121 6.114
Test 6 6.962 6.383 06.769 6.901 6.247
Test 7 6.848 6.625 05.506 6.532 7.120
Test 8 6.816 7.403 06.337 6.838 6.817
Test 9 7.767 7.741 07.935 7.860 7.688
Test 10 7.793 7.779 07.826 7.491 5.797

SDEP 0.716 0.705 01.563 0.662

a Predicted values for which |ypred − yobs| > 0.8 are highlighted in bold.
b Values were taken from Table 4 of Ref. 13; to date these are the

most accurate predictions on the 10 steroids series. The relative LOO
q2 on the 21 steroids training set is 0.89.

c Affinity data (log 1/k) from Ref. 19.

Each data matrix was further investigated by carrying
out a PCA. Five relevant Principal Components (PCs)
were retained for CoMFA and MS-WHIM matrices (72%
and 78% of the explained variance, respectively), while
only 3 PCs were sufficient to explain more than 80% of
the total variance for the WHIM matrix. The relative
score plots along the first three components are shown in
Fig. 6. To obtain a better balanced set, FD was applied
to the WHIM matrix while in the case of CoMFA and
MS-WHIM matrices the latent variable hyperspace was
explored by means of FFD (see Methods). The com-
pounds selected within each data matrix are reported in
Table 1; the reduced data sets contain 16, 7 and 13 mol-
ecules for CoMFA, WHIM and MS-WHIM, respective-
ly.

Cross-validated results for analyses of reduced data
sets are summarized in Table 7; the SDEP index com-
puted for the compounds of the training set not included
in the model is also given. Scatter plots of predicted ver-
sus actual activities are presented in the right column of
Fig. 5. The LOO q2 values for the CoMFA and MS-
WHIM PLS models are slightly worse than the corre-
sponding values in Table 3. The WHIM result is mean-
ingless because of the low number of compounds included
in the set; the optimal number of components for the
WHIM PLS model was chosen through the SDEP index
computed on the 14 steroids held out.

The improvement achieved using the experimental
design strategy is supported by the test set predictions
and the SDEP indices reported in Table 8, which are
superior to those from Table 4. For comparison purposes,
external predictions obtained by the COMPASS [13]
method and representing, to date, the most accurate
results are shown in Table 8. From these data it can be
noticed that our CoMFA refinement gives comparable
results. The only residual larger than 0.8 is relative to
molecule test 10 and this is remarkable, considering that
none of the previous studies could correctly predict this

molecule, which is the only one possessing a fluorine
substituent in position 9. WHIM analysis on the FD-
reduced training set increased the number of well-pre-
dicted compounds from four to seven; molecules test 2,
test 7 and test 10 remain poorly predicted.

Finally, considerable improvements can be observed
for the MS-WHIM analysis, where all predictions are
more accurate than those obtained with the whole data
set. Like for CoMFA, test 10 is still overpredicted; how-
ever, the MS-WHIM model is again characterized by the
lowest SDEP value (0.662).

Discussion

New 3D theoretical descriptors, MS-WHIM, computed
on a Connolly molecular surface, were developed and
applied to a set of steroids (the CBG case), originally
studied by Cramer et al. [9] in the first application of
CoMFA. To test the reliability of these MS-WHIM de-
scriptors, new CoMFA fields were computed on 21 ste-
roids and the previously described WHIM indices [5–7]
were also evaluated from their x,y,z atomic coordinates.
PLS regressions were then carried out for each description
matrix, both on the whole set of steroids and on design-
reduced training sets. Finally, cross-validated results and
external predictions on 10 additional compounds were
compared. The main findings are as follows.

