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Abstract:

Streamflow forecasting is very important for the management of water resources: high accuracy in flow prediction can lead
to more effective use of water resources. Hydrological data can be classified as non-steady and nonlinear, thus this study
applied nonlinear time series models to model the changing characteristics of streamflows. Two-stage genetic algorithms were
used to construct nonlinear time series models of 10-day streamflows of the Wu-Shi River in Taiwan. Analysis verified that
nonlinear time series are superior to traditional linear time series. It is hoped that these results will be useful for further
applications. Copyright  2008 John Wiley & Sons, Ltd.

KEY WORDS nonlinear time series; genetic algorithm; streamflow forecast; threshold autoregressive model; bilinear time series;
autoregressive condition heteroscedasticity model

Received 23 December 2006; Accepted 20 November 2007

INTRODUCTION

Water is one of mankinds necessities and global envi-
ronmental changes have forced the realization that water
resources are not inexhaustible. Thus, many countries
are now focusing on enhancing the efficiency of water
utilization. If the accuracy of flow prediction can be
improved, reservoir operation can also be improved
and a more effective utilization of water resources
achieved.

Hydrological information for time series analysis is
essential for water resources management. Streamflow
simulations and forecasts are also important for water
resources planning and allocation. As most hydrological
time series analyses involve nonstationary, nonGaussian
and nonliner data, these data need to be transformed
before they can be used in many stochastic models
for hydrological time series. But even after such trans-
formations, the hydrological information is still nonlin-
ear and it is necessary to alter the linear assumption.
However, several nonlinear models developed in past
decades may provide a solution for the use of hydrologi-
cal time series models. Therefore, this study investigatess
nonlinear time series analyses and predicts their suit-
ability for 10-day streamflows of the Wu-Shi River in
Taiwan.

There has been a growing interest in studying non-
linear time series models. Tong and Lim (1980) devel-
oped the threshold autoregressive model (TAR), which
adopts different linear regressive models. TAR has been
used in several studies (Tsay, 1989; Tong, 1990; Potter,
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1995; Chen and Lee, 1995; Chen et al., 1997; Wong and
Li, 1998; Koop and Potter, 1999; Dijk et al., 1999; Cai
et al., 2000; McDowall, 2002; Kapetanios, 2003; Liu and
Enders, 2003; Simon et al., 2004; Chan et al., 2004).
In addition, modified threshold models were developed,
such as the threshold moving-average model (De Gooi-
jer, 1998) and the functional-coefficient autoregressive
model (Chen and Tsay, 1993). In 1981, Subba developed
a moving autoregressive model with random parame-
ters and called it a bilinear time series model. However,
a great number of fluctuations in data can be detected
when using this model. Further applications were devel-
oped by Weiss (1986), Wu and Shih (1992), Wu and
Hung (1999), and Chen and Wu (2001). Engle (1982)
first proposed the ARCH (autoregressive conditional het-
eroscedasticity) model. He suggested that the variance of
a certain time series can be modelled directly in terms
of past observations, and that the variance of the pro-
cess is time variant. ARCH models have been widely
used in finance, economics, and ecology, fields in which
the phenomenon of nonlinearity is reflected in variance
or higher-order moments. The modified ARCH model
was further developed into models such as the EGARCH
model by Nelson (1991). These models were applied in
many studies, including those conducted by Bera and
Higgins (1997), Chun and Li (2001), and Li and Lin
(2004). Haggan and Ozaki (1981) and Ozaki (1982) pro-
posed a novel model called the exponential autoregres-
sive model. This model was employed by Arango and
González (2001) and Taylor and Sarno (2002). In 1982,
Nicholls and Quinn proposed a random coefficient AR
model, which was further applied by Tseng et al. (1995),
Yu and Chiao (2000), Yu (2002), and Yu and Tseng
(2004).
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Recently, numerous researchers have applied nonlin-
ear time series models to hydrosystems because most
hydrological measurement data are highly nonlinear. For
example, Jian et al. (1998) utilized the nonlinear time
series model TAR to analyse monthly groundwater flow.
Fleming et al. (2002) adopted the Fourier transform for
hydrological data estimation.

Holland (1975) first proposed genetic algorithms (GA),
which proved useful in solving different types of com-
binatorial optimization algorithms and were applied to
hydrosystems in many studies, including Chen (1997),
Wang (1997), Rauch and Harremoes (1999), Chang and
Chang (2001), Chang et al. (2003), Kuo and Liu (2003),
and Smakhtin and Batchelor (2005).

