
BIOINFORMATICS Vol. 16 no. 4 2000
Pages 341–357

SPLASH: structural pattern localization analysis
by sequential histograms

Andrea Califano ∗

IBM TJ Watson Research Center, PO Box 704, Yorktown Heights, NY 10598, USA

Received on February 22, 1999; revised on September 10, 1999; accepted on October 16, 1999

Abstract
Motivation: The discovery of sparse amino acid patterns
that match repeatedly in a set of protein sequences is an
important problem in computational biology. Statistically
significant patterns, that is patterns that occur more fre-
quently than expected, may identify regions that have been
preserved by evolution and which may therefore play a key
functional or structural role. Sparseness can be important
because a handful of non-contiguous residues may play a
key role, while others, in between, may be changed without
significant loss of function or structure. Similar arguments
may be applied to conserved DNA patterns.
Available sparse pattern discovery algorithms are either
inefficient or impose limitations on the type of patterns that
can be discovered.
Results: This paper introduces a deterministic pattern
discovery algorithm, called Splash, which can find sparse
amino or nucleic acid patterns matching identically or
similarly in a set of protein or DNA sequences. Sparse
patterns of any length, up to the size of the input se-
quence, can be discovered without significant loss in
performances.
Splash is extremely efficient and embarrassingly parallel
by nature. Large databases, such as a complete genome
or the non-redundant SWISS-PROT database can be pro-
cessed in a few hours on a typical workstation. Alterna-
tively, a protein family or superfamily, with low overall ho-
mology, can be analyzed to discover common functional or
structural signatures. Some examples of biologically inter-
esting motifs discovered by Splash are reported for the hi-
stone I and for the G-Protein Coupled Receptor families.
Due to its efficiency, Splash can be used to systematically
and exhaustively identify conserved regions in protein fam-
ily sets. These can then be used to build accurate and sen-
sitive PSSM or HMM models for sequence analysis.
Availability: Splash is available to non-commercial re-
search centers upon request, conditional on the signing of
a test field agreement.

∗The results Section The Statistical Significance of Patterns were obtained
in collaboration with Gustavo Stolovitzky. They will appear independently
in a separate joint publication.

Contact: acal@us.ibm.com, Splash main page
http://www.research.ibm.com/splash

Introduction
Whenever Nature finds a ‘recipe’ to accomplish a task that
gives differential fitness to an organism, chances are that
such recipe will be conserved throughout evolution. At
the molecular level, this means that biological sequences,
belonging sometimes to widely distant species, will likely
share common motifs. By motif, we mean one or more
highly conserved, ungapped regions of a protein or DNA
sequence (Bailey and Gribskov, 1998). In many proteins,
however, a handful of residues that play a key functional
role can be separated by highly variable regions. An
extreme example is that of serine proteases, where three
individual residues, a histidine, a serine, and an aspartic
acid, in widely distant regions of the protein, join together
in three dimensions to form the active site.

As a result, the identification of sparse patterns in
biological databases is becoming a very transited venue
within the bioinformatics community. Pattern databases
such as PROSITE (Bairoch, 1991) are examples of this
trend. And methods for the automatic discovery of pat-
terns of the form (� ∪′ .′)∗, which match at least twice in
a sequence or sequence database, are becoming increas-
ingly relevant in computational biology (Brazman et al.,
1998). In this notation, � is a character from a finite-size
alphabet, which can match either identically or similarly
in a sequence, and ‘.’ is the ‘wildcard’ character which
matches any sequence character.

In recent years a number of interesting pattern dis-
covery tools have emerged. These are divided into two
main categories: statistical algorithms, such as the Gibbs
Sampler (Neuwald et al., 1995) and MEME (Bailey and
Elkan, 1994), which use heuristics to improve efficiency,
and deterministic algorithms, such as Pratt (Jonassen et
al., 1995) and Teiresias (Rigoutsos and Floratos, 1998).
Another interesting approach is that of EMOTIF which
discovers interesting motifs in pre-aligned sequences
(Nevill-Manning et al., 1998). These algorithms are
valuable in that they can discover weak motifs hidden

c© Oxford University Press 2000 341

A.Califano

in the biosequences. A discussion of some of the most
interesting algorithms is available in Brazman et al.
(1998). A statistical framework has also been proposed to
help determine the statistical significance of discovered
patterns (Stolovitzky and Califano, 1999). However,
probabilistic approaches use heuristics or ad hoc con-
straints and become inefficient when only a small subset
of the proteins is homologous. Enumeration and veri-
fication algorithms must explore an exponential search
space. Therefore, practical limits are imposed on the
number of characters in the pattern or in its maximum
number of wildcards. Both approaches work best on
databases that contain no more than a few tens of se-
quences. Some hybrid algorithms are more efficient but
they are limited to identically occurring patterns. The
rest rely on a multiple alignment preprocessing step
which suffers from similar limitations (Wang and Jiang,
1994).

This paper introduces an efficient, deterministic pattern
discovery algorithm called Splash, which does not require
enumerating all possible patterns that could occur in the
input. Splash can identify all sparse patterns, of the form
(� ∪′ .′)∗, which match at least twice, either identically
or similarly, in one or more sequences and satisfy a
predefined density constraint. The latter limits only the
maximum number of wildcards over any consecutive
stretch of the pattern that does not start with a wildcard.
It does not limit the total number of wildcards in the
patterns. Therefore, sparse patterns that extend over the
entire input sequence are possible and will be discovered
efficiently. Extremely low density constraints, such as 28
wildcards in any stretch of 32 characters, are routinely
used by Splash, as shown in Section Experimental
Results: G-Protein-Coupled Receptors. Even lower
densities are possible. These, however, tend to be less
useful because interesting patterns would then be hidden
in large numbers of random patterns. This is discussed in
detail in Section Density Constraint, and it is supported
by the structure of PROSITE patterns.

Finally, Splash can also be used to discover patterns
of values from a continuous range. These will be called
proximal patterns and will be more rigorously defined in
Section Definitions and Notation.

In Sections The Algorithm and Performance, we will
show that Splash is both computationally and memory
efficient and significantly outperforms some of the most
commonly used pattern discovery algorithms. In particu-
lar, we will demonstrate that only a minimal set of patterns
must be explored in order to discover those that occur
in the input. The algorithm is embarrassingly parallel in
nature and it scales linearly with the number of processors.
It has been implemented both for SMP and distributed
architectures. In Section The Statistical Significance of
Patterns we will discuss the statistical significance of the

type of patterns discovered by Splash.
The efficiency of Splash makes it possible to explore

entire databases or genomes, without resorting to super-
computers. For instance, in the single threaded version,
all similar patterns occurring at least three times in the
current release of the non-redundant PDB (Bernstein
et al., 1977), which have no more than six wildcards
in any window of 12 characters, are discovered in 1h
on a 266 MHz Pentium II laptop. Similarly, the parallel
version of Splash takes about 8 h to discover all identical
patterns that are statistically significant and have no more
than five wildcards in any window of 10 characters, in
a non-redundant protein database with over 90 million
residues. The hardware configuration used for this purpose
is a 133 MHz four way SMP workstation (F50) with 1 GB
of memory.

In Sections Experimental Results: Histones and Ex-
perimental Results: G-Protein-Coupled Receptors, we
will discuss some experimental findings for the histone I
and for the G-protein-coupled receptor families. Typical
runs required to analyze large protein families, such as the
GPCR or the histone, are performed in seconds to minutes
on similar configurations.

Biological applications of pattern discovery
algorithms
One important, and often controversial point, about sparse
patterns is whether these are meaningful biological entities
by themselves. Clearly, amino acids do not freely exist in
space but live in the context of a continuous sequence.
Also, although signatures such as the ones available in
PROSITE are useful to rapidly screen unknown sequences
for functional or structural annotation, non-sparse models
such as Hidden Markov Models (Krogh et al., 1994) and
PSSM (Bailey and Gribskov, 1998) seem to perform better.

The position of this paper is that patterns are only mean-
ingful as a local statistical measure of sequence conserva-
tion across a set of sequences. That is, patterns that occur
more frequently than expected in set protein or DNA se-
quences are likely to correspond to regions where lower
mutation rates have been favored. These patterns may then
identify regions that play an important functional or struc-
tural role as well as pinpoint which residues may play a
more crucial role. The latter will be the ones that are most
conserved. Therefore, unusual patterns can be used to iden-
tify and align hard to find, highly specific regions in se-
quences. Once these have been identified, the sparse pat-
tern model can lead directly to a contiguous representation,
via HMM or PSSM, for instance, or to multiple sequence
alignments using algorithms such as MUSCA (Parida et
al., 1999).

This is especially important if the sequence set is large
or if it contains many non-homologous sequences. In this
case, an efficient pattern discovery algorithm, such as

342

Structural pattern localization analysis

Splash, can easily provide the core for a large number
of highly specific local alignments. Again, this makes it
an ideal pre-processing candidate to systematically build
HMM and PSSM models.