The main differences in our CoMFA refinement with
respect to the original work by Cramer et al. [9] reside in
the strategy adopted in structure selection and in the
alignment criterium. Unlike the approach of Cramer et
al., where the lowest energy structure for each molecule
arising from a grid search was selected and aligned by
means of a geometrical fit of the steroid nucleus, we
performed multiple molecular comparisons using SEAL.
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The aim was to obtain, in one step only, a homogeneous

Fig. 6. Plots of object scores for CoMFA (top), WHIM (middle) and MS-WHIM (bottom). Left: first versus second principal component; right:
first versus third principal component. The cumulative variances explained by the first three latent variables are 59%, 82% and 60% for CoMFA,
WHIM and MS-WHIM, respectively. Squared boxes indicate the molecules chosen by means of experimental design.

data set in terms of steric and electrostatic properties. It
is well accepted that a ligand tends to maximize its steric
and electrostatic complementarity to the active site of the
receptor. As no structural information on the CBG bind-
ing site is yet available, we chose for each molecule the
conformer that had the largest steric and electrostatic
similarity with the lead compound (deoxycortisol), with

the assumption that the most active molecule in a series
fits the steric and electronic requirements of the receptor
binding site to a larger extent. The global minimum struc-
ture of deoxycortisol was selected as the template struc-
ture, since no information was available with regard to its
structure when bound to the receptor. Although this
represents an arbitrary choice, the reported results (see
Tables 3 and 4), which show an improvement with respect
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to the original work by Cramer et al., attest that the self-
consistency of the molecular structures and their align-
ments are a crucial step in CoMFA [1].

The q2 and external SDEP values of our CoMFA re-
finement are similar to those obtained by Jain et al. [13]
with COMPASS (see Tables 7 and 8), which showed the
highest q2 and the most accurate predictions reported to
date. It should be stressed, however, that the COMPASS
approach relies on a nonlinear statistical tool like Neural
Network, which is known to have overfitting and chance
correlation problems [31,32]. Our results, reported in
Tables 3 and 7 (q2 and sPRESS) and Tables 4 and 8 (exter-
nal predictions), clearly show that linear PLS is sufficient
to treat the steroids data set. It is noteworthy that our q2

value is a consequence of the strategy adopted in creat-
ing the data set, while for COMPASS, q2 represents the
index to be optimized by means of an iterative choice of
conformations and alignments. However, it should be
emphasized that neither of the two methods guarantees
that the real active site geometries have been analyzed or
found, since the acquisition of a good q2 value can be
considered only a necessary condition, but not a suffi-
cient one [1].

The reported results (see Tables 3 and 4 as well as
Tables 7 and 8) attest that the combined use of PCA and
design is a simple and useful tool to improve the predic-
tive power of a statistical model. As pointed out from the
score plots reported in Fig. 6, the 21 steroids appear not
to be homogeneously spread over the pricipal component
space and tend to be grouped into a few clusters. The
trend appears to be common to the three description
matrices, although it is less pronounced for MS-WHIM.
By applying FD and FFD strategies, we obtained better
balanced data sets. Thus, for each data matrix, the design
produced (i) comparable predictions for the 21 steroid
molecules (see the PLS plots of Fig. 5); and (ii) consider-
able improvements in the prediction of the 10 test set
compounds (Table 8).

The PCA/PLS analyses performed on the steroids data
set highlight that, for the analysis of highly specific li-
gand–receptor interactions, MS-WHIM descriptors pro-
vide new useful information with respect to the original
WHIM indices. From PCA it is evident that the amount
of information provided by MS-WHIM indices is better
distributed over the principal component space (see Fig.
6). From PLS models, MS-WHIM indices show a higher
predictive power, as the predictions carried out on the 10
test set molecules are more accurate both when consider-
ing the whole (Table 4) and the design-reduced (Table 8)
training sets. Thus, the best external SDEP values were
1.563 and 0.662 for WHIM and MS-WHIM, respectively.
These results may be expected, since the molecular surface
coded by MEP is undoubtedly a more realistic representa-
tion, with respect to the molecular skeleton, of how a
molecule is perceived by a biological system.

