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A combined bioinformatic approach oriented to the analysis and 
design of peptides with high affinity to MHC class I molecules
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Summary We report on a new method to compute the antigenic degree of peptides from available experimental
data on peptide binding affinity to class I MHC molecules. The methodology is a combination of two strategies at
different levels of information. The first, at the primary structure level, consists in expressing the peptides binding
activity as a profile of amino acid contributions, amino acid similarity being accounted for by their characteristic
physicochemical properties and their position within the sequence. The higher level of the strategy is based on a
meticulous analysis of the contact interface of the peptides with the cleft constituting the receptor region of a
particular class I MHC molecule. Interaction interfaces are inferred by docking the peptide onto the receptor groove
of the MHC molecule; evaluation of the affinity of the peptide to the receptor is then performed by analysis of the
electrostatic and hydrophobic energies on points of the interaction interface.The result is a robust system for analysis
of peptide affinity to class I MHC molecules since while the first analysis dictates the composition of active
sequences at the amino acid level, the second translates this information to the atomic level, where the molecular
interaction can be analyzed in terms of the intrinsic interatomic forces and energies. Evaluation results for the
methodology are encouraging since high affinity peptides are reflected by high scores at both levels of information,
and are proportionally lower for peptides of medium and lower affinity for which interaction surfaces show
relatively lower electrostatic complementarity and hydrophobic correlation than for the former.

Key words: activity profile, antigenic peptides, binding affinity, drug design, genetic algorithms, major histo-
compatibility complex, molecular interaction, self organizing maps.

Introduction

Immune responses are regulated and initiated by MHC mole-
cules, which bind short peptides (resulting from intracellular
processing of proteins) and display them on the cell surface in
order that TCR can recognize them.1–3 For a peptide to be
recognized by a T cell, its binding to any type of MHC
molecule is imperative; not all peptides have the same
binding activity. Accordingly, understanding the molecular
mechanism underlying immunological responses and phe-
nomena requires the determination of the binding affinity
(BA) of a peptide to a MHC molecule.

While MHC class II molecules usually bind peptides of
fluctuating lengths (between 10 and 30 amino acid residues)1,4

and for which anchor amino acids are not well defined, MHC
class I molecules seem to be better defined, both in terms of
length and number of anchor amino acids of the peptides they
bind.1,5,6 Nevertheless, many studies have been carried out in
order to determine quantitatively BA for peptides of different
lengths to MHC class I molecules, and the contribution of

every amino acid constituting the sequence to the overall
BA.5–8 These studies are based on the idea of an MHC class I
molecule binding matrix that quantitatively expresses the
importance of an amino acid within the sequence of a peptide
on its overall binding strength. Fundamentally, these quantita-
tive matrices are a scheme to express binding motifs in a
rather refined way. Each entry in the matrix is a coefficient
expressing the importance of the amino acid and its position
within the sequence. These coefficients can then be used to
compute and predict MHC binding strength indices as well as
peptide similarity indices.

Several computational methodologies have been exploited
experimentally to correlate obtained peptide BA to MHC class
I molecules and the amino acid composition of the peptides, in
order to derive the optimal table or matrix expressing the
binding coefficients. These range from relatively simple simul-
taneous equations and inequalities solution methods5 to more
refined pattern recognition and learning techniques1,6 based on
neural networks and evolutionary algorithms.

In the present study, we propose a multilevel information-
processing methodology to assess peptide affinity for MHC
class I molecules. The first level of information processing
consists of relating the primary structure of peptides to their
experimentally measured activity. Here we focus on 9-mer
peptides and the construction of a profile of peptide binding
activity to MHC class I molecules. The resulting profile can
be used to predict BA of any 9-mer sequence.
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The technique underlying the methodology is based on a
genetic algorithm (GA),9 which, combined with the profile
analysis for detection of related proteins introduced by Grib-
skov,10 leads to a set of coefficients that express quantitatively
the contribution of each amino acid in the peptide sequence to
its binding activity. The GA evolves the coefficients obtained
from the similarity analysis, so that computed binding activi-
ties correlate optimally to the respective experimental binding
activities, yielding a table of optimal correlation coefficients,
or a matrix of binding activity indices for each amino acid.

These scores express the contribution of particular amino
acids at particular positions to the overall binding activity of
the peptide. The tables enable the identification of anchor
amino acids within the oligopeptide, that is, those amino acids
that contribute to a higher degree to the activity of the peptide
when they are located at determined positions within the
amino acid sequence. Calculation of the binding activity for
an arbitrary sequence of amino acids is straightforward using
the matrix of binding activity scores.

The second level of information processing consists of the
analysis of the complex formed by a peptide and the receptor
region of the MHC molecule. Prediction of the structure of
the ligand peptide is carried out, followed by a docking
simulation of the peptide into the receptor cleft of the MHC
molecule. The interaction interface is then extracted from the
most plausible decoy. The analysis is carried over a set of
several types of MHC class I-binding peptides, and tenden-
cies in hydrophobic correlation as well as electrostatic
complementarities are ascertained that may drive the binding
of the molecules and formation of the complex. This
analysis is performed using the system for assessment of
bio–macromolecular interaction Macromolecular Interaction
Assessment System (MIAX) reported by Del Carpio et al.11–14

The tendencies derived are then applied to assess the proba-
bility of ligand–receptor binding at the atomic level.