The following is a small, non-exhaustive list of applica-
tions of the Splash algorithm, which are being currently in-
vestigated in the context of protein function and structure
studies. The purpose of this section is to support the impor-
tance of efficient pattern discovery techniques in a biolog-
ical context. Each of these constitutes an individual piece
of work whose details extend well beyond the scope of this
paper. Rather, this paper is devoted to the description of
the algorithm and the discussion of the algorithm’s perfor-
mance.

Single (super)family analysis: Pattern discovery in a
family or superfamily can identify regions that have
been subjected to lower rates of mutation and that may
therefore play a relevant functional or structural role.
HMMs or PSSM can then be derived from these local,
rigid multiple sequence alignments. These can then
be used to label orphan sequences or to screen large
genomic databases, such as dbEST, for unknown mem-
bers of the (super)family. Conducting such an analysis
systematically with existing discovery algorithms may
be computationally prohibitive. Splash, however, can
find all highly conserved sparse patterns in each one of
the more than 1300 protein families associated with at
least one PROSITE motif. This process requires about
2 h on a four-way SMP workstation.

Structural similarity: Many families, such as TNF and
C1Q, show no homology at the sequence level but are
clearly similar from a structural perspective. Patterns
that occur across both families can highlight elements
that are responsible for the structural similarity. Re-
sults obtained with Splash over these families are in
fundamental agreement and extend those reported in
(Shapiro and Scherer, 1998). In this paper, two short
patterns, L . . G and G . . Y, have been identified by
manual structural alignment and subsequent analysis of
one C1Q and one TNF structure. By analyzing all TNF
and C1Q proteins in SWISS-PROT 36, Splash finds
these two most statistically significant patterns in the
same regions as those of (Shapiro and Scherer, 1998).

[ILMV] [ILMFV].L . . . [DQEK] [RQEHK] [ILMV]
in 52 out of 68 sequences.

[ILMFV] G[ILMFV]Y . [ILMFV] . . [RQEHK] in
60 out of 68 sequences.

These have been used to screen dbEST and have pro-
duced six previously unknown candidates that are now
under investigation.

Pairwise (super)family analysis: Pairs of functional

families that are not homologous can be analyzed to
discover patterns that are common across both mem-
bers. Because the number of pairs is extremely high, the
efficiency of the algorithm is paramount. This is useful,
for instance, in the analysis of signatures common to
many different transcription factors or antibodies.

Full Genome/Database analysis: Regions that are un-
usually preserved across an entire database can be
first automatically discovered and then clustered using
an RMSD measure. Starting from the Brookhaven
database, this methodology can be used to systemati-
cally identify patterns that are structurally, as well as
sequentially, conserved. A small set of such three di-
mensional signatures, which were obtained by multiple
sequence alignment, have been used successfully for
predicting tertiary structure from sequence information
(Bystroff and Bakel, 1988).

The problem
Let us start by defining the identical pattern discovery
problem. Given a string of characters S = s1, . . . , sL
from an alphabet � = {a1, . . . , an}, pattern discovery can
be defined as the problem of identifying patterns of the
form (� ∪′ .′)∗ that occur at least J0 > 1 times in the
input. We shall call a character from the alphabet � a ‘full
character’. A pattern character is then either a full character
or a wildcard.

EXAMPLE. A . B . . A is an identical pattern which is
repeated twice in the string ACBDDABBDCA. Let us use
the notation of (Brazman et al., 1998) to represent a more
general class of patterns that we shall call similar patterns.
Let K1, . . . , Kn be different subsets of � generated
as follows: given a similarity metric H(�, �′) and a
threshold h, for each character �i the subset Ki contains
all characters such that H(�i , �) ≤ h. Useful similar-
ity metrics will be discussed in more detail in Section
Similarity Metrics. A non-redundant set is obtained by
removing all but one instance of any identical subset.
Let us then define a similarity alphabet � = b1, . . . , bn ,
disjoint from �, with one character for each subset Ki .
We will say that � matches any character contained in the
corresponding subset K (�). The characters in the class
Ki = {ai1, . . . , aini } are usually denoted by the usual
regular expression syntax as [ai1 . . . aini].

As in the case of identical patterns, we shall call any
character in 	 a full character. We shall also say that a
character 	̄ ∈ 	 matches a character �̄ ∈ �, or that 	̄ ≡
�̄ if either 	̄ = �̄, or �̄ ∈ K (̄). A wildcard matches any
character �̄ ∈ �. Then, one can define the similar pattern
discovery problem as the problem of finding every pattern
of the form (∪′ .′)∗, which matches at least J0 > 1 times
in S.

343

A.Califano

EXAMPLE. Let � = {A, B, C, D} be an alphabet and
H(A,B) < h, H(B,A) < h, H(B,C) < h, H(C,B) < h,
H(C,D) < h, H(D,C) < h a similarity metric. Then
K1 = [AB], K2 = [ABC], K3 = [BCD], and K4 = [CD].
The similarity alphabet is then defined as � = {a,b,c,d},
with a ≡ K1, . . . , d ≡ K4. In this case, a pattern a . B . d
would match any of A× B× C, A× B× D, B× B× C, and
B×B×D. Using the regular expression syntax, the previous
pattern becomes [AB] . B . [CD].

Many biological problems can be best modeled using
similarity metrics rather than identity. Some useful met-
rics are obtained from the well established probability of
mutation matrix (Schwartz and Dayhoff, 1978).

A variant of the similar pattern discovery problem is ob-
tained by replacing the alphabet � with an interval of the
real axis R. In that case, the pattern takes the form (ρ ∪′
.′)∗ and the similarity metric becomes a distance metric,
H(ρ, ρ′) = |ρ−ρ′|. Such patterns are called proximal pat-
terns. They are useful, for instance, to describe correlation
in the value of specific physiochemical properties of the
amino acids, such as hydrophobicity or charge, in a string.

We shall call patterns that do not have leading and
trailing wildcards compact patterns. Splash only reports
compact patterns. Therefore, unless otherwise indicated,
by pattern we will intend a compact pattern.

Similarity metrics
Since we are interested in similar patterns, let us define a
similarity metric H(x, y), where x ∈ �, y ∈ �, as a
positive function of x and y, such that H(x, x) = 0 and
which satisfies the triangle inequality:

H(x, y) ≤ H(x, w) + H(w, y) (1)

A symmetric similarity metric, i.e. H(x, y) = H(y, x),
is equivalent to a distance metric (Gerretsen, 1962). For
instance, if the log-probabilities of amino acid mutation are
used to define similarity classes,

H(x, y) = − log

[
p(x → y)

p(y)

]
, (2)

the resulting metric will be slightly asymmetric. H (Ala,
Asp)< H (Asp, Ala) because the probability of alanine
to mutate into aspartic acid is slightly larger than that of
aspartic acid to mutate into alanine. Known log-probability
matrices satisfy the triangle inequality.

Note that the minimum of H(x, y) is reached when x =
y. The opposite is true for a score matrix where the score is
highest along the diagonal. Given an alphabet �, one can
use these functions to define the similarity classes Ki and
the relative alphabets � and 	.

Similarity metrics for protein sequences
As mentioned above, a convenient similarity metric
for protein sequence analysis can be defined using the

− log(P) of the amino acid mutation probabilities, such as
the ones in PAM or BLOSUM matrices. For instance, us-
ing a BLOSUM50 mutation probability matrix (Henikoff
and Henikoff, 1992), and a threshold h = 2, the following
similarity classes {K } = K1, . . . , K18 are obtained:

ala ≈ [Ala] arg ≈ [Arg, Lys] asn ≈ Asn, Asp]
asp ≈ [Asp, Glu] cys ≈ [Cys] gln ≈ [Gln, Glu, Lys]
glu ≈ [Glu, Asp, Gln] gly ≈ [Gly] his ≈ [His, Tyr]
ile ≈ [Ile, Leu, Met, Val] leu ≈ met lys ≈ [Lys, Arg, Gln]
met ≈ [Met, Ile, Leu] phe ≈ [Phe, Tyr] pro ≈ [Pro]
ser ≈ [Ser, Thr] thr ≈ ser trp ≈ [Trp, Tyr]
tyr ≈ [Tyr, His, Phe, Trp] val ≈ [Val, Ile]

(3)
Then, given the sequence

Ala Cys Gln Gln Val Trp Ala Gly Ala Phe Ile Tyr Leu His Pro (4)

the pattern Ala . . . Ile Tyr, for instance, would have
locus {0, 6, 8}. Note, however that, based on the same
metric, the pattern Ala . . . Val Trp, which appears at
position 0, would have a smaller locus {0, 6} since both
f (Val, Leu)> 2 and f (Trp, His)> 2.

Definitions and Notation
Let S = s1, . . . , sL be a string with L values from a
fixed alphabet �. This could be the DNA/RNA alphabet
�DNA = {A,C,G,T}, �RNA = {A,C,G,U}, or the protein
alphabet �P = {A,R,N,D,C,Q,E,G,H,I,L,K,M,F,P,
S,T,W,Y,V}. � could also be a value from a continuous
interval on the real line. If � is discrete, given a similarity
metric, one can compute the alphabets � and 	, as
described in the previous section. A pattern π is then any
string of the form (∪′ .′)∗. If � is continuous, then a
pattern π is any string of the form (ρ ∪ .)∗. This is also
described in the previous section.

