Vol. 16 no. 4 2000
Pages 341-357

SPLASH: structural pattern localization analysis
by sequential histograms

Andrea Califano*

IBM TJ Watson Research Center, PO Box 704, Yorktown Heights, NY 10598, USA

Received on February 22, 1999; revised on September 10, 1999; accepted on October 16, 1999

Abstract

Motivation: The discovery of sparse amino acid patterns
that match repeatedly in a set of protein sequences is an
important problem in computational biology. Satistically
significant patterns, that is patterns that occur more fre-
quently than expected, may identify regions that have been
preserved by evolution and which may therefore play a key
functional or structural role. Sparseness can be important
because a handful of non-contiguous residues may play a
key role, while others, in between, may be changed without
significant loss of function or structure. Smilar arguments
may be applied to conserved DNA patterns.

Available sparse pattern discovery algorithms are either
inefficient or impose limitations on the type of patternsthat
can be discovered.

Results: This paper introduces a deterministic pattern
discovery algorithm, called Splash, which can find sparse
amino or nucleic acid patterns matching identically or
similarly in a set of protein or DNA sequences. Sparse
patterns of any length, up to the size of the input se-
quence, can be discovered without significant loss in
performances.

Flash is extremely efficient and embarrassingly parallel
by nature. Large databases, such as a complete genome
or the non-redundant SWMISS-PROT database can be pro-
cessed in a few hours on a typical workstation. Alterna-
tively, a protein family or superfamily, with low overall ho-
mol ogy, can be analyzed to discover common functional or
structural signatures. Some exampl es of biologically inter-
esting motifs discovered by Splash are reported for the hi-
stone | and for the G-Protein Coupled Receptor families.
Due to its efficiency, Splash can be used to systematically
and exhaustively identify conserved regionsin protein fam-
ily sets. These can then be used to build accurate and sen-
sitive PSSM or HMM models for sequence analysis.
Availability: Splash is available to non-commercial re-
search centers upon request, conditional on the signing of
a test field agreement.

*Theresults Section The Statistical Significance of Patter nswere obtained
in collaboration with Gustavo Stolovitzky. They will appear independently
in a separate joint publication.

Contact: acal@us.ibm.com, Splash main
http: //mww.research.ibm.com/splash

page

I ntroduction

Whenever Naturefindsa'recipe’ to accomplish atask that
gives differential fitness to an organism, chances are that
such recipe will be conserved throughout evolution. At
the molecular level, this means that biological sequences,
belonging sometimes to widely distant species, will likely
share common motifs. By motif, we mean one or more
highly conserved, ungapped regions of a protein or DNA
sequence (Bailey and Gribskov, 1998). In many proteins,
however, a handful of residues that play a key functional
role can be separated by highly variable regions. An
extreme example is that of serine proteases, where three
individual residues, a histidine, a serine, and an aspartic
acid, inwidely distant regions of the protein, join together
in three dimensions to form the active site.

As a result, the identification of sparse patterns in
biological databases is becoming a very transited venue
within the bioinformatics community. Pattern databases
such as PROSITE (Bairoch, 1991) are examples of this
trend. And methods for the automatic discovery of pat-
terns of the form (X U’ ./)*, which match at least twice in
a sequence or sequence database, are becoming increas-
ingly relevant in computational biology (Brazman et al.,
1998). In this notation, X is a character from afinite-size
alphabet, which can match either identically or similarly
in a sequence, and ‘.’ is the ‘wildcard’ character which
matches any sequence character.

In recent years a number of interesting pattern dis-
covery tools have emerged. These are divided into two
main categories. statistical algorithms, such as the Gibbs
Sampler (Neuwald et al., 1995) and MEME (Bailey and
Elkan, 1994), which use heuristics to improve efficiency,
and deterministic algorithms, such as Pratt (Jonassen et
al., 1995) and Teiresias (Rigoutsos and Floratos, 1998).
Another interesting approach is that of EMOTIF which
discovers interesting motifs in pre-aligned sequences
(Nevill-Manning et al., 1998). These agorithms are
valuable in that they can discover weak motifs hidden

(© Oxford University Press 2000

341

A.Califano

in the biosequences. A discussion of some of the most
interesting algorithms is available in Brazman et al.
(1998). A statistical framework has also been proposed to
help determine the statistical significance of discovered
patterns (Stolovitzky and Califano, 1999). However,
probabilistic approaches use heuristics or ad hoc con-
straints and become inefficient when only a small subset
of the proteins is homologous. Enumeration and veri-
fication agorithms must explore an exponential search
space. Therefore, practical limits are imposed on the
number of characters in the pattern or in its maximum
number of wildcards. Both approaches work best on
databases that contain no more than a few tens of se-
guences. Some hybrid algorithms are more efficient but
they are limited to identically occurring patterns. The
rest rely on a multiple alignment preprocessing step
which suffers from similar limitations (Wang and Jiang,
1994).

This paper introduces an efficient, deterministic pattern
discovery agorithm called Splash, which does not require
enumerating all possible patterns that could occur in the
input. Splash can identify al sparse patterns, of the form
(X U y*, which match at least twice, either identically
or similarly, in one or more sequences and satisfy a
predefined density constraint. The latter limits only the
maximum number of wildcards over any consecutive
stretch of the pattern that does not start with a wildcard.
It does not limit the total number of wildcards in the
patterns. Therefore, sparse patterns that extend over the
entire input sequence are possible and will be discovered
efficiently. Extremely low density constraints, such as 28
wildcards in any stretch of 32 characters, are routinely
used by Splash, as shown in Section Experimental
Results. G-Protein-Coupled Receptors. Even lower
densities are possible. These, however, tend to be less
useful because interesting patterns would then be hidden
in large numbers of random patterns. Thisis discussed in
detail in Section Density Constraint, and it is supported
by the structure of PROSITE patterns.

Finally, Splash can also be used to discover patterns
of values from a continuous range. These will be called
proximal patterns and will be more rigorously defined in
Section Definitions and Notation.

In Sections The Algorithm and Perfor mance, we will
show that Splash is both computationally and memory
efficient and significantly outperforms some of the most
commonly used pattern discovery algorithms. In particu-
lar, wewill demonstrate that only aminimal set of patterns
must be explored in order to discover those that occur
in the input. The algorithm is embarrassingly parallel in
nature and it scales linearly with the number of processors.
It has been implemented both for SMP and distributed
architectures. In Section The Statistical Significance of
Patter ns we will discuss the statistical significance of the

type of patterns discovered by Splash.

The efficiency of Splash makes it possible to explore
entire databases or genomes, without resorting to super-
computers. For instance, in the single threaded version,
al similar patterns occurring at least three times in the
current release of the non-redundant PDB (Bernstein
et al., 1977), which have no more than six wildcards
in any window of 12 characters, are discovered in 1h
on a 266 MHz Pentium |1 laptop. Similarly, the parallel
version of Splash takes about 8 h to discover all identical
patterns that are statistically significant and have no more
than five wildcards in any window of 10 characters, in
a non-redundant protein database with over 90 million
residues. The hardware configuration used for this purpose
isa 133 MHz four way SMP workstation (F50) with 1 GB
of memory.

In Sections Experimental Results: Histones and Ex-
perimental Results. G-Protein-Coupled Receptors, we
will discuss some experimental findings for the histone |
and for the G-protein-coupled receptor families. Typical
runs required to analyze large protein families, such asthe
GPCR or the histone, are performed in seconds to minutes
on similar configurations.

Biological applications of pattern discovery
algorithms
One important, and often controversial point, about sparse
patternsiswhether these are meaningful biological entities
by themselves. Clearly, amino acids do not freely exist in
space but live in the context of a continuous sequence.
Also, athough signatures such as the ones available in
PROSITE are useful to rapidly screen unknown sequences
for functional or structural annotation, non-sparse models
such as Hidden Markov Models (Krogh et al., 1994) and
PSSM (Bailey and Gribskov, 1998) seem to perform better.

The position of this paper isthat patterns are only mean-
ingful as alocal statistical measure of sequence conserva
tion across a set of sequences. That is, patterns that occur
more frequently than expected in set protein or DNA se-
guences are likely to correspond to regions where lower
mutation rates have been favored. These patterns may then
identify regionsthat play an important functional or struc-
tural role as well as pinpoint which residues may play a
more crucia role. The latter will be the onesthat are most
conserved. Therefore, unusual patternscan beusedtoiden-
tify and align hard to find, highly specific regions in se-
guences. Once these have been identified, the sparse pat-
tern model can lead directly to acontiguous representation,
viaHMM or PSSM, for instance, or to multiple sequence
alignments using algorithms such as MUSCA (Parida et
al., 1999).

This is especialy important if the sequence set is large
or if it contains many non-homologous sequences. In this
case, an efficient pattern discovery agorithm, such as

342

Structural pattern localization analysis

Splash, can easily provide the core for a large number
of highly specific local alignments. Again, this makes it
an ideal pre-processing candidate to systematically build
HMM and PSSM models.