The sequence of analysis proposed here can be directly
applicable in modelling peptide BA to MHC molecules,
eliminating unnecessary experimental assays. Data on peptide
binding strength and activity can thus facilitate the design of
clinically useful and immunologically silent peptidic drugs, as
well as immunotherapeutics and vaccines for autoimmune
diseases and cancer.

Methods

Peptide interaction can be described as a function of mainly ionic
forces, hydrophobic interactions, and hydrogen-bond type inter-
actions, the latter being calculated as part of the well-characterized
electrostatic interactions. Binding of peptides to larger molecules,
such as MHC molecules, can be evaluated by means of these
energies. The stability of the complex is dictated by the stability
attained by the structure of both the ligand and the receptor at
interaction.

Considering the crystal structure of MHC molecules and reports
on their peptide binding grooves, which show that these regions
undergo only slight adjustments at interaction with the ligand,
maintaining essentially a similar shape in all peptide complexes,5,15 it
can be hypothesized that peptide binding to MHC molecules is
primarily driven by the structural characteristics of the ligand peptide.
Based on this hypothesis, it was proposed the binding activity of
peptides could be related to their amino acid composition.

However, in order to establish the nature of the predominant
interaction energies associated with the complex formation, a detailed
analysis of the receptor–ligand interface was performed over a set of
randomly selected peptides for which experimental activity values
have been reported. Insights obtained by this analysis were then
applied to assess the feasibility of complex formation of peptides
predicted to have high activity by the primary sequence analysis.

Applying this combined strategy leads to a robust system for the
analysis of peptide affinity to MHC class I molecules. We applied
this method to a series of 9-mer peptides for which the binding
characteristics were available.

Activity profiles for MHC class I-binding peptides

Gribskov’s profile analysis is a technique to compare amino acid
sequences.10 A group of previously aligned sequences with common
3-D and/or functional characteristics is used as the probe for which
the profile is computed. The profile itself M (p,a) is an m × n matrix
of scores; m being the number of columns corresponding to the
number of amino acids considered in the calculation plus an extra one
for deletion/insertion penalties, while n is the length of the amino
acids constituting the probe. The values of the profile for a deter-
mined amino acid a is computed by the expression:

(1)

where Y(a,b) is the similarity of amino acids a and b, extracted from
Dayhoff’s distance matrix, and W(p,b) is a weight representing the
amino acid b at position p, which in Gribskov’s method is computed
by an averaging scheme (the frequency of appearance of each amino
acid at a certain position within the amino acid sequences constituting
the probe).

Here, we propose a methodology to predict MHC class I molecule
BA, which shares similarities with the Gribskov’s profile analysis
because we also seek a matrix or profile similar to M (p,a), but with
the fundamental difference that similarity coefficients are obtained
through an artificial evolution process that evolves in order to express
optimally the contribution of every amino acid and its position,
within the primary sequence of amino acid residues, to the overall BA
of the peptide.

The profile obtained here, the MHC binding matrix (BM), is a
20 × 9 matrix. This represents all naturally occurring amino acids
(20) and the probe, which in this case is made up of peptides of fixed
length (9-mers). An extension to larger peptides is straightforward.
Each element BM(a,p) represents the contribution of amino acid a at
position p to the overall BA of the peptide. The profile BM(a,p) is
calculated by the following expressions:

(2)

(3)
where BA (a,p) is the BA contribution score for amino acid a at
position p; f (b,p) is the frequency of appearance of amino acid b in
position p; and v (p) is a coefficient standing for the deviation of the
distribution of the frequency of appearance of the amino acids at
position p. This coefficient is calculated for the sequences constitut-
ing the set of sample peptides (object set) aligned at position p with
the expression:

(4)

where n is the number of 9-mer peptides in the object set.
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Finally, S (a,b) is the similarity index for amino acids a and b,
which is computed by artificial evolution using a GA described in
what follows.

The objective of the methodology is to find an optimal matrix
(BM) whose elements are the values calculated by equations 2 and 3,
which can be used to compute directly the BA for any peptide of
length n and sequence a1, a2, a3…an by an additive scheme of the
form:

(5)

where, BM (ai,i) is the BA score for any amino acid ai (out of the 20
naturally occurring amino acids) at position i. To compute the BM
elements expressing the contribution of every amino acid at its
respective position in the sequence to the overall affinity of the
peptide using equations 2 and 3, a matrix S (a,b) must be obtained
that reflects the similarity between any pair of amino acids a and b.

To achieve this goal, we propose a genetic algorithm that evolves
strings of numerical scores (Fig. 1), with each value or score repre-
senting an amino acid that is used to compute its similarity to any
other of the 19 amino acids, S (a,b), using a scheme introduced by
Grantham.16

This scheme, adapted here to the computation of pair-wise amino
acid residue similarities, consists of the computation of a mutation
matrix, Dij.