Let us call Cπ = {(i , di) | i = 1, . . . , k} the compo-
sition of π . This is formed by taking each full character in
the pattern and its relative position, in characters, starting
at zero, on the pattern. The composition of a pattern and
the number of leading and trailing wildcards define it un-
ambiguously. The length of a pattern k = |Cπ | is the total
number of full characters it contains. A pattern of length k
is called a k-pattern. The span of a pattern l = dk +1 is the
total number of characters (full characters and wildcards)
it contains. A k-pattern with a span of l characters is called
a kl pattern.

For instance, A . B . .C has length 3, span 6, and
composition {(A, 0), (B, 2), (C, 5)}, and [AB] . B . . [BCD]
has length 3, span 6, and composition {([AB], 0), (B, 2),
([BCD], 5)}. Compact patterns start and end in a full
character, therefore they have d1 = 0.

By definition, a k-pattern matches (or occurs) at offset w

on a string S if and only if, for each i , there exists a 	i ∈ 	

such that
sw+di ∈ 	i (5)

for each value of 1 ≤ i ≤ k. The set of j absolute offsets
where a pattern matches in S is called the pattern locus.

344

Structural pattern localization analysis

This is represented as Wπ = {w1, . . . , w j }. A kl-pattern
that matches at j = |Wπ | offsets in S is called a jkl-
pattern. j is called the pattern support.

Finally, the comb of a pattern is the string obtained by
replacing each full character with a 1 and each wildcard
with a zero. The term k-comb and kl-comb have similar
meaning as the corresponding terms for patterns.

EXAMPLE. The comb of A . . BC . . D . . . E is
100110010001.
Given a string S, by π�,w we shall indicate the pattern
determined by the comb � at offset w on S.

EXAMPLE. Let ABCDEFGHI be a string. Then the pat-
tern π1001,3 is D . . G.

Basic pattern operators and relationships
The purpose of this section is to define a small number
of pattern operators and relationships that will be conve-
niently used for a compact description of the algorithm.

Trim operator: π = Tt (π) is a pattern obtained by
removing all leading and trailing wildcards from π .

EXAMPLE. Let . . A . . B . . . be a pattern π . Then
Tt (π) = A . . B.

Translation operator: π = π + x is a pattern with locus
W ′ = W + x = {w1 + x, w2 + x, . . . , w j + x} and
composition C ′ = C − x = {(i , di − x)}.

EXAMPLE. Let A . . B be a pattern with locus {5, 12}.
Such pattern, translated by −2, becomes . .A . .B with
locus {3, 10}. Patterns produced by positive translations
cannot be conveniently represented as strings. However,
they can still be represented by their composition and
locus.

Append operator: πc = πa ⊕ πb is a pattern with all the
characters of πa followed by all the characters of πb. If
the span of πa is l, then πc has locus W (πc) = W (πa)∩
(W (πb) − l) and composition Cc = Ca ∪ (Cb − l).

EXAMPLE. Let πa =A . . B . C and πb =B . C. Then
πa ⊕ πb =A . . B . CB . C.

Add operator: πc = πa + πb is a new pattern with locus
W (πc) = W (πa) ∩ W (πb) and composition Cc =
Ca ∪ Cb.

EXAMPLE. Let πa =A . . B . C . . .D be a pattern
with locus {2, 13, 25, 40} and πb = . . .B . CE a
pattern with locus {2, 7, 13, 25, 49}. Then, πc =

πa + πb =A . . B . CE . . D, with locus {2, 13, 25} =
{2, 13, 25, 40} ∩ {2, 7, 13, 25, 49}.
If there exists a translation x such that the intersection of
the locus of two patterns W (πc) = W (πa)∩ W (πb)− x
is non null, it is sometimes convenient to add πa and
πb − x to form a longer pattern.

Using these operators, we can define the following pat-
tern relations.

Sub-pattern (super-pattern): πb is a sub-pattern of πa if
there exists a translation x such that W (πa) ⊇ W (πb)+
x and Cπb ⊃ Cπa − x . Conversely, πa is a super-pattern
of πb if πb is a sub-pattern of πa .

EXAMPLE. A . . BC . D with locus {1, 31, 76} is a sub-
pattern of BC . D with locus {4, 12, 34, 61, 79}. The
translation is x = 3.

Aligned sub-pattern (super-pattern): πa is an aligned
sub-pattern of πb if it is a sub-pattern of πb for x = 0.
Then, πb is an aligned super-pattern of πa .

EXAMPLE. Given A . . B . C . . . D with locus {2, 35, 60}
and A . . B with locus {2, 10, 35, 60}, then A . . B . C . . D is
an aligned sub-pattern of A . . B because, for a translation
value x = 0, {2, 10, 35, 60} ⊇ {2, 35, 60}.

Optimally aligned sub-pattern (super-pattern): πb,
with span l, is an optimally aligned sub-pattern of πa if
πb has more full characters than πa and πb is identical
to the first l characters of πa . Then, πa is an optimally
aligned super-pattern of πb.

By definition, an optimally aligned sub/super-pattern is
also an aligned sub/super-pattern. That is, W (πb) ⊇
W (πa) and vice versa.

For simplicity, if πb is an optimally aligned sub-pattern
of πa , we shall call πb a child of πa and πa a parent of
πb.

EXAMPLE. Both A . . BC . .E and A . . BC . D are children
of A . .BC.

Equivalent sub-pattern (super-pattern): πb is an
equivalent sub-pattern of πa if it is a sub-pattern of
πa and W (πa) = W (πb). Then, πa is an equivalent
super-pattern of πb.

EXAMPLE. AB . D, with locus {0, 4}, in ABCDABQD, is an
equivalent sub-pattern of both A . . D, with locus {0, 4},
and B . D, with locus {1, 5}.

345

A.Califano

Maximal patterns
A pattern π is said to be maximal in composition (or c-
maximal) if there does not exist any equivalent sub-pattern
of π with the same span. That is, if π cannot be extended to
a longer pattern, by dereferencing one of its wildcards into
a full character, without decreasing its support. A pattern
is said to be left maximal (or l-maximal) if there does not
exist any equivalent sub-pattern obtained by appending it
to another pattern. That is, if it cannot be extended into a
longer pattern, by appending it to another pattern, without
decreasing its support. A pattern is said to be right maximal
(or r -maximal) if there does not exist any equivalent sub-
pattern obtained by appending another pattern it to. That is,
if it cannot be extended into a longer pattern, by appending
another pattern to it, without decreasing its support.

A maximal pattern is a pattern that does not have any
equivalent sub-pattern. That is, it is l-, c-, and r -maximal.
Maximality is an essential property of pattern discovery
algorithms. It avoids reporting a combinatorial number of
super-patterns of each maximal pattern in the sequence.
We will require that the Splash algorithm report only
maximal patterns.

An important class, as we shall see later, is that of pat-
terns that are both left maximal and maximal in composi-
tion. These will be called lc-maximal patterns, for short.

EXAMPLE. Let the pattern A . B . . C occur 100 times
in a string and the pattern A . B . . C . EF occur twice. That
is, in two of the 100 occurrences A . B . . C is flanked by
. EF. Then A . B . . C occurring 100 times is maximal,
A . B . . C . EF, occurring twice, is also maximal. How-
ever A . B . . C . E, occuring twice, and A C, occurring
100 times, are not maximal.

Density constraint
It is important to be able to specify the minimum number
of full characters k0 required in any substring of a pattern
which starts with a full character and has length l0. It
is intuitive to interpret r = k0/ l0 as a density of full
characters per unit length. Therefore, we shall call such a
constraint the density constraint. Given k0 and l0, we shall
say that a comb is a 〈k0, l0〉-valid comb (or simply a valid
comb) if either its length is smaller than k0 or the relation
di+k0−1 − di ≤ l0 is satisfied for each i such that 1 ≤ i ≤
k − k0 + 1. A pattern with a valid comb is called a valid
pattern. It is useful to consider valid even patterns that have
fewer than k0 full characters, as they may be later extended
to form longer patterns with more than k0 full characters
and would otherwise be immediately rejected. In any case,
as we shall see later, patterns that have fewer than K0 ≤ k0
full characters, with K0 a user defined threshold, will not
be reported anyway in the end.

EXAMPLE. The pattern A BC D satisfies the
density constraint k0 = 3, l0 = 7 because all substrings

(A BC and BC D), of length 7, starting on a full
character, have at least three full characters. The fact that
. . BC . . . of length 7 has only two full characters is irrel-
evant because it does not start with a full character. The
fact that substring C D has two full characters is also
irrelevant because the pattern contains only six positions.
A B is also valid pattern, for the same parameters,
because it has fewer than three full characters.

If one were not to specify such constraint, j-patterns
in random strings would be distributed around an average
length.

k̄ = L
∑

i

p(�i)

[∑
j

p(� j)αi j

] j−1

(6)

where [p(�i)]−1 is the frequency of the symbol �i in S
and αi j is 1 if H(�i , � j) ≤ h and 0 otherwise. If � is an
interval of the real axis, the sum must be replaced by an
integral.