Thefollowing is asmall, non-exhaustive list of applica-
tions of the Splash algorithm, which are being currently in-
vestigated in the context of protein function and structure
studies. The purpose of this section isto support theimpor-
tance of efficient pattern discovery techniquesin abiolog-
ical context. Each of these constitutes an individua piece
of work whose details extend well beyond the scope of this
paper. Rather, this paper is devoted to the description of
the algorithm and the discussion of the algorithm’s perfor-
mance.

Single (super)family analysis. Pattern discovery in a
family or superfamily can identify regions that have
been subjected to lower rates of mutation and that may
therefore play a relevant functional or structural role.
HMMs or PSSM can then be derived from these local,
rigid multiple sequence alignments. These can then
be used to label orphan sequences or to screen large
genomic databases, such as dbEST, for unknown mem-
bers of the (super)family. Conducting such an analysis
systematically with existing discovery algorithms may
be computationally prohibitive. Splash, however, can
find al highly conserved sparse patterns in each one of
the more than 1300 protein families associated with at
least one PROSITE motif. This process requires about
2 h on afour-way SMP workstation.

Structural similarity: Many families, such as TNF and
C1Q, show no homology at the sequence level but are
clearly similar from a structural perspective. Patterns
that occur across both families can highlight elements
that are responsible for the structural similarity. Re-
sults obtained with Splash over these families are in
fundamental agreement and extend those reported in
(Shapiro and Scherer, 1998). In this paper, two short
patterns, L . . G and G . . Y, have been identified by
manual structural alignment and subsequent analysis of
one C1Q and one TNF structure. By analyzing all TNF
and C1Q proteins in SWISS-PROT 36, Splash finds
these two most statistically significant patterns in the
same regions as those of (Shapiro and Scherer, 1998).

[ILMV] [ILMFV].L...[DQEK] [RQEHK] [ILMV]
in 52 out of 68 sequences.

[ILMFV]..... G[ILMFV]Y. [ILMFV]..[RQEHK] in
60 out of 68 sequences.

These have been used to screen dbEST and have pro-
duced six previously unknown candidates that are now
under investigation.

Pairwise (super)family analysis: Pairs of functional

families that are not homologous can be analyzed to
discover patterns that are common across both mem-
bers. Because the number of pairsis extremely high, the
efficiency of the agorithm is paramount. Thisis useful,
for instance, in the analysis of signatures common to
many different transcription factors or antibodies.

Full Genome/Database analysis. Regions that are un-
usually preserved across an entire database can be
first automatically discovered and then clustered using
an RMSD measure. Starting from the Brookhaven
database, this methodology can be used to systemati-
cally identify patterns that are structurally, as well as
sequentialy, conserved. A small set of such three di-
mensional signatures, which were obtained by multiple
sequence alignment, have been used successfully for
predicting tertiary structure from sequence information
(Bystroff and Bakel, 1988).

The problem
Let us start by defining the identical pattern discovery
problem. Given a string of characters S = s1,...,S.

from an aphabet ¥ = {ag, ..., an}, pattern discovery can
be defined as the problem of identifying patterns of the
form (X U .)* that occur at least Jg > 1 timesin the
input. We shall call a character from the alphabet * a‘full
character’. A pattern character isthen either afull character
or awildcard.

EXAMPLE. A.B. . Aisan identica pattern which is
repeated twice in the string ACBDDABBDCA. Let us use
the notation of (Brazman et al., 1998) to represent a more
general class of patternsthat we shall call similar patterns.
Let Kq,...,Ky be different subsets of X generated
as follows: given a similarity metric H(Z, ¥’) and a
threshold h, for each character ¥; the subset K; contains
al characters such that H(X%i, X) < h. Useful similar-
ity metrics will be discussed in more detail in Section
Similarity Metrics. A non-redundant set is obtained by
removing all but one instance of any identical subset.
Let us then define a similarity alphabet & = by, ..., by,
disoint from X, with one character for each subset K;.
Wewill say that & matches any character contained in the
corresponding subset K (V). The characters in the class
Ki = {aj1,...,an} are usualy denoted by the usual
regular expression syntax as [&;1 . . . &in, -

As in the case of identical patterns, we shall call any
character in IT a full character. We shall also say that a
character IT e I1 matches acharacter £ € ¥, or that [T =
T ifeither IT = £, 0r © e K (IT). A wildcard matches any
character © e X. Then, one can define the similar pattern
discovery problem as the problem of finding every pattern
of theform (ITV' ./)*, which matches at least Jy > 1times
inS.

343

A.Califano

EXAMPLE. Let X = {A, B, C, D} be an aphabet and
H(A,B) < h,HB,A) < h,H®B,C) < h,H(C,B) < h,
H(C,D) < h, HD,C) < h asimilarity metric. Then
K1 = [AB], K2 = [ABC], K3 = [BCD], and K4 = [CD].
Thesimilarity aphabetisthendefinedas¥ = {a,b,c,d},
witha = K1, ...,d = Ky4. Inthiscase, apatterna . B . d
would matchany of A x Bx C,A x Bx D,B x B x C, and
B xBxD. Using theregular expression syntax, the previous
pattern becomes [AB] . B . [CD].

Many biological problems can be best modeled using
similarity metrics rather than identity. Some useful met-
rics are obtained from the well established probability of
mutation matrix (Schwartz and Dayhoff, 1978).

A variant of the similar pattern discovery problem is ob-
tained by replacing the alphabet ~ with an interval of the
real axis fR. In that case, the pattern takes the form (p U’
/y* and the similarity metric becomes a distance metric,
H(p, p") = |p—p’|. Such patternsare called proximal pat-
terns. They are useful, for instance, to describe correlation
in the value of specific physiochemical properties of the
amino acids, such as hydrophobicity or charge, in astring.

We shall call patterns that do not have leading and
trailing wildcards compact patterns. Splash only reports
compact patterns. Therefore, unless otherwise indicated,
by pattern we will intend a compact pattern.

Smilarity metrics

Since we are interested in similar patterns, let us define a
similarity metric H(x, y), wherex € X,y € X, asa
positive function of x and y, such that H(x, x) = 0 and
which satisfies the triangle inequality:

H(x,y) < HX, w) + H(w,y) @)

A symmetric similarity metric, i.e. H(X,y) = H(y, x),
is equivalent to a distance metric (Gerretsen, 1962). For
instance, if thelog-probabilities of amino acid mutation are
used to define similarity classes,

p(x —y)
LAANEE Loy) 2
pCy) } @

the resulting metric will be slightly asymmetric. H(Ala,
Asp)< H(Asp, Ala) because the probability of alanine
to mutate into aspartic acid is slightly larger than that of
aspartic acid to mutateinto alanine. Known log-probability
matrices satisfy the triangle inequality.

Note that the minimum of H (X, y) isreached when x =
y. The oppositeistruefor ascore matrix wherethe scoreis
highest along the diagonal. Given an alphabet X, one can
use these functions to define the similarity classes K; and
the relative alphabets W and TIT.

HX,y) = —Iog[

Smilarity metrics for protein sequences
As mentioned above, a convenient similarity metric
for protein sequence analysis can be defined using the

— log(P) of the amino acid mutation probabilities, such as
the onesin PAM or BLOSUM matrices. For instance, us-
ing a BLOSUMS50 mutation probability matrix (Henikoff
and Henikoff, 1992), and athreshold h = 2, the following
similarity classes {K} = K1, ..., K1g are obtained:

ala ~ [Ala] arg ~ [Arg, Lys] asn~ Asn, Asp]
asp ~ [Asp, Glu] cys ~ [Cys] gln ~ [Gln, Glu, Lys]
glu ~ [Glu, Asp, Gln] gly ~ [Gly] his ~ [His, Tyr]

ile ~ [Ile, Leu, Met, Val]
met ~ [Met, Ile, Leu]

ser ~ [Ser, Thr]

tyr ~ [Tyr, His, Phe, Trp]

leu ~ met
phe &~ [Phe, Tyr]
thr ~ ser
val &~ [Val, Ile]

lys ~ [Lys, Arg, G1ln]
pro =~ [Pro]
trp ~ [Trp, Tyr]

©)]
Then, given the sequence

Ala Cys Gln Gln Val Trp Ala Gly Ala Phe Ile Tyr Leu His Pro (4)

thepatternAla . . . Ile Tyr,forinstance, would have
locus {0, 6, 8}. Note, however that, based on the same
metric, thepattern Ala . . . Val Trp, which appearsat
position 0, would have a smaller locus {0, 6} since both
f(Val, Leu)> 2and f(Trp, His)> 2.