17 Figure 1 shows an arbitrary string of gi scores evolved
by the GA and used in that calculation of the similarity matrix S (a,b)
for a pair of amino acids i and j using the expression:

(6)

where gi and gj are the indices representing the amino acids in the
gene string (chromosome or individual; Fig. 1) in the GA proposed
here. Here α is then computed as:

(7)

and stands for a scaling factor calculated from the mean value D of
the off-diagonal elements of the symmetrical matrix D (i, j). Finally,
considering a scale in which 0 denotes total amino acid dissimilarity
and 1 complete similarity, the similarity matrix is computed using
equation 8.

(8)

Initially, a population of chromosomes with random values gi for
each score is generated. Subsequently, with the operations of the GA
(selection, mutation and crossover), these values are improved to a
degree in which pair-wise amino acid similarities (Sij), calculated
using those values as dictated by equations 6, 7 and 8 can be used to
express optimally peptide BA to MHC class I molecules.

One of the most important steps in solving multivariational
methods using GA is the evaluation of the eligibility and fitness of a
determined individual (or chromosome) through the evolution pro-
cess, by calculation of the penalty or object function in the GA. Since
our purpose is to express the BA of any peptide to the MHC molecule
as dictated by equation 5, the BM (ai,i) scores must express optimally
the contribution of amino acid ai at position i to the BA of the peptide.
Because the BM scores are directly related to amino acid pair wise
similarities, as expressed by equations 2 and 3, optimal amino acid

pair wise similarity values are necessary. The optimal BM scores
sought are those that, when used in equation 5, reproduced with the
highest accuracy the BA values for the peptides in the object set of
samples. Accordingly, the fitness function used in the present work
consists of the calculation of the BA values for all the peptides in the
object set, following the procedure described before, and correlating
them to the experimental values reported in the literature. In this way,
the GA evolves in the direction of improving the correlation coeffi-
cient of calculated versus experimental values. In this case, the
binding scores computed using the elements of the BM, following the
scheme of equation 5, are in inverse relation to the experimental
coefficients. Therefore, the units of the computed binding scores are
arbitrary (peptides showing low computed scores being less active
than those having high scores), while the experimental data used are
in nM IC50 units (low values stand for highly active peptides and high
values for less active peptides).

The GA improves the values for each index that represents each
amino acid in the chromosome. This improvement leads, in turn, to
the optimal similarity matrix for the amino acid pairs from the point
of view of MHC class I molecule BA, and consequently to the
optimal BM from which binding affinity values can be computed for
any amino acid sequence. The complete process to obtain the optimal
BM is illustrated in the form of a flow diagram in figure 2.

Analysis of the interaction and computation of electrostatic 
and hydrophobic binding scores

To further assess the feasibility of interaction and complex formation
of MHC class I molecules with any arbitrary peptide at the atomic
interaction level, we propose a methodology based on analysis of the
forces driving bonding among the molecules on the ligand–receptor
interaction interface, which is formed at complex formation. The
analysis is then applied to the peptides predicted by the methodology,
leading to a more complete picture of the interaction of the peptide
with the receptor groove. This analysis is performed evaluating the
complementarity and/or correlation of energies and forces leading to
bonding on the interaction interface of the complex MHC receptor
molecule and the peptide molecule.

To extract information corresponding to the interface of the
ligand–receptor interaction, the tertiary structure of the peptide is first
retrieved from a database or predicted using 3-D coordinate predic-
tion programs (in the present study we performed the predictions
using essentially the molecular mechanics-based programs GAX18 and
AMBER,19 and the molecular dynamics system TINKER.20–22 By a
docking process performed using the system for bio–macromolecular
interaction assessment (MIAX) developed by Del Carpio et al.,11–14

candidate decoys for the complex peptide–MHC molecule are gener-
ated, the lowest energy one being selected for the evaluation
described here.

The interface is determined by computing the set of points on the
surface of atoms of the receptor groove occluded by the atoms of the
peptide in the complex. The procedure consists of the calculation of
the set of solvent accessible surface points (SASP) on each atom
of the receptor and the ligand, and the selection of those atoms of the
receptor occluded at interaction. To perform this calculation, each
atom is represented by a sphere of radius equal to the sum of its van
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Figure 1 Arbitrary string of gi scores evolved by the genetic algorithm (GA) and used in calculation of the similarity matrix S (a,b).
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der Waals radius plus the solvent diameter (1.4 Å for water). The
surface is represented by 92 surface points computed as described by
Del Carpio et al.23

The analysis of the inferred interface begins with the calculation
of the physicochemical properties expressing bonding and interac-
tion. Since the main interaction factors among proteins and peptides
are electrostatic interactions (involving ionic and hydrogen bonding)
and hydrophobic interactions, potentials related to these properties
are calculated on every point of the interface. Electrostatic potentials
are calculated by equations 8a and 8b, while hydrophobic potentials
are computed using equation 9.

(8a)

(8b)

(9)

where ep is the electrostatic potential and MHP is the molecular
hydrophobicity potential.

Considering a cut distance of 12 Å, potentials created by atoms of
the receptor and those created by the ligand atoms are computed on
each point of the interaction interface.

The hypothesis underlying the present analysis is that the interac-
tion forces leading to the bonding of the molecules are of opposite
sign if electrostatic, and are positive values for both molecules when
hydrophobic interactions are considered.