The Splash algorithm is usually run at three different
densities, from k0 = 4, l0 = 8, 16, 32, aimed at dense to
very sparse patterns. Lower densities are not generally
useful as they tend to produce large numbers of patterns
that are not statistically significant. It is unlikely that
biologically significant, rigid patterns contain more than
28 consecutive wildcards. For instance, the PROSITE
database contains only one rigid pattern with more than
20 consecutive wildcards (PS001254). This is because,
in general, long regions without matching full characters
include loop regions, where insertions and deletions are
likely. Not many very sparse flexible patterns are reported
in the literature. For instance, PROSITE contains only
eight flexible patterns with more than 20 consecutive
wildcards. These are detected by Splash as two or more
separate rigid patterns and can be easily fused in a simple
post-processing phase. The algorithm has been imple-
mented so that it can call itself recursively. This allows
the user to find flexible patterns by discovering any rigid
patterns that occur within a predefined window on the left
and on the right of any other rigid pattern. The process
can be repeated until no more patterns are found. This
deterministic approach produces flexible patterns defined
by rigid components separated by variable-length strings
of wildcards.

The Algorithm
Let us define the input of the algorithm as a string S =
s1, . . . , sL and a set of parameters k0, l0, J0, and K0. Let
us also define the set Q′

s of patterns that occur at least
J0 > 1 times in S, and which are 〈k0, l0〉-valid. We shall
call any such pattern a final pattern. The output of the
algorithm is then the set Qs = {π̄} = Tt (Q′

s(k ≥ K0))

346

Structural pattern localization analysis

of all final patterns which have length k ≥ K0 ≥ k0,
with their leading and trailing wildcards removed by the
trim operator. The latter are called reported patterns. The
extension from one to multiple sequences is trivial and will
be assumed in the rest of the paper.

We shall start by defining a method to construct an initial
set of patterns Ps = {π}, which we call a Seed Set, from
any string S. Ps either contains a parent of any final pattern
π̄ or π̄ itself. We shall then define a recursive Splash
operator Ts(Ps, Qs), Tn

s (Ps, Qs) = Ts(Tn−1
s (Ps, Qs)) to

process the input set Ps and the output set Qs . On the first
iteration Qs = ∅. At each iteration, this operator performs
three tasks: (a) it eliminates patterns in the input that are not
lc-maximal; (b) it systematically extends all input patterns
into valid patterns that have at least one more character;
(c) it inserts any pattern which is a final pattern in Qs .

We shall demonstrate that, at each iteration n, the
set Pn

s = Tn
s (Ps, Qs) contains at least a parent of any

final pattern that is not yet in Qs . Therefore, when
T

n∅

s (Ps, Qs) = ∅, Qs will contain all the final patterns.
Finally, we shall demonstrate that the algorithm converges
because n∅ is finite. The theorems and demonstrations
apply to identical, similar, and proximal patterns.

Let us start by defining the following dataset and opera-
tors.

Seed Set: Given the string S and the parameters l0, k0, J0,
K0, let Qs = {π̄} be the set of all the final patterns of
S. Then a Seed Set Ps = {π} is any set of patterns that
either (a) contains at least one parent π of each pattern
π̄ or (b) contains π̄ . In other words, any final pattern is
either contained in Ps or it is a child, possibly with a
smaller locus, of at least one pattern in Ps .

EXAMPLE. Given the string ABCDABEFABC and the
constraints k0 = 2, l0 = 4, J0 = 2, and K0 = 2, the
maximal patterns are AB . . AB with locus {0, 4}, ABC
with locus {0, 8}, and AB with locus {0, 4, 8}. All three
of them can be obtained by extending the pattern AB
with locus {0, 4, 8}. Therefore, the set {AB} is a Seed
Set.

Canonical Seed Set: A Seed Set Ps is a Canonical Seed
Set if it does not have any subset which is also a Seed
Set. That is, each valid pattern on S is either present once
in Ps or it is a subpattern of one and only one pattern in
Ps .

EXAMPLE. Given the string ABCDABQD and the con-
straints k0 = 2, l0 = 3, J0 = 2, K0 = 2, the set {AB}
is a Canonical Seed Set. This is because AB is the only
parent in {AB} of the only valid and maximal pattern,
AB . D. The set {AB,A . C} is not canonical because the
valid pattern AB . D is a sub-pattern of both AB and A . C.

A trivial Canonical Seed Set, for J0 = 2, k0 = 1,
K0 = 1, and any l0 is {π∅}, where π∅ is the pattern with
empty composition and locus W (π∅) = {1, 2, . . . , L},
which includes all the possible offsets of S. This is because,
by definition, this pattern is a super-pattern of any other
pattern in s. Since this set contains only one pattern it is,
by definition, canonical.

A convenient way to generate Seed Sets of a less general
nature is to start from all possible

(
l0 − 1
k0 − 1

)
(7)

k0-combs, {ψ}k0 , with k0 ≤ K0, that start with a 1 and
have k0 − 1 1s in the next l0 − 1 consecutive positions.
For instance, for k0 = 2 and l0 = 5, there are four
of these combs, 11000, 10100, 10010, and 10001. Given
one such comb ψ , one can list all the different patterns
πw,ψ , identified by the comb and by an offset w on S,
and evaluate their support based on the similarity metric.
Finally, one can remove all the patterns with support j <

J0. The resulting set will be called the 〈l0, k0〉-set or P∗
s for

short. The following pseudocode illustrates a procedure for
assembling P∗

s :

Create an empty Seed Set P∗
s = ∅;

for each comb ψ ∈ {ψ}k0
{

for each offset w on S and corresponding seed pattern πψ,w {
Create an initial locus Wψ,w = {w} with just that offset;
count = 1;
for each other offset w′ on S such that w �= w′ {
if (πψ,w matches πψ,w′) {
add w′ to W;
count ++;

}
}
//Check that Wψ,w is not the same as any other Wψ,w′
with w′ < w

NotPreviouslyFound = true;
for each offset w′ on S such that w′ < w {
if (Wψ,w ≡ Wψ,w′) {

//the two loci are identical
NotPreviouslyFound = false;
break;

}
}
//If this is a new pattern with a valid support
if (NotPreviouslyFound && (count ≥ J0)){
add πψ,w to P∗

s}
return P∗

s}

THEOREM 1. The set P∗
s is a Seed Set.

Proofs of all theorems can be found in the Appendix. Sets
of this nature can be built efficiently by means of a look-
up table, such as the one described in the Flash algorithm
(Califano and Rigoutsos, 1993). This procedure works also
for continuous values, based on the definition of a match
using a distance metric.

347

A.Califano

Maximality
As we discussed before, only maximal patterns should be
reported. Otherwise a combinatorial set of super-patterns
of any given pattern would be reported. Since, as we shall
see, we extend patterns exclusively by appending other
patterns to them, if we were to extend any pattern that
is not lc-maximal we would be guaranteed to get a non-
maximal pattern. On the other hand, by extending in this
way an lc-maximal pattern, we may get new patterns that
are maximal.

For instance, given the string ABCAABCACBCD, the pat-
tern BC with locus {1, 5, 9} is lc-maximal. However, BCA
is not lc-maximal since it is an equivalent super-pattern of
ABCA. If we were to extend BCA, therefore, we would get
non-maximal patterns.

We define the operator Tm(π) to check for pattern lc-
maximality:{

Tm(π) = {π} if π is lc-maximal
Tm(π) = ∅ if π is not lc-maximal
Tm({πi }) ≡ ∪Tm(πi)

(8)

THEOREM 2. Any parent of a final pattern is lc-
maximal.

It follows that if Ps is a Seed Set, Tm(Ps) is also a Seed Set.

THEOREM 3. Any valid lc-maximal pattern π is either
a final pattern or it is a parent of one final pattern with the
same support.

THEOREM 4. If a set Ps contains only unique patterns
and no pattern π ∈ Ps is a child of another pattern π ′ ∈
Ps, then the set Tm(Ps) is a Canonical Seed Set.

For a compact description of Tm , let us define a Boolean
function E(W, x) which is true if and only if there exists
any character 	i ∈ 	 such that s(wm + x) = 	i for each
value of 1 ≤ m ≤ j . Then, Tm can be implemented by the
following pseudo code:

Tm (π) {
//First check that pattern is composition-maximal

for each offset x corresponding to a wildcard in π {
if (E(Wπ , x)) {
return ∅;

}
}
// Then Check for left-maximality

for each offset x such that −l0 + dk0−1 < x < 0
if (E(Wπ , x)) {
return ∅

}
}
return {π}

}

This operator is a key component of the efficiency of
the Splash algorithm because it eliminates most potential

pattern candidates very early, before they have a chance
to contribute to an exponential growth of the number
of hypotheses. If this operator is not implemented and
patterns are checked a posteriori for maximality, both
memory and computational efficiency of the algorithm
decrease exponentially in the size of the input.