Definitions and Notation

Let S = s1,...,S. beastring with L values from a
fixed aphabet . This could be the DNA/RNA & phabet
Ypna = {A,C,G,T}, Zrna = {A,C,G, U}, or the protein
alphabet ¥p = {A,R,N,D,C,Q,E,G,H,I,L,K,M,F,P,
S,T,W,Y,V}. & could also be a value from a continuous
interval on thereal line. If X isdiscrete, given asimilarity
metric, one can compute the aphabets W and II, as
described in the previous section. A pattern i isthen any
string of the form (IT U /)*. If X is continuous, then a
pattern 7 is any string of the form (p U .)*. Thisisaso
described in the previous section.

Letuscal C, = {(IT;,di) | i = 1,...,k} thecompo-
sition of z. Thisisformed by taking each full character in
the pattern and its relative position, in characters, starting
at zero, on the pattern. The composition of a pattern and
the number of leading and trailing wildcards define it un-
ambiguously. The length of a pattern k = |C,; | is the total
number of full charactersit contains. A pattern of length k
iscalled ak-pattern. The span of apattern| = dx + 1isthe
total number of characters (full characters and wildcards)
it contains. A k-pattern with aspan of | charactersis called
akl pattern.

For instance, A.B. .C has length 3, span 6, and
composition {(A, 0), (B, 2), (C,5)}, and [AB].B..[BCD]
has length 3, span 6, and composition {([AB], 0), (B, 2),
([BCD], 5)}. Compact patterns start and end in a full
character, therefore they haved; = 0.

By definition, ak-pattern matches (or occurs) at offset w
onastring Sif and only if, for eachi, thereexistsall; € Il
such that

Sw+d, € T)
for eachvalueof 1 < i < k. The set of j absolute offsets
where a pattern matches in Sis called the pattern locus.

344

Structural pattern localization analysis

Thisisrepresented as W, = {wz, ..., wj}. A kl-pattern
that matchesat | = |W;| offsetsin Sis caled a jkli-
pattern. | is called the pattern support.

Finally, the comb of a pattern is the string obtained by
replacing each full character with a 1 and each wildcard
with a zero. The term k-comb and kl-comb have similar
meaning as the corresponding terms for patterns.

EXAMPLE. The comb of A..BC..D...E is
100110010001.
Given a string S, by my ,, we shal indicate the pattern
determined by the comb W at offset w on S.

EXAMPLE. Let ABCDEFGHI be a string. Then the pat-
tern w1001,3iSD . . G.

Basic pattern operators and relationships

The purpose of this section is to define a small number
of pattern operators and relationships that will be conve-
niently used for a compact description of the algorithm.

Trim operator: w = Ti(r) is a pattern obtained by
removing all leading and trailing wildcards from 7.

EXAMPLE. Let . . A.
Tt(]‘[):A. . B.

.B. .. beapattern =. Then

Trandation operator: m = w + X isapattern with locus
W =W+ x = {wy + X, w2 + X,..., wj + X} and
composition C' = C — x = {(I1;, di — X)}.

EXAMPLE. Let A . . B be a pattern with locus {5, 12}.
Such pattern, translated by —2, becomes . .A . .Bwith
locus {3, 10}. Patterns produced by positive translations
cannot be conveniently represented as strings. However,
they can still be represented by their composition and
locus.

Append operator: e = ma @ 7p isapattern with al the
characters of 75 followed by al the characters of w. If
the span of 4 isl, then 7 haslocus W () = W(ra) N
(W(mp) —) and composition C; = C3 U (Cp — 1).

EXAMPLE. Leta =A. .B.Candmp =B . C. Then
ma®np=A..B.CB.C.

Add operator: e = ma + 7p iSanew pattern with locus
W(me) = W(mra) N W(mp) and composition C, =

EXAMPLE. Let 13 =A..B.C.. .D be a pattern
with locus {2,13,25,40} and n;, =...B.CE a
pattern with locus {2,7,13, 25,49}. Then, n =

ma+7mp =A..B.CE. .D,withlocus{2, 13, 25} =
(2,13, 25,40} N {2, 7,13, 25, 49}.

If there existsatrand ation x such that the intersection of
the locus of two patterns W (ir¢) = W (ra) "W (irp) — X
is non null, it is sometimes convenient to add 75 and
p — X to form alonger pattern.

Using these operators, we can define the following pat-
tern relations.

Sub-pattern (super-pattern): mpisasub-pattern of w4 if
there exists atransation x such that W(mrg) 2 W(mp) +
x and C, D C,, — x. Conversely, m isasuper-pattern
of my, if 7y is asub-pattern of ;.

ExXAMPLE. A..BC.D with locus {1, 31, 76} is a sub-
pattern of BC.D with locus {4, 12, 34, 61, 79}. The
trandationisx = 3.

Aligned sub-pattern (super-pattern): z, is an aigned
sub-pattern of my, if it is a sub-pattern of p for x = 0.
Then, 7, is an aligned super-pattern of 4.

ExAMPLE. Given A..B.C...D with locus {2, 35, 60}
and A ..Bwithlocus{2, 10, 35, 60},thenA..B.C..Dis
an aligned sub-pattern of A . . B because, for atranslation
vauex = 0, {2, 10, 35, 60} 2 {2, 35, 60}.

Optimally aligned sub-pattern (super-pattern): mp,
with span |, isan optimally aligned sub-pattern of iy if
7 has more full characters than w4 and m, is identical
to the first | characters of m,. Then, 74 is an optimally
aligned super-pattern of my,.

By definition, an optimally aligned sub/super-pattern is
also an aligned sub/super-pattern. That is, W(rp) 2
W () and vice versa.

For simplicity, if r, is an optimally aligned sub-pattern
of 7, we shall call 7y, achild of 75 and 4 a parent of
Th.

ExXAMPLE. Both A..BC..E and A..BC.D are children
of A..BC.

Equivalent sub-pattern (super-pattern): =, is an
equivalent sub-pattern of w5 if it is a sub-pattern of
ma and W(my) = W(mp). Then, 74 is an equivaent
super-pattern of .

ExXAMPLE. AB.D,withlocus{0, 4},in ABCDABQD, isan
equivalent sub-pattern of both A..D, with locus {0, 4},
and B.D, with locus {1, 5}.

345

A.Califano

Maximal patterns

A pattern 7 is said to be maximal in composition (or c-
maximal) if there does not exist any equivalent sub-pattern
of r withthesame span. That is, if 7 cannot be extended to
alonger pattern, by dereferencing one of itswildcardsinto
afull character, without decreasing its support. A pattern
is said to be left maximal (or I-maximal) if there does not
exist any equivalent sub-pattern obtained by appending it
to another pattern. That is, if it cannot be extended into a
longer pattern, by appending it to another pattern, without
decreasing itssupport. A patternissaid to beright maximal
(or r-maximal) if there does not exist any equivalent sub-
pattern obtained by appending another patternitto. Thatis,
if it cannot be extended into alonger pattern, by appending
another pattern to it, without decreasing its support.

A maximal pattern is a pattern that does not have any
equivalent sub-pattern. That is, itisl-, c-, and r-maximal.
Maximality is an essentia property of pattern discovery
algorithms. It avoids reporting a combinatorial number of
super-patterns of each maximal pattern in the sequence.
We will require that the Splash agorithm report only
maximal patterns.

An important class, as we shall see later, is that of pat-
terns that are both left maximal and maximal in composi-
tion. These will be called | c-maximal patterns, for short.

EXAMPLE. Let the pattern A.B..C occur 100 times
in a string and the pattern A.B..C.EF occur twice. That
is, in two of the 100 occurrences A.B..C is flanked by
. EF. Then A.B..C occurring 100 times is maximal,
A .B..C.EF, occurring twice, is also maximal. How-
ever A.B..C.E, occuring twice, and A....C, occurring
100 times, are not maximal.

Density constraint

It isimportant to be able to specify the minimum number
of full characters kg required in any substring of a pattern
which starts with a full character and has length lg. It
is intuitive to interpret r = ko/lg as a density of full
characters per unit length. Therefore, we shall call such a
constraint the density constraint. Given kg and I, we shall
say that acomb is a (ko, lg)-valid comb (or ssimply avalid
comb) if either itslength is smaller than kg or the relation
diyky—1 — di <lpissatisfied for eachi suchthat1 <i <
k — ko + 1. A pattern with avalid comb is called a valid
pattern. Itisuseful to consider valid even patternsthat have
fewer than ko full characters, asthey may belater extended
to form longer patterns with more than kg full characters
and would otherwise beimmediately rejected. In any case,
aswe shall seelater, patternsthat have fewer than Ko < kg
full characters, with Kg a user defined threshold, will not
be reported anyway in the end.

EXAMPLE. The pattern A....BC....D satisfies the
density constraint kg = 3, lg = 7 because all substrings

(A....BC and BC....D), of length 7, starting on a full
character, have at least three full characters. The fact that
..BC... of length 7 has only two full charactersis irrel-
evant because it does not start with a full character. The
fact that substring C.....D has two full characters is also
irrelevant because the pattern contains only six positions.
A....B is dso valid pattern, for the same parameters,
because it has fewer than three full characters.