To analyse these complementarity relationships in a simple way,
the interaction interface (an array of 3-D points) is projected into a
2-D array of neurones by means of a self-organizing map or Kohonen
neural network.24 This procedure is described in detail by Del Carpio
et al.14 Since the calculated map is an array of points that preserve the
3-D distribution of the surface, the values for electrostatic and
hydrophobic potential are plotted on the maps, resulting in corre-
sponding electrostatic and hydrophobic maps for receptor and ligand.
These 2-D maps allow a simple scoring scheme to compute comple-
mentarity of interaction forces on the interaction interface. This
consists of comparing each corresponding neurone on the maps for
the ligand and receptor, and the summing of all neurones with
complementary relationships (in the case of the electrostatic maps)
and of the same sign (in the case of hydrophobic maps). This results
in two scores that describe the balance of forces on the interface of
the molecules forming the complex. These coefficients can then be
related to the BA of the peptide.

The process of calculation of the score of interaction is exempli-
fied for peptide CLTSTVQLV and receptor HLA-A2.1 in Fig. 3. The
3-D structure of the peptide is calculated by the polypeptide 3-D
structure prediction system GAX18 with further refinement using
the systems AMBER19 and TINKER.20–22 The docking process is
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Figure 2 Left: Scheme to compute the BM: (a) Peptide sequence and affinity data. (b) Chromosome of gi values. (c) Matrix of frequency
of amino acid appearance at position i. (d) Similarity matrix. (e) Binding matrix (BM).

Right: Flow chart for the genetic algorithm.
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performed using the system MIAX.11–14 The complex configuration
selected among the decoys output by MIAX is that possessing the
lowest energy. Figure 4 illustrates the maps of electrostatic potentials
for the ligand and receptor molecules, respectively.

The calculation of the binding scores for electrostatic potential is
also illustrated in Fig. 4. The left map shows the distribution of the
electrostatic potential from low negative values (red) to high positive
values (blue), corresponding to the field created by atoms of the
receptor. The right map shows the distribution of the potentials
created by the atoms of the ligand when an ideal probe of charge
(+1e) is placed on every SASP. The electrostatic binding score is
defined as the total sum of corresponding neurones having opposite
signs. Similarly, after the calculated hydrophobic potential values are
assigned to the neurones of the self organizing map (SOM) for both
molecules, the scores for hydrophobic bonding are computed as the
total sum of all corresponding neurones in both maps for which the
values are positive.

To establish if any correlation exists between experimental values
and the computed interaction scores suggested in the present study, a
set of peptides for which the affinities were known a priori were
treated with our methodology. The set of peptides for which this
correlation was studied is presented in Table 1, and binding scores
versus BA are plotted in Fig. 5 for the electrostatic interaction and in
Fig. 6 for hydrophobic interaction. In both figures, normalized values
are plotted against the experimental binding affinities.

A trend can be observed in the relationship between the binding
scores and the affinities of the peptides. Low (negative) values
showing electrostatic complementary on the interface are associated
with high values of affinity, while lower complementarity is observed
for low affinity values. A similar trend can be observed for the
hydrophobic potentials on the interaction interface.

On the basis of this correlation, we propose a systematic way for
assessing the complex formation of a MHC class I molecule with any
peptide predicted by the methodology based on amino acid binding
profiles. Determination of the structure of the complex peptide–MHC
molecule enables the inference of the interface of interaction on
which the potentials created by the atoms of the receptor and the
ligand can be evaluated for complementarity. High complementarity
may mean a stable complex (i.e. high probability of complex forma-
tion and affinity). Low complementarity may reflect a low probability
of complex formation or interaction among both molecules. The
former result would enable the identification of highly active pep-
tides, while the latter would confirm the presence of a silent antigenic
peptide with low affinity for the MHC molecule.

Evaluation of the peptides from these two points of view leads to
a robust scheme of evaluation of molecules (such as the functional
peptides studied here). The simplicity of treating the affinity in
function of the sequence of amino acid residues enables the fast
screening of peptides with affinities for certain MHC molecules. At
this level of evaluation, qualitative characteristics of the sequence,
such as primary and secondary anchors, can be inspected rapidly.
However, the second part of the analysis allows for a more detailed
evaluation of the interaction pattern that characterizes not only the
anchor amino acids of the peptide, but the 3-D structure of the
peptide, which is not evident at the primary structure information
level. These analyses lead to a characterization of the interaction and
formation of the complex structure. The interaction and reactive
specificity cannot be completely characterized as a pairwise amino
acid property and characterization in terms of atom-pair interaction is
also difficult because no specific covalent bond is created during the
interaction. Rather, this is a soft bonding, driven by characteristics of
the specific environment created by the local distribution of atoms
resulting from a particular order in primary sequence and the tertiary
structure adopted by the peptide.

Results

First, we apply the proposed methodology to sets of peptides
in order to characterize their function in terms of the sequence
of the amino acids; and second, we attempt to establish the
characteristics of the interaction leading to the complex
peptide–MHC class I molecule. Finally, we evaluate the
methodology using the MHC class I molecules HLA-A24 and
HLA-A2.1, for which reported data on binding affinities are
available.