The Histogram operator
Given a jkl-pattern π , the Histogram operator Th is used
to create all the possible valid (l+1)-patterns {π̇}, obtained
by appending a string of the form ′ · ′ � 	′ · ′� to π , which
have support at least J0.

Given an lc-maximal pattern, π , of length k, we can
define the extension interval Iπ , adjacent to π , such that
π would be maximal unless it could be extended, without
reducing its support, by at least one full character in Iπ .

EXAMPLE. Let A . B be a lc-maximal pattern and k0 =
3, l0 = 5 be density parameters. Then A . B would be max-
imal unless one could extend it, without reducing its sup-
port, by at least one full character at either one or two posi-
tions to the right of the B. Similarly, the lc-maximal pattern
A . B . CD would also be maximal for the same parameters
unless one could extend it by one full character, without
reducing its support, either at one, two, or three positions
to the right of the C.

Iπ can be defined as follows:{
Iπ = [1, l0 − l − (k0 − k)] if k < k0
Iπ = [1, l0 + dk−k0+2 − l] if k ≥ k0

(9)

Here, l is the span of π . In the previous example,

IA . B = [1, 5 − 3 − (3 − 2)] = [1, 2]
IA . B . C D = [1, 5 + 4 − 6] = [1, 3] (10)

The Histogram operator, Th , which, given a pattern π ,
produces the set {π̇} can be defined as follows. For each
offset x ∈ Iπ , let us define all the positions w + l + x ,
with w ∈ Wπ , the locus of π . Our goal is to find how
many of the similarity classes 	i are supported by at least
J0 elements in each set defined by a specific value of x .
Any such class and offset x can be used to extend π into
a longer pattern π̇ which is valid by definition. If a pattern
π̇ has support less than J0 it is eliminated.

If the alphabet is discrete, this can be accomplished with
an array C[x, 	i], with one entry for each value of the
offset x ∈ Iπ and for each similarity class in 	. This is
summarized by the following pseudo code:

Th(π, Qs) {
create an empty result set R = ∅

for each x in Iπ {
// Initialize the counters

for each 	i ∈ 	 {

348

Structural pattern localization analysis

set each C[x, 	i] = ∅

}
for each w ∈ Wπ {

c = S(w + l + x)

for each 	i ∈ 	 such that c ∈ 	i {
add w to C[x, 	i]

}
}
// Remove all redundant counters

for each 	i ∈ 	 {
for each 	i ′ ∈ 	 with i ′ > i {
if C[x, 	i] = C[x, 	i ′] {
set C[x, 	i ′] = ∅

}
}
if |C[x, 	i]| ≥ J0 {
create a pattern π ′ with the character 	i
at offset

x and wildcards at any other position Iπ
set π̇ = π ⊕ π ′
add the pattern π̇ to R,

}
}

}
if no pattern π̇ ∈ R has support Wπ̇ = Wπ {
add π to Qs

}
return R

}

If � is an interval of the real axis, instead, one can
use a similar deterministic procedure to count all sets of
values that satisfy the distance metric constraints. This can
be done efficiently, for instance, (a) by sorting the values
s(w + l + x), for each w ∈ W (π) and for a fixed value
of x ; (b) starting at each value, by counting how many
consecutive values satisfy the distance metric constraints;
(c) by removing any set that is a subset of another set.

If none of the patterns π̇ is an equivalent sub-pattern of
π , i.e. it has the same support of π , then π is maximal. In
that case, if it has at least K0 ≥ k0 full characters, it is
a reported pattern and it is added to Qs . As a result, π is
never contained in {π̇}.

EXAMPLE. Let S = ABCDEABCCEABCDA be a string
and AB be a pattern. Given the constraints k0 = 3, l0 =
5, the extension interval is IAB = [1, 3]. If the only
similarity class is [CD], then the only array entries with a
positive count are C[1, C] = {2, 7, 12}, C[2, D] = {2, 12},
C[2, [CD]] = {2, 7, 12}, and C[3, E] = {2, 7}. As a
consequence, the following patterns can be generated:

x = 1 π̇0 = ABC . . ; Wπ0 = {0, 5, 10}
x = 2 π̇1 = AB . D . ; Wπ1 = {0, 10} and

π̇2 = AB . [CD] . ; Wπ2 = {0, 5, 10}
x = 3 π̇3 = AB . . E; Wπ3 = {0, 5}

Since both π̇0 and π̇2 are equivalent sub-patterns of AB, the
latter is not a maximal pattern.

Enumerate operator
Th has been used to list all possible valid, single full char-
acter extensions {π̇} of π . Then, the purpose of the enumer-
ate operator Te({π̇}) is to create all the possible valid pat-
terns which extend π by one, two, or more full characters in
the extension interval Iπ . These can be obtained by adding
together any possible subset of {π̇}. For instance, if π =
AB and {π̇} contains the patterns AB . C . . and AB . . D . ,
then the pattern AB . CD = AB . C . .+AB . . D . also ex-
tends AB. Any such pattern is valid by definition because it
is formed by adding valid patterns and can therefore only
be denser. Resulting patterns that have support less than J0
are eliminated.

Let us define {π̃} = Te({π̇}) = Te(Th(π, Qs)) as the set
of all possible patterns with support j ≥ J0, obtained by
adding any possible subset of {π̇}.

THEOREM 5. The set {π̃} is a Seed Set for any final
pattern that is a child of π .

Note that, since independent subsets of {π̇} are unique,
the prerequisites of Theorem 4 are also satisfied. That is,
no two patterns of {π̇} are either identical or have a parent–
child relation. Therefore, from Theorems 5 and 4, Tm(π̃)

is a Canonical Seed Set.
The Enumerate operator Te({π̇}) can be defined recur-

sively and efficiently by the following pseudocode:

Te({π̇}) {
if ({π̇} = ∅ {
return ∅

}else {
define a results set Rs = {π̇};
for each pattern π̇i in {π̇} {
initialize a temporary empty set Ts = ∅;

for each pattern π̇i ′ in {π̇} such that i ′ > i {
compute π̃ = π̇i + π̇i ′
if π̃ has support greater or equal than J0 {

insert π̃ in Ts;

}
}
Rs = Rs ∪ Te{Ts }

}
}

}
return Rs;

}

Splash
Given the Seed Set P∗

s the Splash algorithm can be com-
pactly represented by the following recursive notation:{

Tn
s (P∗

s , Qs) = Ts(Tn−1
s (P∗

s , Qs))

Ts(P∗
s , Qs) = Teh(Tm(P∗

s), Qs)
(11)

where
Teh({π}, Qs) = ∪πTe(Th(π, Qs)) (12)

349

A.Califano

Pattern discovery terminates at the nth iteration, if
Tn

s (P∗
s , Qs) = ∅. The following six properties of the

algorithm have been demonstrated.

1. An initial Seed Set can be constructed for any set of
constraints. From Theorem 1, P∗

s is a Seed Set for any
choice of l0, k0, J0, K0.

2. At any iteration n, Tn
s (P∗

s , Qs) is a Seed Set for any final
pattern not contained in the result set Qs . This follows
from Theorems 2, 3 and 5.

3. As a consequence, when T
n∅

s (P∗
s , Qs) = ∅, all final

patterns are contained in Qs .

4. The algorithm converges. At each iteration n, patterns in
Tn+1

s (P∗
s , Qs) contain at least one more full character

than patterns in Tn
s (P∗

s , Qs). Therefore, for n∅ ≤ L ,
T

n∅

s (P∗
s , Qs) = ∅.

5. Patterns in Qs are maximal. This follows by the defini-
tion of the histogram operator.

6. The algorithm is efficient. Theorem 4 proves that the set
Tm(Tn

s (P∗
s , Qs)) is a Canonical Seed Set for any final

pattern not in Qs . This is, by definition, the smallest
set of patterns that all remaining final patterns can be
derived from.

Parallelism
As shown in previous sections, each Seed Pattern π can be
processed independently of any other Seed Pattern, as there
are no global dependencies in any of the operators. Even
the lc-maximal operator, Tm(π), which must verify that π

is not a sub-pattern of any other maximal pattern, can be
implemented without any knowledge of other discovered
patterns. It follows that the algorithm is embarrassingly
parallel in the number of patterns in the Seed Set. The only
globally required information is the input string S. Also,
final results must be collected and reported.

A typical approach to parallelize this kind of algorithm
is to use a function such as f (π) = [g(π)modNpr],
where g(π) is a hash function that returns a positive integer
based on the pattern π and Npr is the number of available
processors. Then, each node operates on the partial Seed
Set P∗

s (Npr = f (P∗
s) and returns a partial results set

Qs(Npr) such that Qs = ∪Qs(Npr). More sophisticated
load-balancing functions can be used as well.