If one were not to specify such constraint, j-patterns
in random strings would be distributed around an average
length.

-1
R:LZp(Ei)[Z p(Ej)aiJ} (6)
i j

where [p(Ei)]—1 is the frequency of the symbol % in S
and ojj is1if H(Zi, Xj) < hand O otherwise. If ¥ isan
interval of the real axis, the sum must be replaced by an
integral.

The Splash agorithm is usualy run at three different
densities, from kg = 4, g = 8, 16, 32, aimed at dense to
very sparse patterns. Lower densities are not generally
useful as they tend to produce large numbers of patterns
that are not statistically significant. It is unlikely that
biologicaly significant, rigid patterns contain more than
28 consecutive wildcards. For instance, the PROSITE
database contains only one rigid pattern with more than
20 consecutive wildcards (PS001254). This is because,
in general, long regions without matching full characters
include loop regions, where insertions and deletions are
likely. Not many very sparse flexible patterns are reported
in the literature. For instance, PROSITE contains only
eight flexible patterns with more than 20 consecutive
wildcards. These are detected by Splash as two or more
separate rigid patterns and can be easily fused in asimple
post-processing phase. The algorithm has been imple-
mented so that it can call itself recursively. This allows
the user to find flexible patterns by discovering any rigid
patterns that occur within a predefined window on the left
and on the right of any other rigid pattern. The process
can be repeated until no more patterns are found. This
deterministic approach produces flexible patterns defined
by rigid components separated by variable-length strings
of wildcards.

The Algorithm

Let us define the input of the algorithm as a string S =
S1,...,S. and aset of parameters ko, lg, Jo, and Kgq. Let
us also define the set Qj of patterns that occur at least
Jo > 1timesin S, and which are (ko, lp)-valid. We shall
call any such pattern a final pattern. The output of the
agorithmisthenthe set Qs = {7} = Tt (Qg(k > Ko))

346

Structural pattern localization analysis

of al fina patterns which have length k > Kg > ko,
with their leading and trailing wildcards removed by the
trim operator. The latter are called reported patterns. The
extension from oneto multiple sequencesistrivial and will
be assumed in the rest of the paper.

We shall start by defining amethod to construct aninitia
set of patterns Ps = {x}, which we call a Seed Set, from
any string S. Ps either contains aparent of any final pattern
7 or 7 itself. We shall then define a recursive Splash
operator Ts(Ps, Qs), T2(Ps, Qs) = Ts(Tg_l(Ps» Qs)) to
process the input set Ps and the output set Qs. On thefirst
iteration Qs = @. At eachiteration, thisoperator performs
threetasks: () it eliminates patternsin theinput that are not
Ic-maximal; (b) it systematically extendsall input patterns
into valid patterns that have at least one more character;
(c) it inserts any pattern which isafinal patternin Qs.

We shall demonstrate that, at each iteration n, the
set P! = T2(Ps, Qs) contains at least a parent of any
final pattern that is not yet in Qs. Therefore, when
Te? (Ps, Qs) = &, Qs will contain all the final patterns.
Finally, we shall demonstrate that the algorithm converges
because ng is finite. The theorems and demonstrations
apply to identical, similar, and proximal patterns.

Let us start by defining the following dataset and opera-
tors.

Seed Set: Giventhestring Sand the parameterslg, ko, Jo,
Ko, let Qs = {7} be the set of all the fina patterns of
S. Then a Seed Set Ps = {7} isany set of patterns that
either (a) contains at least one parent = of each pattern
7 or (b) contains 7. In other words, any final patternis
either contained in Ps or it is a child, possibly with a
smaller locus, of at least one patternin Ps.

EXAMPLE. Given the string ABCDABEFABC and the
constraintskg = 2,1p = 4, Jp = 2, and Ko = 2, the
maximal patterns are AB..AB with locus {0, 4}, ABC
with locus {0, 8}, and AB with locus {0, 4, 8}. All three
of them can be obtained by extending the pattern AB
with locus {0, 4, 8}. Therefore, the set {AB} is a Seed
Set.

Canonical Seed Set: A Seed Set P is a Canonical Seed
Set if it does not have any subset which is also a Seed
Set. That is, each valid pattern on Siseither present once
in Ps or it is a subpattern of one and only one patternin
Ps.

ExXAMPLE. Given the string ABCDABQD and the con-
straintskg = 2,lp = 3, Jp = 2, Kg = 2, the set {AB}
isa Canonical Seed Set. Thisis because AB is the only
parent in {AB} of the only valid and maximal pattern,
AB.D. The set {AB,A.C} is not canonical because the
valid pattern AB . D is a sub-pattern of both AB and A . C.

A trivial Canonical Seed Set, for Jy = 2, kg = 1,
Ko = 1,and any lg is {m}, where 7 is the pattern with
empty composition and locus W(rg) = {1,2,...,L},
whichincludesall the possibleoffsetsof S. Thisisbecause,
by definition, this pattern is a super-pattern of any other
pattern in s. Since this set contains only one pattern it is,
by definition, canonical.

A convenient way to generate Seed Sets of alessgeneral
nature isto start from all possible

lg—1

(23) ¥
Ko-combs, {y/}k,, With ko < Ko, that start with a 1 and
have kg — 1 1sin the next | — 1 consecutive positions.
For instance, for kg = 2 and lg = 5, there are four
of these combs, 11000, 10100, 10010, and 10001. Given
one such comb v, one can list al the different patterns
.y, identified by the comb and by an offset w on S,
and evaluate their support based on the similarity metric.
Finally, one can remove all the patterns with support j <
Jo. Theresulting set will be called the (lo, ko)-set or PS* for
short. Thefollowing pseudocodeillustratesaprocedurefor
assembling Pg:

Create an empty Seed Set P& = &;
for each comb ¢ € {\//}ko {
for each offset won S and corresponding seed pattern my y {
Create an initial locus Wy, = {w}with just that offset;
count = 1;
for each other offset w’on S such that w # w’{
if (7y,, matches nw‘w/) {
add v’ to W;
count +-+;
}
)

/ICheck that Wy , is not the same as any other W, o
with w' <w
NotPreviouslyFound = true;
for each offset w’ on S such that w’' < w{
if (Wwa = Wt//,w’) {
/lthe two loci are identical
NotPreviouslyFound = false;
break;
}
}
/IIf this is a new pattern with a valid support
if (NotPreviouslyFound && (count > Jg)){
add 7y to P&

}

return Pg

THEOREM 1. Theset Pg isa Seed Set.

Proofsof all theoremscan befoundinthe Appendix. Sets
of this nature can be built efficiently by means of alook-
up table, such as the one described in the Flash algorithm
(Cdlifano and Rigoutsos, 1993). This procedureworksalso
for continuous values, based on the definition of a match
using a distance metric.

347

A.Califano

Maximality

As we discussed before, only maximal patterns should be
reported. Otherwise a combinatorial set of super-patterns
of any given pattern would be reported. Since, as we shall
see, we extend patterns exclusively by appending other
patterns to them, if we were to extend any pattern that
is not | c-maximal we would be guaranteed to get a non-
maximal pattern. On the other hand, by extending in this
way an Ic-maximal pattern, we may get new patterns that
are maximal.

For instance, given the string ABCAABCACBCD, the pat-
tern BC with locus {1, 5, 9} islc-maximal. However, BCA
isnot | c-maximal sinceit isan equivalent super-pattern of
ABCA. If we were to extend BCA, therefore, we would get
non-maximal patterns.

We define the operator Tm(;r) to check for pattern |c-
maximality:

Tm(r) = {7} if 7 islc-maximal
{ Tm(r) =9 if 7 isnotlc-maximal (8)
Tm({mi}) = UTm(mi)

THEOREM 2. Any parent of a final pattern is Ic-
maximal.

It followsthat if PsisaSeed Set, T (Ps) isalso aSeed Set.

THEOREM 3. Any valid [c-maximal pattern = is either
afinal pattern or it isa parent of one final pattern with the
same support.

THEOREM 4. If a set Ps contains only unique patterns
and no pattern & € Psisa child of another pattern =’ €
Ps, then the set T (Ps) isa Canonical Seed Set.

For acompact description of Tpy,, let us define aBoolean
function E(W, x) which istrueif and only if there exists
any character IT; € IT such that s(wm + X) = IT; for each
valueof 1 <m < j. Then, Ty, can beimplemented by the
following pseudo code:

Tm(m) {
//First check that pattern is composition-maximal
for each offset X corresponding to a wildcard inm {
if (E(Wg,x) {
return J;
}
}
// Then Check for left-maximality
for each offset X such that —lg+dg—1 <X <0
if (E(Wr, X)) {
return &
}
}

return {7}

This operator is a key component of the efficiency of
the Splash algorithm because it eliminates most potential

pattern candidates very early, before they have a chance
to contribute to an exponentia growth of the number
of hypotheses. If this operator is not implemented and
patterns are checked a posteriori for maximality, both
memory and computational efficiency of the algorithm
decrease exponentially in the size of the input.