Binding affinity profile for HLA-A24 binding peptides

Table 2 summarizes the object set or data set employed to
derive the amino-acid-based binding profile for peptides
binding to HLA-A24 as well as for model validation and
prediction assessment. The primary sequences of all the
peptides in the training set are shown, together with their
respective experimental BA values to HLA-A24 and refer-
ences to the source (Table 2).

Figure 3 Docking process (a) Peptide tertiary structure predic-
tion. (b) Docking or peptide to the MHC I molecule using MIAX.
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Since the methodology developed here (intended to
predict the BA of peptides to MHC class I molecules) can
also be applied to the characterization of MHC class I
molecule binding motifs, we describe the assessment of its
potential applicability in two parts corresponding to these two
purposes.

As illustrated in Table 2, peptides binding to MHC class I
molecules can be classified as high-, moderate- and low-BA
peptides. A further category comprises those peptides
showing BA equal or close to zero (large dissociation con-
stants), but for which well-defined experimental data are
seldom reported. Accordingly, the analysis performed here
employing only those peptides with high BA can be directed
to predict motifs with high BA for MHC class I molecules.
The whole data set in Table 1 is intended to predict the
binding ability of the peptides.

After computing the matrix of frequencies (Fig. 7) using
step (a) in Fig. 2a, each element of the matrix being the
frequency of appearance of each amino acid type at each of
the nine positions in the object set of 9-mer peptides, a
population of 1000 chromosomes (strings of the type shown
in Fig. 1) is generated randomly to start the evolutionary
learning process. With a crossover rate of 50% and a mutation

rate of 3%, the GA was performed for 500 generations
(Fig. 7b). The evolutionary learning process is depicted in
Fig. 7c.

This process results in the similarity matrix shown in
Table 3, each element of which is computed according to
equations 6–8. Using the values of the frequency matrix and
Table 3 (the optimal similarity matrix), the BM, shown in
Table 4, is computed according to equations 2 and 3. The
final correlation of computed affinity values (using scores of
the optimal BM in Tables 4 and 5) to the corresponding
experimental ones is illustrated in Fig. 8.

Scores for amino acids in the optimal BM represent the
contribution of every amino acid to the overall BA of the
peptide. Therefore, they can be ranked in decreasing order for
each position and information can be obtained on the signifi-
cance of each amino acid at a particular position. This
operation leads to the elucidation of primary structural char-
acteristics for the peptides, related to their binding affinity.
Information on primary and secondary anchors can be easily
extracted and compared with other peptides that have BA to
the same or other MHC molecules. Defining primary anchors
as those amino acids having a score larger than 1.0 in the BM,
and secondary scores as those having a value fluctuating

Figure 4 Calculation of electrostatic complementarity scores.25
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between 0.5 and 1.0, we find that at P2, the amino acids Phe,
Tyr and Trp can be catalogued as primary anchors, as can
amino acids Ile, Leu and Phe at position P9 (Fig. 9). Although
Trp at P9 has a score lower than Tyr and Val at this position,
these results are comparable to those reported by Brusic
et al.,6 who used a larger training set and a more complex
learning algorithm. These results are similarly comparable to
those obtained by Maier et al.,26 except for M at position P2,
which has a negative score in the BM of Table 5. However,
the results are identical at the C-terminus.

The primary and secondary anchors, taking into account
our definition, are summarized in Fig. 9; the binding matrix
itself is a summary map of the effects influencing the binding
capacity of 9-mer peptides to HLA-A24.

Binding affinity profile for HLA-A2.1 binding peptides

To further assess the potential applicability of the methodol-
ogy, it was applied to an object set consisting of 9-mer
peptides binding to the MHC class I molecule HLA-A2.1 (22

Table 1 Object set of HLA-A24 binding peptides

Sequence Experimental binding activity 
(nM IC50)

Electrostatic attraction normalized Hydrophobic attraction normalized Length

KMVELVHFLL 5.0 0.47 0.57 11
KASEYLQLV 151.5 0.59 0.50 9
KVAELVHFL 54.3 0.30 0.42 10
KVAELVHF 68.4 0.55 0.52 9
YLWWVNNQSL 26.2 0.30 0.35 10
VLYGPDAPTI 454.5 0.16 0.34 10
VVLGVVFGI 14.3 0.54 0.48 9
VMAGVGSPYV 277.8 0.23 0.45 10
YMIMVKCWMI 83.3 0.58 0.61 10
YLQLVFGIEV 50.0 0.76 0.45 10
QLVFGIELMEV 7.9 0.23 0.47 11
VLGPDTPI 200.0 0.85 0.62 9
VLIQRNPQL 22.7 0.43 0.55 9
LVFGIEVVEV 357.1 0.27 0.81 10
LVFGIELMEV 76.9 1.00 1.00 10
YLWWVNGQSL 33.3 0.40 0.54 10
CLTSTVQLV 147.1 0.30 0.41 9
KMELVHFLL 22.7 0.40 0.65 10
YIFATCLGL 185.2 0.68 0.48 9
IMIGVLVGV 68.5 0.16 0.53 9
SIISAVVGI 69.4 0.24 0.28 9
KMVELVHFL 9.8 0.39 0.85 9
FLWGPRALV 31.3 0.43 0.76 9
GIMIGVLVGV 56.8 0.19 0.61 10
GLACHQLCA 416.7 0.36 0.31 9
KIWEELSML 166.7 0.19 0.82 9
HLFIYATCLGL 55.6 0.52 0.32 11
YLSGANLNL 27.8 0.25 0.18 9
QLFEDNYAL 17.2 0.41 0.22 9
FLWGPRAL 238.1 0.32 0.45 9
LLTFWNPPT 178.6 0.84 0.47 9
ALCRWGLLL 100.0 0.31 0.45 9

Figure 5 Correlations of electrostatic interaction scores with
binding affinities.