The Statistical Significance of Patterns
In Stolovitzky and Califano (1999), it is shown how the
average number of maximal jkl-patterns in a random
database s of length L , with a 〈l0, k0〉 density constraint,
is given by

〈n jkl〉 ≈ N0(k, l)

(
L − l + 2

j

)
〈℘〉k(j−1)

[1 − 〈℘〉k]L−l−2− j 〈pin〉〈pout〉 (13)

In the above expression, N0(k, l) is the number of 〈l0, k0〉-
valid combs that have a span l, and length k. 〈℘〉 is given
by the following expression,

〈℘〉 =
∑
�

p(�)[℘(�)], (14)

where p(�) is the probability of the value � to occur in
the sequence and

℘(�) =
∑
�′

p(�′)H(�, �′) (15)

is the probability of the value � to randomly match any
other character in S. Also, pin and pout are respectively the
probability that a given jkl-pattern is maximal in composi-
tion and length. From this analysis, it is possible to estimate
the probability that any discovered pattern would have oc-
curred in a random database of similar size and composi-
tion. This probability is close to a binomial distribution and
its first and second moment, its mean and variance, are well
defined. Therefore, it is useful to compute a z-score as:

z = n jkl − 〈n jkl〉
σn jkl

(16)

where n jkl is the number of discovered jkl-patterns. Full
details of this analysis, which is in excellent agreement
with experimental data, are available in Stolovitzky and
Califano (1999).

Performance
To test the scaleability of the algorithm we have run a
range of comparison tests against Pratt and MEME. The
tests show that Splash significantly outperforms both
algorithms in terms of raw performance, limitations on
discovered patterns, and scaleability. Because MEME
is geared towards the discovery of the most conserved
regions in protein families rather than of the exhaustive
set of conserved patterns, it cannot be compared directly.
This will be discussed in Section 6.2.

Pratt
The performance of Splash and Pratt as a function of
an increasing database size is shown in Figure 1. The
database is produced as follows. First an appropriate
sequence sample set is selected from the Brookhaven
PDB database to obtain the desired size. Then the position
of the amino acids are randomized. This results in a
random database of an appropriate length, with the same
amino acid frequency as the corresponding PDB sample.
Patterns that occur in more that 20% of the sequences in
the database are reported. Total size of the databases is
8192 × 2i , with 0 ≤ i ≤ 6. Databases for values of i
ranging from 0 to 6 are processed. The largest random

350

Structural pattern localization analysis

8

1

10

100

Splash

Pratt

Patterns

D
is

co
ve

ry
 ti

m
e

(s
)

Patterns
1000

16 32 64

Database size in thousands of residues

Pattern discovery performance

128 256 512

500

0

1000

1500

2000

2500

Fig. 1. Splash and Pratt: Time versus Database Size. Pattern discovery time is reported versus database size. Identical patterns are reported
by the two algorithms. Discovery parameters are k0 = 2, l0 = 5, support is 20% of sequences in databases.

100
0

10

D
is

co
ve

ry
 ti

m
e

(s
)

D
is

co
ve

ry
 ti

m
e

(s
)

100

(a) (b)

0

10

100

120 140

Sequence support Discovered patterns

Histones I and V: Time versus support Histones I and V: Time versus patterns

160 180 200 100 1000 10 000

Fig. 2. Splash versus Pratt: (a) versus pattern support j , (b) versus the number of discovered patterns.

database is approximately 512 000 residues. On the left Y
axis, we show the time, in seconds, required by Splash and
Pratt to process the random databases in log scale. On the
X axis, we show the database size, also in log scale. On the
right Y axis, we show the number of discovered patterns in
linear scale. This is shown by the curve with the diamond
symbol. The density constraints are k0 = 2, l0 = 5. The
maximum memory footprint of the program is 12 Mb.

The patterns discovered by Pratt are identical to those
discovered by Splash. However, Splash is increasingly
faster than Pratt as the database size increases. At the
smallest database size, 8 KRes, it is about six times faster.
At size 128 KRes., it is about three orders of magnitude
faster. Also, while patterns reported by Pratt are limited to
a maximum span, 50 characters in this case, Splash would

discover any pattern that satisfies the density and support
constraints, no matter how long.

We report similar performance measurement against
a histone I database (Makalowska et al., 1999), with
209 proteins, at increasingly higher values of the support.
This is an interesting case because this database is pattern-
rich, generating in excess of 10 000 patterns for k0 = 2,
l0 = 5, and J0 = 100.

The discovery performance for Splash and Pratt is shown
in Figure 2. Pratt crashes on our machine for support J0 <

180. In Figure 2(a), time is shown as a function of an
increasing value for J0, the minimum number of sequences
containing the pattern. In Figure 2(b) time is shown as a
function of the number of discovered patterns. For J0 =
180, Splash is almost two orders of magnitude faster. The

351

A.Califano

maximum memory footprint of the program is 8 Mb for
J0 = 100.

Meme
MEME, which is based on a PSSM model, is geared
towards the discovery of the most conserved contiguous
regions in a protein set. Also, the density constraint does
not make sense in the context of PSSM. Therefore, a
straightforward comparison is difficult and probably
inappropriate. To compare the performance of the two
algorithms, therefore, we only tested Splash’s ability to
discover the most conserved regions in a protein set. We
run against the lipocalin file which is included with the
MEME distribution. MEME takes 8.9 s to discover the
two top patterns in the five sequences. Splash discovered
two patterns that extend over the same regions in 1.16 s.
These were the two most statistically significant patterns
among those that occur in all sequences, for k0 = 4, and
l0 = 8. As discussed, this is the standard initial density
constraint used with Splash to discover PROSITE-like
patterns or motifs.

To test scaleability, we also performed the analysis of the
histone I family described in Section Pratt. Splash takes
8.7 s to discover the motif G . S . . .[ILMV] . . . [ILMV]
which occurs in every sequence. This motif is discussed in
detail in Section Experimental Results: Histones. On the
same CPU, MEME takes 3771.38 s to discover a PSSM
spanning the first six characters of the pattern discovered
by Splash.

Density constraints
Finally, the impact of the density constraints on perfor-
mance is given in Figure 3. This is an important parameter,
as it determines the ability of the algorithm to discover
either dense or sparse patterns. Here we show the perfor-
mance of pattern discovery, for a substantial variety of
density constraints, against a set of 124 proteins, about
150 KRes, that contain the aspartic acid and asparagine
hydroxylation site. For k0 = 2 we use l0 = 2, 4, 8, 16, 32.
For k0 = 4, we use l0 = 4, 8, 16, 32. Larger values of l0
result in patterns that are too sparse and not statistically
significant.

This protein set has been obtained from the PROSITE
entry PS00010. The goal is to automatically discover the
PROSITE signature C-x-[DN]-x(4)-[FY]-x-C-x-C.
The support constraint, then, is set at J0 = 124, or 100%
of the proteins in the set. BLOSUM50, with a threshold
h0 = 2, is used to produce the similarity metric. That
is, pairs of amino acids that score better or equal to 2
in BLOSUM50 are considered similar. Other values for
the support parameters are possible as well, for instance,
to discover PROSITE signatures that do not occur in all
proteins of a functional family. A full scale analysis of the
PROSITE database, however, is beyond the scope of this

paper and has been conducted separately. Results will be
reported in a follow-up paper.

A pattern virtually identical to the PROSITE signa-
tures (C-x-[DN]-x(4)-[FYW]-x-C-x-C) is correctly
discovered as the most statistically significant pattern
for k0 = 2, l0 = 16, 32 and for k0 = 4, l0 = 16, 32.
Figure 3(b) gives the number of discovered patterns for
the various parameter choices. As shown here, there are
no patterns discovered for k0 = 4, l0 < 16 and just a small
number of patterns, with two amino acids only and low
statistical significance (e.g., G D), for k0 = 2,
l0 < 16. Figure 3(a) shows the time, in seconds, as a
function of the density constraint parameters. As can be
seen, the efficiency of the algorithm allows one to explore
a considerable range of density and support parameters in
minimal time.

Sensitivity of identity versus similarity metrics
To analyze the increase in sensitivity resulting from
similar pattern discovery, the following analysis has
been performed. First, 10 identical copies of a random
sequence of length 40 have been generated with compo-
sition identical to the histone I family (Makalowska et
al., 1999). Then, each sequence has been padded left and
right to a predefined length L with random amino acids
using the same composition. From this set, subsequent
mutated populations of identical length and with the
same number of sequences have been generated using the
procedure described in (Dayhoff et al., 1978), starting at
an evolutionary period of 5 PAMs and increasing that in
steps of 2 PAMs. Finally pattern analysis is performed
using either an identity or a similarity metric. The number
of statistically significant patterns (z-score > 3) are
computed. Results for identical pattern discovery, for
increasing values of L , are shown in Figure 4(a). Results
for similar pattern discovery are shown in Figure 4(b).

The goal of this exercise is to model the likelihood of
detecting an active site (chosen to be 40 residue in length)
which has been preferentially mutated to preserve amino
acids of similar properties, in sequences of different length.
The statistical significance of pattern after x PAMs is a
measure of the correlation of the original sequences. This
is an oversimplified model and does not accurately model
evolution. However, as discussed in Dayhoff et al. (1978),
it is indicative of the amount of conservation one can
expect in a fairly small peptide region.