The Histogram operator

Given a jkl-pattern 7, the Histogram operator Ty, is used
to createall the possiblevalid (1 +1)-patterns {s }, obtained
by appending astring of theform”’ -/ » T’ - '« to r, which
have support at least Jp.

Given an Ic-maximal pattern, r, of length k, we can
define the extension interval |, adjacent to 7, such that
s would be maximal unlessit could be extended, without
reducing its support, by at least one full character in 1 ;.

EXAMPLE. Let A.B be alc-maximal pattern and kg =
3, lo = 5 be density parameters. Then A . B would be max-
imal unless one could extend it, without reducing its sup-
port, by at least onefull character at either one or two posi-
tionsto theright of theB. Similarly, thel c-maximal pattern
A .B.CD would aso be maximal for the same parameters
unless one could extend it by one full character, without
reducing its support, either at one, two, or three positions
to the right of the C.

|, can be defined as follows:

Il =[Llo—1—(ko—K)]
I =[1, 1o+ Ok—kpt2 — I

if k < ko
itk>k, O

Here, | isthe span of 7. In the previous example,

la.B=1[1,5-3-3-2]=1[12]
laAecp=[15+4—-6]=]1, 3] (10)

The Histogram operator, Ty, which, given a pattern r,
produces the set {7} can be defined as follows. For each
offset x € I, let us define al the positions w + | + X,
with w € W, the locus of 7. Our god is to find how
many of the similarity classes I'; are supported by at least
Jo elements in each set defined by a specific value of x.
Any such class and offset x can be used to extend r into
alonger pattern 7 which isvalid by definition. If a pattern
7t has support less than Jp it is eliminated.

If the al phabet is discrete, this can be accomplished with
an array CI[x, IT;], with one entry for each value of the
offset X € |, and for each similarity classin I1. Thisis
summarized by the following pseudo code:

Th(m, Qs) {
create an empty result set R=0
for each X in Iy {
// Initialize the counters
for eachIlj € IT {

348

Structural pattern localization analysis

set each C[X, [Ij] = @
}

for eachw € Wy {
c=Sw+!+x)
for eachIlj € Il such that Cc e IIj {
add w to C[Xx, IT;]
}
}

// Remove all redundant counters
for eachIlj € IT {
for eachIljy € Mwithi’ >i {
if C[x, ITj] = C[x, ITj/] {
set C[X, [y] =9
}
}
if [CIX, il = o
create a pattern 7/ with the character [I;
at offset
X and wildcards at any other position Ij
set t=n®n
add the pattern 7 to R,
}
}
}

if no pattern & € R has support W; = Wy {
add 7 to Qs

}

return R

If ¥ is an interval of the real axis, instead, one can
use a similar deterministic procedure to count all sets of
valuesthat satisfy the distance metric constraints. This can
be done efficiently, for instance, (a) by sorting the values
s(w + | + x), for each w € W(r) and for afixed value
of x; (b) starting at each value, by counting how many
consecutive values satisfy the distance metric constraints;
(c) by removing any set that is a subset of another set.

If none of the patterns 7 is an equivalent sub-pattern of
7, i.e. it has the same support of 7, then 7 ismaximal. In
that case, if it has at least Ko > kg full characters, it is
a reported pattern and it is added to Qs. As aresult, 7 is
never contained in {7 }.

EXAMPLE. Let S = ABCDEABCCEABCDA be a string
and AB be a pattern. Given the constraintskg = 3, lp =
5, the extension interval is Iyg = [1, 3]. If the only
similarity classis [CD], then the only array entries with a
positive count are C[1, C] = {2, 7, 12}, C[2,D] = {2, 12},
C[2,[CD]] = {2,7,12}, and C[3,E] = {2,7}. Asa
consequence, the following patterns can be generated:

x =1 7o =ABC..; W, = {0, 5, 10}

X=2 m1=AB.D.; Wy, = {0, 10} and
7o = AB . [CD] . ; W,, = {0, 5, 10}

X=3 n3=AB. .E; Wy, = {0, 5}

Since both 77¢ and 772 are equivalent sub-patterns of AB, the
latter is not a maximal pattern.

Enumer ate operator

Th hasbeen used to list all possible valid, single full char-
acter extensions {7} of . Then, the purpose of the enumer-
ate operator Te({7}) isto create all the possible valid pat-
ternswhich extend 7w by one, two, or morefull charactersin
the extension interval |, . These can be obtained by adding
together any possible subset of {7}. For instance, if 7 =
AB and {77} containsthe patternsAB . C . . andAB. .D .,
thenthepattern AB. CD=AB.C. . +AB. .D. asoex-
tends AB. Any such patternisvalid by definition because it
is formed by adding valid patterns and can therefore only
be denser. Resulting patternsthat have support lessthan Jo
are eliminated.

Letusdefine{n} = Te({77}) = Te(Th(, Qs)) asthe set
of all possible patterns with support j > Jp, obtained by
adding any possible subset of {7}.

THEOREM 5. The set {7} is a Seed Set for any final
pattern that is a child of .

Note that, since independent subsets of {77} are unique,
the prerequisites of Theorem 4 are also satisfied. That is,
no two patternsof {57} areeither identical or have aparent—
child relation. Therefore, from Theorems 5 and 4, T (77)
isa Canonical Seed Set.

The Enumerate operator Te({7r}) can be defined recur-
sively and efficiently by the following pseudocode:

Te({7}) {
it ({7} =a{
return <&
Jelse {
define a results set Rg = {7};
for each pattern 7 in {7} {
initialize a temporary empty set Ts = &;
for each pattern 7js in {7} such that i’ >1i {
compute 7 = 7j + 7/
if 7 has support greater or equal than Jp{
insert 7 in Ts;
}
}
Rs = Rs U Te{Ts}
}
}
}
return Rs;

}

Splash

Given the Seed Set P¢ the Splash algorithm can be com-
pactly represented by the following recursive notation:

{TQ(P*, Qs) = Ts(TI1(PZ, Qs)) (11)
Ts(Pg, Qs) = Teh(Tm(P:), Qs)

where
Ten({mr}, Qs) = Uy Te(Th(mr, Qs)) (12)

349

A.Califano

Pattern discovery terminates at the nth iteration, if
T2(P#, Qs) = @. The following six properties of the
algorithm have been demonstrated.

1. Aninitial Seed Set can be constructed for any set of
constraints. From Theorem 1, PS is a Seed Set for any
choice of Ig, ko, Jo, Ko.

2. Atanyiterationn, TO(PS, Qs) isaSeed Set for any final
pattern not contained in the result set Qs. This follows
from Theorems 2, 3 and 5.

3. As a consequence, when To? (P, Qs) = o, al final
patterns are contained in Qs.

4. Thealgorithm converges. At eachiteration n, patternsin
TQ”(P*, Qs) contain at least one more full character
than patterns in T3 (Pg, Qs). Therefore, for ng < L,
T$? (P, Qs) = 2.

5. Patternsin Qs are maximal. This follows by the defini-
tion of the histogram operator.

6. Thealgorithm isefficient. Theorem 4 provesthat the set
Tm(T2(PS, Qs)) is aCanonical Seed Set for any final
pattern not in Qs. This is, by definition, the smallest
set of patterns that all remaining fina patterns can be
derived from.

Parallelism

Asshown in previous sections, each Seed Pattern 7= can be
processed independently of any other Seed Pattern, asthere
are no global dependencies in any of the operators. Even
thelc-maximal operator, T (), which must verify that
is not a sub-pattern of any other maximal pattern, can be
implemented without any knowledge of other discovered
patterns. It follows that the algorithm is embarrassingly
paralel inthe number of patternsin the Seed Set. The only
globally required information is the input string S. Also,
final results must be collected and reported.

A typical approach to parallelize this kind of algorithm
is to use a function such as f(r) = [g(7)mOdNp],
where g(sr) isahash function that returnsapositiveinteger
based on the pattern w and Ny is the number of available
processors. Then, each node operates on the partial Seed
Set PS(Npr = f(PS) and returns a partial results set
Qs(Npr) such that Qs = UQs(Npr). More sophisticated
|oad-bal ancing functions can be used as well.

The Statistical Significance of Patterns

In Stolovitzky and Califano (1999), it is shown how the
average number of maximal jkl-patterns in a random
database s of length L, with a (lg, ko) density constraint,
isgiven by

(njia) ~ No(k, 1) (L _J! " 2) ()Y

[1— () 1" "=271(pin) (Pout) (13)

In the above expression, No(k, I) isthe number of (lg, Ko)-
valid combs that have a span |, and length k. () is given
by the following expression,

(P) =Y p(E)p ()], (14)
P

where p(Z) is the probability of the value ¥ to occur in
the sequence and

P(2) =) p(EHH(E, T (15)
2/

is the probability of the value X to randomly match any
other character in S. Also, pin and poyt are respectively the
probability that agiven j kl-patternismaximal in composi-
tionandlength. Fromthisanalysis, itispossibleto estimate
the probability that any discovered pattern would have oc-
curred in arandom database of similar size and composi-
tion. Thisprobability iscloseto abinomial distributionand
itsfirst and second moment, its mean and variance, arewell
defined. Therefore, it is useful to compute a z-score as;

_ Njk — (Njki)

Onjy

z (16)

where njy isthe number of discovered jkl-patterns. Full
details of this analysis, which is in excellent agreement
with experimental data, are available in Stolovitzky and
Califano (1999).