Figure 6 Correlations of hydrophobic bonding scores with
binding affinities.
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peptides), shown in Table 5. The GA, executed under the
same conditions as in the case of HLA-A24, leads to the BM
illustrated in Table 5. The parameters for the GA are similar
to those used previously (Fig. 7b). Figure 10 illustrates the
correlation between experimental BA and computed ones. A
correlation coefficient of 0.84 was obtained in this case.

Analysis of the information contained in Table 6 also
leads to the determination of primary and secondary anchors
in peptides binding to HLA-A2.1, according to their scores in
the BM.

Parker et al. have performed an extensive analysis of
HLA-A2.1 complexes based on experimental peptide
binding data, deriving a table of coefficients representing the
contribution of each amino acid in the binding to HLA-A2.1.5

Since the methods of Parker et al. share some similarities
with the BM proposed here, and because their analysis was
performed over extensive numbers and types of peptides,

it constitutes a suitable source for comparing the results
yielded by our methodology and the conclusions derived from
it.

Performing a correlation analysis on the experimental
values for the peptides reported in the work of Parker et al.,
and the BA values calculated using the BM scores of Table 6,
we found a correlation (Fig. 10). This correlation is compar-
able to that obtained by Parker et al. with their own predicted
values.5 Furthermore, an analysis of the scores of the BM
shown in Table 6 enabled the extraction and generalization of
the structural characteristics that peptides with high BA to
MHC class I molecule HLA-A2.1 must possess.

First, as in the case of HLA-A24, primary anchor peptides
can be found easily by inspection of the BM. Thus, primary
anchor amino acids at P2 are Leu and Val (scores 2.22 and
1.02, respectively; Table 6), and at P9 are Phe and Val (scores
1.03 and 1.47, respectively; Table 6). Because the methodology

Table 2 Set of HLA-A24 binding 9-mers used as object set

Sequence Binding capacity 
(nM IC50)

Sequence Binding capacity 
(nM IC50)

Sequence Binding capacity 
(nM IC50)

LYAAVTNFL 1.8 LYQTFGRKL 430.0 NFLQAAYRL 431.0
EYVLLLFLL 4.1 VYGDTLEKL 580.0 TWPLLPHVI 46.0
LYSILSPFL 12.0 CYSIEPLDL 699.0 AWQNGLLPF 841.0
VYCKTVLEL 18.0 PYAVCDKCL 744.0 SFHNLHLLF 1.2
AYSLTLQGL 46.0 EYVNARHCL 951.0 EYTNIPISL 60.0
CYSLYGTTL 103.0 LYKTFGRKL 951.0 PYKRIEELL 150.0
TYLPTNASL 155.0 KYADKIYSI 0.57 PWTHKVGNF 177.0
IYQEPFKNL 178.0 SWLSLLVPF 18.0 AYINADSSI 192.0
TYSTYGKFL 258.0 SWWTSNFL 18.0 SFLLSHGLI 812.0
LYNLLIRCL 314.0 NWKPIVQFL 27.0 GWSPQAQGI 2875.0

Figure 7 (a) Frequencies of every amino acid at each position: (Table 2 peptides). (b) Genetic algorithm (GA) conditions. (c) GA
evolution (training set: Table 2).
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proposed here takes into account the contribution of every
amino acid to the overall BA of the peptide, contributions by
auxiliary anchor amino acids are also automatically taken into
account. All contributions can be determined from the BM by
setting ranges for primary and secondary or auxiliary anchors.

The prediction ability of the automatically obtained model
was derived using peptides reported from CEA (carcyno-
embryonic antigen) reported by Kawashima et al. (Table 7)
that bind to HLA-21.1 but which are not included in the
training set used to obtain the model (Table 5). The predictive
ability of the model is remarkable, as can be seen in Fig. 11,
which is a plot of the correlation of values predicted by the
model and the experimental values reported in the literature.5

The correlation of predicted values to experimental values is
high in this case, which shows the high predictive ability of
the methodology.

Receptor–ligand interaction analysis and binding affinity 
profiles

An analysis of the interaction interface for complexes with
peptides of several degrees of affinity (both experimental and
computed) was performed for sets of peptides included in the
object set for HLA-A2.1 (Table 8). After the prediction of the
3-D structure of the peptides using GAX,18 TINKER20 and
AMBER,19 the molecules were docked into the receptor groove
using MIAX.11–14 After the extraction of the interaction inter-
face, we computed the electrostatic and hydrophobic poten-
tials associated with the atoms of the receptor and the ligand.
This process for the first peptide in Table 8 is illustrated in
Fig. 12, where the docked structure is shown using the
backbone of the receptor and ligand. Finally, the binding
scores were computed. For the peptide KMVELVHFL, the
electrostatic and hydrophobic potentials are shown in Fig. 13.
Putative electrostatic and hydrophobic clusters are depicted
on the interaction surface, showing the complementarity in
the receptor and ligand interaction.14 The results from repeat-
ing the calculation for the other three peptides in Table 8 and
plotting the values against the experimental activities of the
peptides are shown in Fig. 14. It is evident from these plots
that the binding scores (hydrophobic and electrostatic) corre-
late well to the experimental affinities for the peptides.
However, the analysis shows that the correlation is less
apparent between the experimental affinity and the scores
based on amino acid BM (Fig. 15). Therefore, the docking
process and the subsequent analysis of the interaction surface
becomes relevant, since the nature of the interaction, as well
as the main factors contributing to the bonding, become
apparent at the atomic level.