The similarity metric of Section Similarity Metrics
for Protein Sequences, has been used. This is based on
BLOSUM50 with a threshold of 2. Populations have been
produced by repeatedly applying PAM1 to the original
sequences. We have deliberately mixed PAM and BLO-
SUM matrices, during simulated evolution and analysis,
to show that even with different models, similar patterns

352

Structural pattern localization analysis

4.0
0.0

10.0

20.0

30.0
(a) (b)

0.0

20.0

60.0

40.0

80.0

100.0

D
is

co
ve

ry
 ti

m
e

(s
)

D
is

co
ve

re
d

pa
tte

rn
s

8.0 12.0 16.0

k0= 2
k0= 4

k0= 2
k0= 4

Window size l0 Window size l0

Discovery time versus density Discovered patterns versus density

20.0 32.0 4.0 8.0 12.0 16.0 20.0 24.0 28.0 32.028.024.0

Fig. 3. Pattern discovery performance as a function of the density constraint. Runs on the PS00010 PROSITE family with k0 = 2, l0 =
2, 4, 8, 16, 32 and k0 = 4, l0 = 4, 8, 16, 32.

are better at pinpointing distant relationships. The number
of statistically significant patterns discovered with the
identity metric drops to zero quickly. With the exception
of the shortest sequence length L = 100, which generates
the smallest amount of noise (i.e. patterns that are not
statistically significant), no pattern is reported after more
than 11 PAMs. As shown, the similarity metric practically
doubles the time horizon.

Experimental Results: Histones
An important measure of a pattern discovery algorithm’s
performance is its ability to discover hidden motifs in large
protein databases. A typical approach is to start with a min-
imum support equal to a high percentage of the total num-
ber of proteins in the set, say 95%, and a fairly high density
constraint. Typical values are k0 = 4, l0 = 8. BLOSUM50
or BLOSUM62 can be used with a threshold of 1 or 2. If no
interesting motif is discovered, first the density constraint
is decreased (l0 = 12, 16, . . .), until patterns that are not
statistically significant start appearing (typically l0 ≤ 40
for a few hundred proteins). If statistically significant pat-
terns still fail to occur, the minimum support is progres-
sively dropped to increasingly lower values and the cycle
is restarted.

In this case, we have run Splash against a histone I
database with 209 proteins (Makalowska et al., 1999). If a
similarity metric defined by the BLOSUM50 matrix with
a threshold of 2 is used and the density constraint has k0 =
4 and l0 = 12 (this is the second attempt in the above
procedure), Splash takes 8.7 s to detects the following
motif:

π0 = G.S...[ILMV]...[ILMV],

(j = 209, Zs = 3.013 · 105)

Pratt and Meme take respectively 66 s and 3771, to find

basically the same protein region. The z-score Zs is com-
puted from the analysis described in Section The Statisti-
cal Significance of Patterns. It is defined as:

Zs[π jkl] = n(π jkl) − n̄(π jkl)

σ (π jkl)
, (17)

where n̄(π jkl) and σ(π jkl) are, respectively, the mean and
the variance of the number of jkl-patterns that would
occur in a random database of that size and composition.
Here n(π jkl) = 1 because we are considering each pattern
independently. That is, the jkl-pattern occurred at least
once.

Given the very large value of the Zs , it is highly unlikely
that a pattern like this would arise spontaneously from a
database with a histone-like amino acid frequency of the
same size. The analysis, accounts for the fact that two of
the four residues match exactly and two match similarly.

This is confirmed empirically by the analysis of the three
dimensional structures of the globular domain of the only
two histone proteins where the motif occurs in PDB. These
are respectively the globular domain of the H1 (Cerf et al.,
1993) and H5 (Ramakrishnan et al., 1993) histone from
chicken. Note that although H1 and H5 are homologous,
H5 proteins were not in the database used to discover the
motif. As can be seen from Figure 5(a) and (b) where the
two motifs are highlighted, there is significant structural
similarity. This occurs in the region between residues 22
and 32 on H1 and between residues 44 and 54 on H5.

The glycine and serine are exposed on the surface
of the protein in a loop at the end of an alpha-helix.
The two leucines in H1, mutated into isolucines in H5,
contribute to the stability of the hydrophobic core on the
alpha-helix. Although the structural properties of this
area of the histone globular domain have not been fully
understood, it could play an important structural role

353

A.Califano

5.0
0

5.0

10.0

St
at

is
tic

al
ly

 s
ig

ni
fi

ca
nt

 p
at

te
rn

s

St
at

is
tic

al
ly

 s
ig

ni
fi

ca
nt

 p
at

te
rn

s

15.0

20.0

(a) (b)

0

5.0

10.0

15.0

20.0

10.0

PAMs PAMs

Evolutionary motif detection (identity) Evolutionary motif detection (similarity)

15.0

L = 100

L = 200

L = 300

L = 400

L = 100

L = 200

L = 300

L = 400

20.0 5.0 10.0 15.0 20.0

Fig. 4. Statistically significant patterns as a function of simulated evolution. Different curves model the detection of a 40 amino acid conserved
region within a longer uncorrelated sequence.

because it harbors the most conserved motif in the whole
histone I family.

It should be noted that, in this case, the ability to
discover patterns with a similarity metric plays an impor-
tant role. In particular, there are no three full character
sub-patterns of π0 that appear in all the sequences. The
sub-pattern π3 = G . S K, which occurs in
201 proteins, has Zs = −0.64 which makes it virtually
indistinguishable from background noise. In fact, there
are about 170 patterns of this kind spread all over the
input sequences. From a statistical point of view, patterns
containing two full characters are not significant in this
database. Therefore, without the use of a similarity metric,
directly in the discovery process, pattern π0 would not
readily emerge.

Experimental Results: G-Protein-Coupled
Receptors
Another result is shown from a superfamily of 918 known
and hypothetical G-Protein-Coupled Receptors. Here,
Splash has been used to discover statistically signifi-
cant motifs that occur in the largest number of protein
sequences in a set, with a procedure identical to that of
Section Experimental Results: Histones.

If an identity metric is used, even with a very low density
constraint defined by k0 = 4 and l0 = 30, a single four
amino acid pattern is found that occurs in more than half
of the proteins:

π0 = N . DRY,

(j = 474, Zs = −11.13)

This pattern contains the previously known and well pre-
served DRY tripeptide for family A. Based on the Zs , how-
ever, this pattern would be difficult to separate from the
noise.

Under identical conditions, if the similarity metric de-
fined by the BLOSUM50 matrix with a threshold of 2 is
used with the same density constraint, almost 500 patterns
are discovered. These have at least two identical and two
similar residues and occur in more than half of the proteins.
The most frequent pattern with a Zs ≥ 3 is

π1 = C ILMV] . .

[ILMV] . . [NDE]R...[ILMV],

j = 619; Zs = 2.26 × 1034.

This highly statistically significant pattern has two identi-
cal and three similar residue matches. This motif, used to
search against SWISS-PROT Rel. 36, returns 874 GPCR
proteins and only 30 potential false positives. About half
of these are hypothetical proteins or proteins with a puta-
tive annotation.

Even a pattern with a significantly lower chance of ap-
pearing in a large database than π0, such as

π2 = C L . . [ILMV] . .

[DEB][RQK][HFWY] . . [ILMV],

j = 483; Zs = 2.46 × 1034

with two identical and five similar amino acid matches, still
occurs in more proteins than the identical pattern π0, and
it has a much higher Zs , 2.46 × 1034 versus −11.13. Note
that the z-score is not a measure of how likely a motif is
to occur in a database. Rather it is a measure of how likely
the motif would be to occur j times in a random database
of the same size and composition.

This motif is extremely selective. If it is used to search
against SWISS-PROT Rel. 36, it returns 578 GPCR pro-
teins and only four possible false positives. These are:

1. C555 METCA Cytochrome C-555,

354

Structural pattern localization analysis

(a) (b)

Fig. 5. Globular domain of histone I and V proteins. (a) Chicken histone H1, (b) chicken histone H5.

2. KEMK MOUSE: Putative serine/threonine-Protein Kinase
EMK,

3. SRG8 CAEEL: SRG-8 Protein,

4. UL29 HCMVA: Hypothetical Protein UL29.

Given the extremely low false positive ratio (0.68%), it
is quite possible that either two or four may have been
mislabeled and should really be considered members of the
GPCR family.

We have been unable to replicate these results using ei-
ther MEME or Pratt. MEME was still running after several
days. PRATT crashed on our hardware configuration. We
attributed this to a combination of the database size, its low
overall homology, and its high pairwise homology.

In this paper we limit ourselves to single pattern analysis.
However, given the large number of statistically significant
yet different patterns that can be discovered, even better
classification results can be obtained by using multiple
statistically significant patterns simultaneously. This will
be the subject of a follow-up paper.

Conclusions
This paper introduces Splash, a new deterministic al-
gorithm for identical, similar, and proximal pattern
discovery. The most significant contribution of Splash
is its efficiency and scaleability without any sacrifice
in terms of the completeness of the results. Very large
biological sets, such as the full Swissprot or PDB database
or entire genomes, can be processed by Splash in hours on

conventional workstation class hardware. These reduced
computational requirements allow a significant portion of
the search parameter space to be explored and studied. As
a result, motifs that would normally elude discovery can
be quickly and systematically identified.