Performance

To test the scaleability of the algorithm we have run a
range of comparison tests against Pratt and MEME. The
tests show that Splash significantly outperforms both
algorithms in terms of raw performance, limitations on
discovered patterns, and scaleability. Because MEME
is geared towards the discovery of the most conserved
regions in protein families rather than of the exhaustive
set of conserved patterns, it cannot be compared directly.
Thiswill be discussed in Section 6.2.

Pratt

The performance of Splash and Pratt as a function of
an increasing database size is shown in Figure 1. The
database is produced as follows. First an appropriate
sequence sample set is selected from the Brookhaven
PDB database to obtain the desired size. Then the position
of the amino acids are randomized. This results in a
random database of an appropriate length, with the same
amino acid frequency as the corresponding PDB sample.
Patterns that occur in more that 20% of the sequences in
the database are reported. Total size of the databases is
8192 x 2',with0 < i < 6. Databases for values of i
ranging from O to 6 are processed. The largest random

350

Structural pattern localization analysis

Pattern discovery performance

1000 — I r 5 m 2500
3—£1 Splash / O—© Patterns H
4 2000
O—© Pratt
Z 100 /
) /
£ 41500
o
& | g
> y =
g8 10 " 1000
/ 4 500
1 e —————H
] . il g
8 16 32 64 128 256 512

Database size in thousands of residues

Fig. 1. Splash and Pratt: Time versus Database Size. Pattern discovery time is reported versus database size. Identical patterns are reported
by the two algorithms. Discovery parametersare kg = 2, lg = 5, support is 20% of sequences in databases.

(b)

@ Histones | and V: Time versus support
100
q
)
(]
£
% 10 i
3 o
ki B
(@] Ke\
0
100 120 140 160 180 200
Sequence support

Histones | and V: Time versus patterns

100
@ oo
£
£ Lo
o 4
3 /
3
o
0 Le—]
100 1000 10000

Discovered patterns

Fig. 2. Splash versus Pratt: (a) versus pattern support j, (b) versus the number of discovered patterns.

database is approximately 512 000 residues. On the left Y
axis, we show thetime, in seconds, required by Splash and
Pratt to process the random databases in log scale. On the
X axis, we show the database size, d'soinlog scale. Onthe
right Y axis, we show the number of discovered patternsin
linear scale. Thisis shown by the curve with the diamond
symbol. The density constraintsare kg = 2,lgp = 5. The
maximum memory footprint of the program is 12 Mb.
The patterns discovered by Pratt are identical to those
discovered by Splash. However, Splash is increasingly
faster than Pratt as the database size increases. At the
smallest database size, 8 KRes, it is about six times faster.
At size 128 KRes,, it is about three orders of magnitude
faster. Also, while patterns reported by Pratt are limited to
amaximum span, 50 charactersin this case, Splash would

discover any pattern that satisfies the density and support
constraints, no matter how long.

We report similar performance measurement against
a histone | database (Makalowska et al., 1999), with
209 proteins, at increasingly higher values of the support.
Thisisan interesting case because this database is pattern-
rich, generating in excess of 10000 patterns for kg = 2,
|0 =5, and Jo = 100.

Thediscovery performancefor Splash and Pratt isshown
in Figure 2. Pratt crashes on our machine for support Jo <
180. In Figure 2(a), time is shown as a function of an
increasing valuefor Jy, the minimum number of sequences
containing the pattern. In Figure 2(b) time is shown as a
function of the number of discovered patterns. For Jp =
180, Splash is amost two orders of magnitude faster. The

351

A.Califano

maximum memory footprint of the program is 8 Mb for
Jo = 100.

Meme

MEME, which is based on a PSSM model, is geared
towards the discovery of the most conserved contiguous
regions in a protein set. Also, the density constraint does
not make sense in the context of PSSM. Therefore, a
straightforward comparison is difficult and probably
inappropriate. To compare the performance of the two
algorithms, therefore, we only tested Splash’s ability to
discover the most conserved regions in a protein set. We
run against the lipocalin file which is included with the
MEME distribution. MEME takes 8.9 s to discover the
two top patterns in the five sequences. Splash discovered
two patterns that extend over the same regionsin 1.16 s.
These were the two most statistically significant patterns
among those that occur in all sequences, for kg = 4, and
lo = 8. Asdiscussed, this is the standard initial density
constraint used with Splash to discover PROSITE-like
patterns or motifs.

To test scaleability, we al so performed the analysis of the
histone | family described in Section Pratt. Splash takes
8.7 stodiscoverthemotif G . S . . . [ILMV] . . . [ILMV]
which occursin every sequence. Thismotif isdiscussed in
detail in Section Experimental Results: Histones. On the
same CPU, MEME takes 3771.38 s to discover a PSSM
spanning the first six characters of the pattern discovered
by Splash.

Density constraints

Finally, the impact of the density constraints on perfor-
manceisgivenin Figure 3. Thisisanimportant parameter,
as it determines the ability of the algorithm to discover
either dense or sparse patterns. Here we show the perfor-
mance of pattern discovery, for a substantial variety of
density constraints, against a set of 124 proteins, about
150 KRes, that contain the aspartic acid and asparagine
hydroxylation site. For kg = 2weuselg = 2, 4, 8, 16, 32.
For ko = 4, weuselg = 4, 8, 16, 32. Larger values of Ig
result in patterns that are too sparse and not statistically
significant.

This protein set has been obtained from the PROSITE
entry PS00010. The goal is to automatically discover the
PROSITE signature C-x-[DN]-x(4)-[FY]-x-C-x-C.
The support constraint, then, is set at Jg = 124, or 100%
of the proteins in the set. BLOSUM50, with a threshold
ho = 2, is used to produce the similarity metric. That
is, pairs of amino acids that score better or equal to 2
in BLOSUMS50 are considered similar. Other values for
the support parameters are possible as well, for instance,
to discover PROSITE signatures that do not occur in all
proteins of afunctional family. A full scale analysis of the
PROSITE database, however, is beyond the scope of this

paper and has been conducted separately. Results will be
reported in afollow-up paper.

A pattern virtualy identical to the PROSITE signa-
tures (C-x-[DN]-x(4)-[FYW]-x-C-x-C) is correctly
discovered as the most statistically significant pattern
forkg = 2,1p = 16,32 and for kg = 4, 1p = 16, 32.
Figure 3(b) gives the number of discovered patterns for
the various parameter choices. As shown here, there are
no patternsdiscovered for kg = 4, 1o < 16 and just asmall
number of patterns, with two amino acids only and low
statistical significance (e.g.,G. D), forkg = 2,
lo < 16. Figure 3(a) shows the time, in seconds, as a
function of the density constraint parameters. As can be
seen, the efficiency of the algorithm allows one to explore
aconsiderable range of density and support parametersin
minimal time.

Sensitivity of identity versus similarity metrics

To analyze the increase in senditivity resulting from
similar pattern discovery, the following analysis has
been performed. First, 10 identical copies of a random
sequence of length 40 have been generated with compo-
sition identical to the histone | family (Makalowska et
al., 1999). Then, each sequence has been padded left and
right to a predefined length L with random amino acids
using the same composition. From this set, subsequent
mutated populations of identical length and with the
same number of sequences have been generated using the
procedure described in (Dayhoff et al., 1978), starting at
an evolutionary period of 5 PAMs and increasing that in
steps of 2 PAMs. Finaly pattern analysis is performed
using either an identity or asimilarity metric. The number
of statistically significant patterns (z-score > 3) are
computed. Results for identical pattern discovery, for
increasing values of L, are shown in Figure 4(a). Results
for similar pattern discovery are shown in Figure 4(b).

The goa of this exercise is to model the likelihood of
detecting an active site (chosen to be 40 residue in length)
which has been preferentially mutated to preserve amino
acidsof similar properties, in sequencesof different length.
The statistical significance of pattern after x PAMs is a
measure of the correlation of the original sequences. This
is an oversimplified model and does not accurately model
evolution. However, as discussed in Dayhoff et al. (1978),
it is indicative of the amount of conservation one can
expect in afairly small peptide region.