Discussion

We have presented here a new method to express and
compute peptide BA or activities with MHC class I mole-
cules. One of the features that characterizes and differentiates
this methodology from others is that the contribution of each
amino acid to the overall affinity of the peptide is not
computed directly from the correlation of the experimental
values. An evolutionary process is used to compute similari-
ties among amino acids at positions determined within the
peptide sequence from the BA point of view. This newT
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element in determining the BM has the effect of reducing the
amount of data in the training set that is necessary for a good
learning process (dictated by a rigorous statistical analysis).6

This is demonstrated not only by the remarkable performance
in predicting the BA of peptides to the MHC class I molecules
HLA-A24 and HLA-A2.1 using the two models, but by the
fact that abundant data on the similarity of amino acids are
used to derive the model (since the number of physicochemi-
cal coefficients characterizing each amino acid exceed 400
coefficients and all of them are used recursively during the
artificial evolution process).

Calculation of the BM allows the direct prediction of the
BA of peptides to particular MHC class I molecules, taking
into consideration the primary sequence of the amino acid
residues only. However, this methodology (and by extension
similar BM-based methodologies) can, as a result of the
averaging nature of the relationship sought by the evolution-
ary algorithm, have some intrinsic limitations, as illustrated
by the four MAGE2 peptides considered here. To overcome

this problem, we went a step further and suggested a process
to evaluate affinities based on a meticulous analysis of the
receptor–ligand interaction surfaces, extracted from plausible
artificially docked complexes. To our knowledge, a method-
ology of this nature has not previously been considered.

Table 4 Binding matrix for HLA-A24 binding 9-mer peptides

Amino acid Amino acid 
position within the 

peptide 
1st

2nd 3rd 4th 5th 6th 7th 8th 9th

A 0.58 – 0.13 0.58 0.48 0.25 0.13 – 0.27 0.42 – 0.13
R – 1.87 – 1.37 – 1.85 – 1.82 – 1.78 – 1.7 – 1.58 – 1.79 – 1.33
N 0.64 – 0.01 0.64 0.66 0.35 0.28 0.04 0.58 – 0.02
D 0.55 – 0.11 0.57 0.52 0.24 0.18 – 0.22 0.46 – 0.11
C – 1.58 – 1.24 – 1.62 – 1.63 – 1.55 – 1.5 – 1.32 – 1.53 – 1.21
Q – 0.95 – 0.79 – 0.87 – 0.90 – 0.86 – 0.88 – 0.49 – 0.98 – 0.77
E – 1.44 – 1.17 – 1.52 – 1.50 – 1.43 – 1.38 – 1.15 – 1.46 – 1.14
G – 1.78 – 1.32 – 1.76 – 1.76 – 1.69 – 1.57 – 1.47 – 1.71 – 1.29
H 0.77 0.77 0.77 0.82 0.98 1.08 1.21 0.87 0.72
I 0.77 0.63 0.77 0.82 0.93 0.95 0.98 0.80 0.97
L 0.83 0.77 0.80 0.88 1.05 1.14 1.24 0.92 2.70
K 0.63 0.00 0.67 0.61 0.38 0.27 0.07 0.60 – 0.01
M – 0.91 – 0.76 – 0.86 – 0.88 – 0.82 – 0.84 – 0.48 – 0.94 – 0.75
F 0.77 1.03 0.76 0.81 1.00 1.07 1.21 0.93 1.10
P 0.40 – 0.30 0.38 0.26 – 0.02 – 0.11 – 0.74 0.23 – 0.29
S 0.41 – 0.30 0.42 0.25 – 0.01 – 0.14 – 0.74 0.26 – 0.29
T – 0.11 – 0.21 – 0.17 – 0.05 0.06 – 0.09 0.22 – 0.22 – 0.22
W 0.76 1.22 0.78 0.80 0.93 0.98 1.06 0.83 0.64
Y 0.77 2.51 0.75 0.80 1.00 1.05 1.22 0.86 0.72
Z 0.79 0.77 0.77 0.81 0.98 1.09 1.21 0.87 0.71

Table 5 Object set of HLA-A2.1 binding 9-mer peptides

Sequence Binding capacity 
(nM IC50)

Sequence Binding 
capacity

(nM IC 50)

VVLGVVFGI 14.3 YMIMVKCWM 217.4
QLFEDNYAL 17.2 ALIHHNTHL 238.1
RLLQETELV 20.8 ILDEAYVMA 238.1
VLIQRNPQL 22.7 GLACHQLCA 416.7
KIFGSLAFL 33.3 KMVELVHFL 9.8
SIISAVVGI 69.4 KASEYLQLV 151.5
ILHNGAYSL 74.6 KIWEELSML 166.7
ALCRWGLLL 100.0 FLWGPRALI 238.1
CLTSTVQLV 147.1 FLWGRPALV 31.3
HLYQGCQVV 147.1 KVAELVHFL 68.4
QLMPYGCLL 217.4 YIFATCLGL 185.2 Figure 8 Relationship between computed versus experimental

affinities for HLA-A24 binding peptides.