Although the final MS-WHIM PLS model is character-
ized by a LOO q2 value lower than that from CoMFA
(0.605 versus 0.729), MS-WHIM predicts well all the test
set molecules, giving a slightly better external SDEP
(0.662 versus 0.716). The only exception is molecule test
10 which, however, is also not well predicted by CoMFA.
Thus, the 36-column MS-WHIM matrix turns out to be
as effective as the thousands of columns needed for
CoMFA. Furthermore, comparable results were achieved
by means of a great reduction of computational time. The
21-steroid set can be coded by the MS-WHIM procedure,
using the considerable density of 10 points per Å2, in as
little as 150 s on a Silicon Graphics Crimson workstation,
while PCA and PLS regression are more than immediate,
also when applying heavy cross-validation procedures.
Moreover, the concise number of MS-WHIM indices
guarantees that complex and time-consuming statistical
procedures like variable selection could be swiftly ac-
complished. As the GOLPE [24] procedure applied to
CoMFA fields allowed significant improvements, it is
likely that the high correlation within WHIM-based de-
scriptors could be easily removed by using variable selec-
tion techniques.

In addition, the main advantage of MS-WHIM indices
over CoMFA relies on the invariance to roto-translation,
in that molecular structures do not need to be aligned if
sufficiently dense molecular surfaces are used (Fig. 3 and
Tables 5 and 6). In fact, the alignment procedure can be
considered the major bias in CoMFA since statistical
results are strictly dependent on how molecules are super-
imposed. Furthermore, as highlighted in Table 2, the
alignment step often represents a multiple solution prob-
lem [33] (low energy value differences discriminate the
first three SEAL solutions between estriol and deoxycor-
tisol).

On the other hand, the mathematical procedure that
underlies all the invariant molecular descriptors makes
their physical interpretation difficult or almost impossible,
apart from the amount of information provided. From
this point of view, MS-WHIM descriptors are not differ-
ent from the original WHIM or other known invariant
descriptors, e.g. autocorrelation functions. Consequently,
the derived statistical models do not allow any interpreta-
tion of specific 3D ligand–receptor interactions. For these
reasons, WHIM-based models can be usefully applied to
predict the activity of unknown molecules, but they can-
not be used to suggest which type of punctual chemical
modification should be applied to the molecules under
examination to improve their biological efficacy.

Moreover, the limitation in the physical interpretation
and the lack of a graphical display of the results require
a careful statistical test of WHIM-based models. For
instance, in this work we investigated the risk of finding
a well-fitting, but meaningless model by scrambling the
response variable several times. All the models thus ob-
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tained gave negative q2 values (data not shown). Con-
sidering this result and the good predictions obtained for
the 10 test set steroids, we are confident that the goodness
of the statistical models based on MS-WHIM descriptors
is reliable and not due to chance correlation.

Finally, MS-WHIM, like CoMFA, cannot avoid the
problem of conformational freedom; consequently, at
present, for highly flexible compounds other tools are
needed to choose the appropriate conformation before
deriving regression models. Nevertheless, in the future we
see possibilities to use MS-WHIM also for molecules with
a large number of conformations and our efforts point
toward this direction.

Conclusions

New WHIM-based 3D theoretical descriptors, called
MS-WHIM, were derived from molecular surface prop-
erties. PCA/PLS analyses on a series of steroids clearly
show that MS-WHIM indices contain meaningful chemi-
cal information, suitable for 3D QSAR studies. Thus, the
statistical results obtained compare well with those
achieved using CoMFA fields. The main limitation of
MS-WHIM is that the information provided is highly
condensed and cannot be extracted in order to interpret
the statistical models obtained. On the other hand, the
concise number of indices, the speed of calculation and
the invariance to roto-translation, which avoids possible
problems due to the molecular alignment, represent the
main advantages of this new approach over CoMFA.

The analysis of additional weighting schemes like Mol-
ecular Lipophilicity Potential (MLP) [34] is in progress.
Strategies employing MS-WHIM indices in the study of
highly flexible compounds are also under investigation.
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