The similarity metric of Section Similarity Metrics
for Protein Sequences, has been used. This is based on
BLOSUM50 with athreshold of 2. Populations have been
produced by repeatedly applying PAM1 to the original
sequences. We have deliberately mixed PAM and BLO-
SUM matrices, during simulated evolution and analysis,
to show that even with different models, similar patterns

352

Structural pattern localization analysis

,\
&

Discovery time versus density

300] T T T 1)
. 00— k=2
z 0—o k=4
g 200 o
>
g /
Q
§ 10.0
(]

q
OO i 1 1 L e

40 80 120 16.0 20.0 24.0 28.0 32.0

Window sizel,

~
RS

Discovered patterns

Discovered patterns versus density

100.0 — —_——
800 o o :?;j //)
60.0 A

40.0 /

200 / s

0.0 s P

40 80 120 160 200 240 280 32.0

Window sizel,

Fig. 3. Pattern discovery performance as a function of the density constraint. Runs on the PS00010 PROSITE family withkg = 2,1 =

2,4,8,16,32and kg = 4,19 = 4, 8, 16, 32.

are better at pinpointing distant relationships. The number
of statistically significant patterns discovered with the
identity metric drops to zero quickly. With the exception
of the shortest sequence length L = 100, which generates
the smallest amount of noise (i.e. patterns that are not
statistically significant), no pattern is reported after more
than 11 PAMs. As shown, the similarity metric practically
doubl es the time horizon.

Experimental Results: Histones

An important measure of a pattern discovery algorithm’s
performanceisitsability to discover hidden motifsin large
protein databases. A typical approachisto start withamin-
imum support equal to a high percentage of the total num-
ber of proteinsin the set, say 95%, and afairly high density
constraint. Typical valuesarekg = 4, g = 8. BLOSUM50
or BLOSUMG62 can be used with athreshold of 1 or 2. If no
interesting motif is discovered, first the density constraint
isdecreased (Ip = 12, 16, ...), until patterns that are not
statistically significant start appearing (typicaly lo < 40
for afew hundred proteins). If statistically significant pat-
terns still fail to occur, the minimum support is progres-
sively dropped to increasingly lower values and the cycle
isrestarted.

In this case, we have run Splash against a histone |
database with 209 proteins (Makalowska et al., 1999). If a
similarity metric defined by the BLOSUM50 matrix with
athreshold of 2 isused and the density constraint hasky =
4 and lg = 12 (thisis the second attempt in the above
procedure), Splash takes 8.7 s to detects the following
motif:

mog=G.S...[ILMV]...[ILMV],
(j =209, Zs = 3.013- 10°)

Pratt and Meme take respectively 66 s and 3771, to find

basically the same protein region. The z-score Zg is com-
puted from the analysis described in Section The Statisti-
cal Significance of Patterns. It is defined as:

N(jk) — N(TjK)
o (k)

Zs[mjul = , (17)

wheren(rjk) and o (jK) are, respectively, the mean and
the variance of the number of jkl-patterns that would
occur in arandom database of that size and composition.
Heren(rjx) = 1 because we are considering each pattern
independently. That is, the jkl-pattern occurred at least
once.

Giventhevery largevalue of the Zs, itishighly unlikely
that a pattern like this would arise spontaneously from a
database with a histone-like amino acid frequency of the
same size. The analysis, accounts for the fact that two of
the four residues match exactly and two match similarly.

Thisisconfirmed empirically by theanalysis of thethree
dimensional structures of the globular domain of the only
two histone proteinswherethe motif occursin PDB. These
arerespectively the globular domain of the H1 (Cerf et al.,
1993) and H5 (Ramakrishnan et al., 1993) histone from
chicken. Note that although H1 and H5 are homologous,
H5 proteins were not in the database used to discover the
motif. As can be seen from Figure 5(a) and (b) where the
two motifs are highlighted, there is significant structural
similarity. This occurs in the region between residues 22
and 32 on H1 and between residues 44 and 54 on H5.

The glycine and serine are exposed on the surface
of the protein in a loop at the end of an apha-helix.
The two leucines in H1, mutated into isolucines in H5,
contribute to the stability of the hydrophobic core on the
alpha-helix. Although the structural properties of this
area of the histone globular domain have not been fully
understood, it could play an important structura role

353

A.Califano

&

Evolutionary motif detection (identity)

200 I
- \\ —o =10
C G—O L=200
150 ¢ A—A L=300 | |
C \ B—8 L=400

Statistically significant patterns
H
o
o

AN
AN

(&)
o
=
o
o

o
LB
:f

PAMs

Statistically significant patterns

—~
)

Evolutionary motif detection (similarity)

20.0 I

L *\ O0—© L=100

E 0—O L=200
15'0: A—A L=300 | |

- B—8 L=400
100 F

50 \\
OIIIIIM‘

Fig. 4. Statistically significant patternsas afunction of simulated evolution. Different curves model the detection of a40 amino acid conserved

region within alonger uncorrelated sequence.

because it harbors the most conserved motif in the whole
histone | family.

It should be noted that, in this case, the ability to
discover patterns with a similarity metric plays an impor-
tant role. In particular, there are no three full character
sub-patterns of g that appear in al the sequences. The
sub-pattern 73 = G.S..... K, which occurs in
201 proteins, has Zs = —0.64 which makes it virtually
indistinguishable from background noise. In fact, there
are about 170 patterns of this kind spread all over the
input sequences. From a statistical point of view, patterns
containing two full characters are not significant in this
database. Therefore, without the use of asimilarity metric,
directly in the discovery process, pattern wo would not
readily emerge.

Experimental Results: G-Protein-Coupled
Receptors

Another result is shown from a superfamily of 918 known
and hypothetical G-Protein-Coupled Receptors. Here,
Splash has been used to discover statistically signifi-
cant motifs that occur in the largest number of protein
sequences in a set, with a procedure identical to that of
Section Experimental Results: Histones.

If anidentity metricisused, even with avery low density
constraint defined by kg = 4 and lg = 30, asingle four
amino acid pattern is found that occurs in more than half
of the proteins:

mo=N. DRY,
(] =474, Zs = —11.13)
This pattern contains the previously known and well pre-
served DRY tripeptide for family A. Based on the Zg, how-

ever, this pattern would be difficult to separate from the
noise.

Under identical conditions, if the similarity metric de-
fined by the BLOSUMS50 matrix with a threshold of 2 is
used with the same density constraint, almost 500 patterns
are discovered. These have at least two identical and two
similar residuesand occur in morethan half of the proteins.
The most frequent pattern witha Zg > 3is

TL=Ceie e ILMV] . .
[ILMV] . . [NDEIR...[ILMV],
j =619; Zs = 2.26 x 10*.

This highly statistically significant pattern has two identi-
cal and three similar residue matches. This motif, used to
search against SWISS-PROT Rel. 36, returns 874 GPCR
proteins and only 30 potential false positives. About half
of these are hypothetical proteins or proteins with a puta-
tive annotation.

Even a pattern with a significantly lower chance of ap-
pearing in alarge database than 7, such as

T2=C e L..[ILMV] . .
[DEB] [RQK] [HFWY] . . [ILMV],
j = 483; Zg = 2.46 x 10*

withtwo identical and five similar amino acid matches, still
occurs in more proteins than the identical pattern g, and
it has amuch higher Zg, 2.46 x 103* versus —11.13. Note
that the z-score is not a measure of how likely a motif is
to occur in adatabase. Rather it isameasure of how likely
the motif would be to occur j timesin arandom database
of the same size and composition.

This motif is extremely selective. If it is used to search
against SWISS-PROT Rél. 36, it returns 578 GPCR pro-
teins and only four possible false positives. These are:

1. C555_METCA Cytochrome C-555,

354

Structural pattern localization analysis

@

wez

(b)

ILEB4A

Fig. 5. Globular domain of histone | and V proteins. (a) Chicken histone H1, (b) chicken histone H5.

2. KEMK_MOUSE: Putative serine/threonine-Protein Kinase
EMK,

3. SRG8_CAEEL: SRG-8 Protein,
4. UL29_HCMVA: Hypothetical Protein UL29.

Given the extremely low false positive ratio (0.68%), it
is quite possible that either two or four may have been
mislabeled and should really be considered members of the
GPCR family.

We have been unable to replicate these results using ei-
ther MEME or Pratt. MEME was still running after severa
days. PRATT crashed on our hardware configuration. We
attributed thisto acombination of the database size, itslow
overall homology, and its high pairwise homology.

Inthispaper welimit ourselvesto single pattern analysis.
However, given thelarge number of statistically significant
yet different patterns that can be discovered, even better
classification results can be obtained by using multiple
statistically significant patterns simultaneously. This will
be the subject of afollow-up paper.

Conclusions

This paper introduces Splash, a new deterministic al-
gorithm for identical, similar, and proxima pattern
discovery. The most significant contribution of Splash
is its efficiency and scaleability without any sacrifice
in terms of the completeness of the results. Very large
biological sets, such asthe full Swissprot or PDB database
or entire genomes, can be processed by Splash in hourson

conventional workstation class hardware. These reduced
computational requirements alow a significant portion of
the search parameter space to be explored and studied. As
a result, motifs that would normally elude discovery can
be quickly and systematically identified.