Figure 9 Anchor amino acids for HLA-A24 binding 9-mer
peptides.
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Table 6 Binding matrix for HLA-A2.1 binding 9-mer peptides

Amino acid Amino acid position within the peptide 
1st 2nd 3rd 4th 5th 6th 7th 8th 9th

A 0.45 – 0.62 – 0.31 – 0.54 0.60 0.53 – 0.33 – 0.40 – 0.44
R 0.32 – 0.78 – 0.46 – 0.63 0.48 0.50 – 0.51 – 0.54 – 0.68
N 1.04 0.6 0.93 0.66 1.12 1.36 0.91 1.01 0.81
D 0.10 0.89 – 0.61 – 0.84 0.29 0.30 – 0.67 – 0.69 – 0.81
C – 1.85 – 1.65 – 2.09 – 2.03 – 1.69 – 0.82 – 1.98 – 1.78 – 1.71
Q 0.16 0.54 0.56 1.01 – 0.23 – 0.49 0.79 0.49 0.43
E – 0.82 0.28 0.13 0.84 – 0.87 – 1.30 0.13 – 0.15 0.08
G 0.80 – 0.17 0.36 0.33 1.14 1.01 0.14 0.48 – 0.02
H – 2.00 – 0.08 – 0.57 – 0.03 – 1.89 – 2.09 – 0.62 – 0.68 – 0.35
I – 0.87 0.63 0.16 0.51 – 1.06 – 1.41 0.00 – 0.23 0.29
L 1.06 2.22 1.20 0.78 1.05 1.09 1.29 1.57 2.05
K – 0.20 – 1.20 – 1.22 – 1.34 – 0.45 – 0.10 – 1.20 – 1.16 – 1.18
M 0.19 0.79 0.68 0.95 – 0.09 – 0.36 0.78 0.65 0.6
F 1.10 0.91 1.22 0.82 0.85 0.79 1.21 1.36 1.03
P – 1.65 – 1.58 – 1.96 – 1.90 – 1.41 – 0.76 – 1.85 – 1.71 – 1.63
S 0.82 0.80 1.03 0.99 0.59 0.38 1.1 1.07 0.85
T – 0.24 – 1.09 – 0.98 – 1.17 – 0.12 0.06 – 0.98 – 1.00 – 1.05
W 0.79 – 0.09 0.54 0.22 1.14 0.98 0.22 0.48 0.07
Y – 0.40 0.36 0.30 0.69 – 0.61 – 1.02 0.38 0.03 0.19
V 1.21 1.02 1.10 0.71 1.16 1.37 1.18 1.23 1.47

Figure 10 Relationship between computed versus experimental
affinities for HLA-A2.1 binding peptides. Figure 11 Correlation of binding matrix (BM) scores and

experimental affinities for HLA-CEA.

Table 7 Sequences from HLA-CEA used in evaluating affinities to HLA-21.1

Sequence Experimental binding activity Log experimental binding activity Computed binding activity (arbitrary units)

YLSGANLNL 27.8 1.44 9.49
IMIGVLVGV 68.5 1.84 5.79
LLTFWNPPT 178.6 2.25 1.05
VLYGPDTPI 200.0 2.30 0.55

Table 8 Peptides used in complex formation assessment

Sequence Experimental binding activity Log experimental binding activity Computed binding activity HLA-A2.1BM

KMVELVHFL 9.8 0.99 7.47
KASEYLQLV 151.5 2.18 5.36
KIWEELSML 166.7 2.22 5.83
FLWGPRALI 238.1 2.38 7.79
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Automatic systems for docking peptides onto receptor
grooves are still the exception rather than the rule, due in part
to the high flexibility that characterizes these molecular
systems. Therefore, the relevance of the system MIAX,
developed by Del Carpio et al.,11–14 becomes apparent as it
takes into account the flexibility of the ligand and the receptor
during the process of docking. However, the process is cost-
demanding because of the complexity of the system and has
to be limited to a small number of structures.

This problem is further complicated by the fact that,
hitherto, more than 200 types of HLA class I and class II
molecules have been identified.27,28 Consequently, a
binding profile matrix such as the one proposed here
remains quite valuable as it can assist in the reduction of the
number of computer experiments (thereby the number of
laboratory experiments) that must be performed in order to
characterize the antigenic properties of series of peptides
and antigens.

Figure 13 (a) Electrostatic potential on the interaction interface. Left panel: receptor; right panel: ligand; red, negative regions; blue,
positive regions; green, neutral. (b) Hydrophobic potential on the interaction interface Left panel: receptor, right panel: ligand; red,
hydrophobic regions; blue, hydrophilic regions.
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