The resulting motifs can be used for a variety of bio-
logically significant purposes, from automatic sequence
clustering, to the definition of HMM and PSSM models
for accurate and sensitive sequence screening, to multiple
sequence alignment.

The paper also shows that, as expected from pairwise se-
quence comparison, the use of a similarity metric signif-
icantly increases the chances of detecting statistically sig-
nificant motifs in distantly related families. Finally, by cou-
pling the algorithmic part with the analysis of the statisti-
cal significance of patterns, we have shown that interest-
ing motifs can, in some cases, be separated from the large
background of patterns that are not statistically significant
discovered in large data sets.

Splash is currently being used for a wide variety of
analysis tasks that range from the automated functional
and structural annotation of orphan sequences, to the
systematic, automatic discovery of PROSITE motifs.

Acknowledgments
We would like to thank Gustavo Stolovitzky, Ajay Royyuru,
and Laxmi Parida for their valuable help with this paper
and for many useful suggestions. We would also like
to thank Barry Robson, Aris Floratos, Yuan Gao, and

355

A.Califano

Mike Pitman for the many useful discussions on the topic
of pattern discovery.

Appendix
THEOREM 1, PROOF. Given any final pattern π̄ on S,

let us construct πk0 , a parent of π̄ , by selecting its k0 left-
most full characters. If π̄ is a final pattern, it must have at
least k0 full characters and the first k0 ones must span no
more than l0 positions. Given that π̄ must also satisfy the
support requirements j ≥ J0, then also πk0 satisfies it be-
cause, as a super pattern, its locus includes that of π̄ . Then,
πk0 is contained in the set P∗

s because this set contains all
patterns that have exactly k0 full characters over at most l0
positions and satisfy the support requirements.

THEOREM 2, PROOF. Let us define π−i , a parent of a
final pattern π̄ of length k, obtained by removing the last i
full characters of π̄ , with i < k. By definition, the support
of π−i is greater or equal to that of π̄ because W (π−i) ⊇
W (π̄). Therefore, if π−i were not lc-maximal then, any
child of π−i , including π̄ , would also not be lc-maximal.
Since any parent of π̄ is of the form π−i , then any parent
of a final pattern must be lc-maximal.

THEOREM 3, PROOF. Consider the set of all the valid,
equivalent sub-patterns of a pattern π . If the set is empty,
then π is a final pattern by definition. Otherwise, if the
string S is finite, there must be one such sub-pattern π ′ that
does not have any other valid, equivalent sub-pattern. By
definition that pattern is a final pattern. π is a parent of
π ′ because, by definition, an lc-maximal pattern does not
have any equivalent sub-pattern that is not a child.

THEOREM 4, PROOF. From Theorem 3, it follows that
Tm({π}) can only contain final patterns or parents of a final
pattern π̄ . Suppose there are two independent parents of π̄

in Tm({π}). Then, say that the first one, πk , contains the
k leftmost full characters of π̄ and that the second one,
πk′ , contains the k′ ≤ k leftmost full characters of π̄ . If
k = k′, then πk ≡ πk′ which violates the first assumptions.
If k′ < k, πk is a child of πk′ , which violates the second
assumption.

THEOREM 5, PROOF. If π is maximal, it has no valid
sub-patterns and {π̃} = {π̇} = ∅ satisfies our require-
ments. Otherwise, let π̄ be a final pattern which is a child
of π . There must be a non-empty set of full characters
{	i (xi)} in π̄ that occur at an offset xi ∈ Iπ after π .
Otherwise, the density constraint would be violated. Each
such full character must occur at least J0 times in S at the
offset xi after π . Then, each one of these full characters is
detected by the histogram operator and it is used to extend
π , by a single full character, into a pattern π̇i ∈ {π̇}. The
latter can be written as π̇i = π ⊕ πi , where πi consists

of |Iπ | wildcards and the character 	i at the offset xi .
The set of all the patterns {π̇i }, formed from {	i (xi)},
is therefore a subset of {π̇}. By construction, the pattern
obtained by adding all the π̇i together is contained in the
set {π̃}. This pattern is also a parent of π̄ since its k full
characters are the first k full characters of π̄ .

References
Bailey,T.L. and Elkan,C. (1994) Fitting a mixture model by expecta-

tion maximization to discover motifs in biopolymers. In Proceed-
ings of the Second ISMB Conference. AAAI Press, Menlo Park,
pp. 28–36.

Bailey,T.L. and Gribskov,M. (1998) Methods and statistics for com-
bining motif match scores. J. Comp. Biol., 5, 211–221.

Bairoch,A. (1991) PROSITE: a dictionary of sites and patterns in
proteins. Nucl. Acids Res., 19, 2241–2245.

Bernstein,F.C., Koetzle,T.F., Williams,G.J. B., Meyer, Jr.,E.F.,
Brice,M.D., Rodgers,J.R., Kennard,O., Shimanouchi,T. and
Tasumi,M. (1977) The protein data bank: A computer-based
archival file for macromolecular structures. J. Mol. Biol., 112,
535–542.

Brazman,A.et al. (1998) Approaches to the automatic discovery of
patterns in biosequences. J. Comp. Biol., 5, 279–305.

Bystroff,C. and Bakel,D. (1988) Prediction of local structure in
proteins using a library of sequence-structure motifs. J. Mol.
Biol., 281, 565–577.

Califano,A. and Rigoutsos,I. (1993) FLASH: A fast look-up al-
gorithm for string homology. In Proceedings of 1993 ISMB.
Bethesda, MD, pp. 56–64.

Cerf,C., Lippens,G., Mulyldermans,S., Segers,A., Ramakrishnan,V.,
Wodak,S.J., Hallenga,K. and Wyns,L. (1993) Homo- and het-
eronuclear two-dimensional NMR studies of the globular domain
of Histone H1: Sequential assignment and secondary structure.
Biochemistry, 32, 11345.

Dayhoff,M.O., Schwartz,R.M. and Orcutt,B.C. (1978) A model of
evolutionary change in proteins. In Dayhoff,M.O. (ed.), Atlas of
Protein Sequence and Structure, pp. 345–352.

Gerretsen,J.C. H. (1962) Lectures on Tensor Calculus and Differen-
tial Geometry. Noorthoff,P. (ed.), N. V. Groningem.

Henikoff,S. and Henikoff,J.G. (1992) Amino acid substitution matri-
ces from protein blocks. Proc. Natl Acad. Sci. USA, 89, 10915–
10919.

Jonassen,I., Collins,J.F. and Higgins,D.G. (1995) Finding flexible
patterns in unaligned protein sequences. Prot. Sci., 4, 1587–1595.

Krogh,A., Brown,M., Mian,I.S., Sjoelander,K. and Haussler,D.
(1994) Hidden Markov models in computational biology. Appli-
cations to protein modeling. J. Mol. Biol., 235, 1501–1531.

Makalowska,I., Ferlanti,E.S., Baxevanis,A.D. and Landsman,D.
(1999) Histone sequence Database: sequences, structures, post-
translational modifications and genetic loci. Nucl. Acids Res., 27,
323–324.

Neuwald,, Liu, and Lawrence, (1995) Gibbs motif sampling: detec-
tion of bacterial outer membrane protein repeats. Prot. Sci., 4,
1618–1632.

Nevill-Manning,C.G., Wu,T.D. and Brutlag,D.L. (1998) Highly spe-
cific protein sequence motifs for genome analysis. Proc. Natl
Acad. Sci. USA, 95, 5865–5871.

Parida,L., Floratos,A. and Rigoutsos,I. (1999) An approximation al-

356

Structural pattern localization analysis

gorithm for alignment of multiple sequences using motif discov-
ery. J. Comb. Opt., 3, 247–275.

Ramakrishnan,V., Finch,J.T., Graziano,V., Lee,P.L. and Sweet,R.M.
(1993) Crystal structure of globular domain of histone H5 and
its implications for nucleosome binding. Nature, 362, 219.

Rigoutsos,I. and Floratos,A. (1998) Combinatorial pattern discovery
in biological sequences: the TEIRESIAS algorithm. Bioinformat-
ics, 14, 56–67.

Schwartz,R.M. and Dayhoff,M.O. (1978) Matrices for detecting dis-
tant relationships. In Dayhoff,M.O. (ed.), Atlas of Protein Se-
quence and Structure, pp. 353–358.

Shapiro,L. and Scherer,P.E. (1998) The crystal structure of a
complement-lq family protein suggests an evolutionary link to tu-
mor necrosis factor. Curr. Biol., 8, 335–338.

Stolovitzky,G. and Califano,A. (1999) Pattern statis-
tics in biological datasets. J. Comp. Biol. available at
www.research.ibm.com/topics/popus/deep/math/html/
statistics.pdf.

Wang,L. and Jiang,T. (1994) On the complexity of multiple sequence
alignment. J. Comp. Biol., 1, 337–338.

Waterman,M.S. (1995) Introduction to Computational Biology.
Chapman & Hall, London.

357