The resulting motifs can be used for a variety of bio-
logically significant purposes, from automatic sequence
clustering, to the definition of HMM and PSSM models
for accurate and sensitive sequence screening, to multiple
sequence alignment.

The paper also showsthat, as expected from pairwise se-
guence comparison, the use of a similarity metric signif-
icantly increases the chances of detecting statistically sig-
nificant motifsindistantly related families. Finaly, by cou-
pling the algorithmic part with the analysis of the statisti-
cal significance of patterns, we have shown that interest-
ing motifs can, in some cases, be separated from the large
background of patterns that are not statistically significant
discovered in large data sets.

Splash is currently being used for a wide variety of
analysis tasks that range from the automated functional
and structural annotation of orphan sequences, to the
systematic, automatic discovery of PROSITE motifs.

Acknowledgments

Wewould liketo thank Gustavo Stolovitzky, Ajay Royyuru,
and Laxmi Parida for their valuable help with this paper
and for many useful suggestions. We would also like
to thank Barry Robson, Aris Floratos, Yuan Gao, and

355

A.Califano

Mike Pitman for the many useful discussions on the topic
of pattern discovery.

Appendix

THEOREM 1, PROOF. Given any final pattern 7 on S,
let us construct my,, a parent of 7, by selecting its ko |eft-
most full characters. If 7 isafinal pattern, it must have at
least ko full characters and the first kg ones must span no
more than | positions. Given that 7 must also satisfy the
support requirements j > Jo, then also my, satisfiesit be-
cause, asasuper pattern, itslocusincludesthat of 7. Then,
T, 1S contained in the set Pg because this set contains all
patterns that have exactly ko full characters over at most I
positions and satisfy the support requirements.

THEOREM 2, PROOF. Let usdefine x ', aparent of a
final pattern 7z of length k, obtained by removing thelast i
full characters of 77, withi < k. By definition, the support
of 7~ isgreater or equal to that of 7 because W(z ') D
W(7). Therefore, if 7' were not |c-maximal then, any
child of 7', including 77, would also not be [c-maximal.
Since any parent of 7 is of the form 7', then any parent
of afinal pattern must be | c-maximal.

THEOREM 3, PROOF. Consider the set of all the valid,
equivalent sub-patterns of a pattern . If the set is empty,
then 7 is afina pattern by definition. Otherwise, if the
string Sisfinite, there must be one such sub-pattern ’ that
does not have any other valid, equivalent sub-pattern. By
definition that pattern is a final pattern. = is a parent of
7’ because, by definition, an |c-maximal pattern does not
have any equivalent sub-pattern that is not a child.

THEOREM 4, PROOF. From Theorem 3, it follows that
Tm({z}) canonly contain final patternsor parentsof afina
pattern 7. Suppose there are two independent parents of
in Tm({m}). Then, say that the first one, 7k, contains the
k leftmost full characters of 7 and that the second one,
e, contains the k’ < k leftmost full characters of 7. If
k = K/, then mx = m which violatesthefirst assumptions.
If k' < k, mk isachild of m, which violates the second
assumption.

THEOREM 5, PROOF. If 7 is maximal, it has no valid
sub-patterns and {7} = {7} = @ satisfies our require-
ments. Otherwise, let 7 be afinal pattern which is a child
of . There must be a non-empty set of full characters
{ITj (X{)} in 7 that occur at an offset x; € |, after «.
Otherwise, the density constraint would be violated. Each
such full character must occur at least Jy timesin S at the
offset x; after 7. Then, each one of these full charactersis
detected by the histogram operator and it is used to extend
7, by asingle full character, into a pattern s1; € {7}. The
|atter can be written as 7; = 7 @ 7, where 7 consists

of |1;| wildcards and the character I1; at the offset ;.
The set of all the patterns {7;}, formed from {IT; (xj)},
is therefore a subset of {77}. By construction, the pattern
obtained by adding all the 77; together is contained in the
set {7}. This pattern is also a parent of 7 since its k full
characters are thefirst k full characters of 7.

References

Bailey,T.L. and Elkan,C. (1994) Fitting amixture model by expecta-
tion maximization to discover motifsin biopolymers. InProceed-
ings of the Second |SMB Conference. AAAI Press, Menlo Park,
pp. 28-36.

Bailey,T.L. and Gribskov,M. (1998) Methods and statistics for com-
bining motif match scores. J. Comp. Biol., 5, 211-221.

Bairoch,A. (1991) PROSITE: a dictionary of sites and patterns in
proteins. Nucl. Acids Res., 19, 2241-2245.

Bernstein,F.C., Koetzle T.F, Williams,G.J. B., Meyer, J.E.F,
BriceM.D., Rodgers,JR., Kennard,O., Shimanouchi,T. and
Tasumi,M. (1977) The protein data bank: A computer-based
archival file for macromolecular structures. J. Mol. Biol., 112,
535-542.

Brazman,A et al. (1998) Approaches to the automatic discovery of
patternsin biosegquences. J. Comp. Bial., 5, 279-305.

Bystroff,C. and Bakel,D. (1988) Prediction of loca structure in
proteins using a library of sequence-structure motifs. J. Mol.
Biol., 281, 565-577.

Califano,A. and Rigoutsos,|. (1993) FLASH: A fast look-up al-
gorithm for string homology. In Proceedings of 1993 ISMB.
Bethesda, MD, pp. 56-64.

Cerf,C., Lippens,G., Mulyldermans,S., Segers,A., Ramakrishnan,V.,
Wodak,S.J., Hallenga,K. and Wyns,L. (1993) Homo- and het-
eronuclear two-dimensional NMR studies of the globular domain
of Histone H1: Sequential assignment and secondary structure.
Biochemistry, 32, 11345.

Dayhoff,M.O., Schwartz,R.M. and Orcutt,B.C. (1978) A model of
evolutionary changein proteins. In Dayhoff,M.O. (ed.), Atlas of
Protein Sequence and Structure, pp. 345-352.

Gerretsen,J.C. H. (1962) Lectures on Tensor Calculus and Differen-
tial Geometry. Noorthoff,P. (ed.), N. V. Groningem.

Henikoff,S. and Henikoff,J.G. (1992) Amino acid substitution matri-
ces from protein blocks. Proc. Natl Acad. Sci. USA, 89, 10915—
109109.

Jonassen,l., Collins,J.F. and Higgins,D.G. (1995) Finding flexible
patternsin unaligned protein sequences. Prot. i, 4, 1587—1595.

Krogh,A., BrownM., Mian,.S., Sjoelander,K. and Hausser,D.
(1994) Hidden Markov models in computational biology. Appli-
cations to protein modeling. J. Mal. Biol., 235, 1501-1531.

Makalowska,l., Ferlanti,E.S., BaxevanisA.D. and Landsman,D.
(1999) Histone sequence Database: sequences, structures, post-
translational modifications and genetic loci. Nucl. Acids Res., 27,
323-324.

Neuwald,, Liu, and Lawrence, (1995) Gibbs motif sampling: detec-
tion of bacterial outer membrane protein repeats. Prot. ci., 4,
1618-1632.

Nevill-Manning,C.G., Wu,T.D. and Brutlag,D.L. (1998) Highly spe-
cific protein sequence motifs for genome analysis. Proc. Natl
Acad. ci. USA, 95, 5865-5871.

Parida,L ., Floratos,A. and Rigoutsos,|. (1999) An approximation al-

356

Structural pattern localization analysis

gorithm for alignment of multiple sequences using motif discov-
ery. J. Comb. Opt., 3, 247-275.

Ramakrishnan,V., Finch,J.T., Graziano,V., Lee,PL. and Sweet,R.M.
(1993) Crystal structure of globular domain of histone H5 and
itsimplications for nucleosome binding. Nature, 362, 219.

Rigoutsos,|. and Floratos,A. (1998) Combinatorial pattern discovery
in biological sequences: the TEIRESIA S agorithm. Bioinformat-
ics, 14, 56-67.

Schwartz,R.M. and Dayhoff,M.O. (1978) Matricesfor detecting dis-
tant relationships. In Dayhoff,M.O. (ed.), Atlas of Protein Se-
quence and Sructure, pp. 353-358.

Shapiro,L. and Scherer,PE. (1998) The crystal structure of a
complement-lqg family protein suggestsan evolutionary link to tu-
mor necrosis factor. Curr. Biol., 8, 335-338.

Stolovitzky,G. and Cadifano,A. (1999) Pattern statis-
tics in biologica datasets. J. Comp. Biol. available at
www.research.ibm.com/topi cs/popus/deep/math/html/
statistics.pdf.

Wang,L. and Jiang, T. (1994) On the complexity of multiple sequence
alignment. J. Comp. Biol., 1, 337-338.

Waterman,M.S. (1995) Introduction to Computational Biology.
Chapman & Hall, London.

357