This present study tries to combine nonlinear time
series with Gas, using the GA as a tool for solving
nonlinear time series. It is very difficult to simultane-
ously compute model formulas and their parameters in
nonlinear time series. Therefore, a nonlinear time series
was used in this study to better simulate and manipulate
the varying characteristics of hydraulic systems, whereby
two-stage GAs were adopted to linearize the problems
associated with nonstationary, nonGaussian, and nonlin-
ear data. Several models were examined based on the
kind of data they can interpret, including the autoregres-
sive moving-average (ARMA), the outlier detection, the
autoregressive condition heteroscedasticity (ARCH), the
threshold autoregressive (TAR), the threshold autoregres-
sive moving-average (TARMA), and the bilinear (BL)
models. Scientific Computing Association (SCA) soft-
ware was used for linear time series simulation, and
Econometric Views (E-Views) for the ARCH model. A
GA adopting two-stage operation was applied for the
parameters in nonlinear time series models. For the non-
linear hydrological data, this study adopted piecewise lin-
ear TAR and TARMA models, which consider different
sets as change points. The characteristics of the multi-
plicative AR and MA in the bilinear time series model
causes very large amplitude variations. This model was,
therefore, used to simulate the wide variation of stream-
flows during the wet season. In particular, the hydrolog-
ical data showed obvious variations, prompting the use
of the ARCH model to further analyse residuals. Finally,
10-day streamflow data gathered from the Da-Do Bridge
station on the Wu-Shi River were used in the improved
models, which integrate hydrological properties, a novel
nonlinear, and several traditional linear time series
models.

The major objective of this study is to investigate the
nonlinear time series TAR and TARMA models. TAR
and TARMA models are piecewise linear models and the
threshold value characteristics could divide into different
linear sets. This study utilizes the features of the two
model to separate high and low streamflows, and then
explains the phenomenon in the case of Taiwan, which
has very obvious dry and wet seasons.

The multiplied alternately in AR and MA items were
the BL model items. Like the Equation (5) bp and

bq. If the items’ parameters is more large, the large-
amplitude phenomenon will be more obvious. This paper
investigates use of the BL model to simulate the high
streamflows in Taiwan caused by typhoons and torrential
rain giving high streamflows.

The streamflow of wet season in Taiwan have the dif-
ferent quantities of variance. The study want to combine
the ARCH, TAR and TARMA model characteristic try to
explain the real phenomenon.

THEORY

Linear time series models

ARMA model. The ARMA model may be applied to
general seasonal and nonseasonal cases. The process
is illustrated in the following: let yt be a time series
following a general ARMA(p, q) process,

yt D C C ��1yt�1 C �2yt�2 C Ð Ð Ð C �pyt�p�

C �at � �1at�1 � Ð Ð Ð � �qat�q� �1�

where C is a constant that determines the mean of the
process, at is an i.i.d. normal error with a zero mean
and a standard deviation of �a, p is the autoregressive
order of the process, q is the moving average order of
the process, �j is the autoregressive coefficient, and �j

denotes the moving average coefficient.

Outlier detection model. Time series observations are
sometimes influenced by interruptive events, such as
typhoons, droughts, or data errors. As a consequence,
spurious observations occur that are inconsistent with the
rest of the series. Such observations are usually referred
to as outliers.

Nonlinear time series models

Threshold autoregressive (TAR) model. Tong (1990)
provides an excellent review of the properties of the TAR
model. One of his research objects is a piecewise linear
model in the space of yt�d. A time series yt is said to
follow a TAR model with threshold variable yt�d if it
satisfies

yt D ��k�
0 C

pk∑
iD1

��k�
i yt�d C a�k�

t for rk�1 � yt�d < rk,

�2�
where k D 1, Ð Ð Ð , g and d are positive integers. a�k�

t is a
sequence of independent and identical distribution (i.i.d.),
normal random variates with mean zero, and variance
�2

k . The real number rj satisfies �1 D r0 < r1 < Ð Ð Ð <
rg D 1 and forms a partition of the space yt�d. The
positive integer d is commonly referred to as the delay
(or threshold lag) of the model. The partition denotes
the TAR model in (2) by TAR(g; p1, Ð Ð Ð , pg). Consider
a TAR(2; p1, p2) process:

yt D




��1�
0 C

p1∑
iD1

��1�
i yt�i C a�1�

t

��2�
0 C

p2∑
iD1

��2�
i yt�i C a�2�

t

for
yt�d � r
yt�d > r

�3�
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Threshold autoregressive moving average (TARMA)
model. To combine the TAR model with the ARMA
model, we consider a TARMA process:

yt D




��1�
0 C

p1∑
iD1

��1�
i yt�i C a�1�

t C
q1∑

jD1
��1�

j a�1�
t�j

��2�
0 C

p2∑
iD1

��2�
i yt�i C a�2�

t C
q2∑

jD1
��2�

j a�2�
t�j

�4�

Bilinear (BL) model. The bilinear model is very effec-
tive in describing a wide class of signals. The bilinear
model of the BL(p, q, bp, bq) time series is defined as
follows:

yt D �0 C
p∑

iD1

�iyt�p log�i� C at �
q∑

jD1

�jat�qlqg�j�

C
bp∑

kD1

bq∑
lD1

ˇklyt�bplag�k�at�bqlag�l� �5�

where ˇkl, k D 1, Ð Ð Ð , bp, l D 1, Ð Ð Ð , bq, are parameters
and at is an iid N�0, �2

a � innovation that drives the
bilinear process.

Autoregressive conditional heteroscedasticity (ARCH)
model. Assume Yt D �tεt for �1 < t < 1, where the
random variables εt are independent and identically
distributed with zero mean and unit variance. εt is
independent of fYt�i, i ½ 1g,

�2
t D c C

p∑
iD1

aiY
2
t�i C

q∑
jD1

bj�2
t�j, �6�

where c > 0, ai ½ 0, bj ½ 0, p ½ 0 and q ½ 0, the latter
two quantities of course being integers. If q ½ 1 the
model is a generalized ARCH, or GARCH.

This study combines TAR, TARMA, and ARCH
models,

Yt D a0 C �0Dt C
p∑

iD1

�aiYt�i C �iDtYt�i� C εt, �7�

εtjI�t � 1� ¾ N�0, ht�,

ht D ˛0 C
q∑

iD1

˛iε
2
t�i C �1Dt,

where ˛0 > 0, 0 < ˛1 < 1, and

Dt

{
0 if Yt < r
1 if Yt ½ r

.

Genetic algorithms

Genetic algorithms (GAs) are search procedures that
use random choices as a tool to guide a highly exploita-
tive search through the coding of a parameter space. They
combine the survival of the fittest among string structures,
yet randomize information exchange to form a search
algorithm with some of the innovative flair of human
search (Goldberg, 1989).

GAs serve to mimic biological phenomena that occur
in natural selection. To evaluate the suitability of a
derived solution, an objective function is required. The
objective function is chosen in such a way that well-fitted
strings are accorded high fitness values. The evolution
starts from a set of corded solutions (chromosomes) and
proceeds from generation to generation through genetic
operations: reproduction, crossover and mutation.

FORECASTING MODELS

Data analysis

Typhoons and plum rains pass through Taiwan, bring-
ing torrential rainfall in the wet season between May and
October; the dry season lasts from November to April.
There are great differences in streamflows between the
two seasons. A 10-day period of hydraulic information is
adopted for water resources management in Taiwan, thus,
a 10-day streamflow time series was used in this study.

The hydrological station in the Wu-Shi watershed is
shown in Figure 1. The 10-day streamflow data from
1988 to 2001 gathered at the Da-Do Bridge Station,
Wu-Shi watershed, was used for primary analysis in the
forecasting models. These data were further grouped into
an appraisal set, including 360 sets of streamflow data
from 1989 to 1998, and a calibration set, including 108
sets of data from 1999 to 2001. Figure 2 and Figure 3
demonstrate the 10-day flow hydrographs for both sets.
Calibration and verification of the 10-day streamflow
mean are shown by the horizontal line.

The linear time series model

This study adopted the ARMA and outlier detection
models to build a linear time series analysis model.
The resulting model (Figure 4) served as a control for
comparison with the nonlinear models.

Nonlinear time series models

Nonlinear time series models TAR, TARMA, and BL
were used in this study. However, in these nonlinear time
series it is very difficult to simultaneously compute model
formulas and their parameters. Therefore, the nonlinear
time series models were simulated by integrating them
with the search technology of Gas, adopting two-stage
genetic algorithms to linearize this problem.

First, we used the Bayesian information criterion (BIC)
standard and let all generations match the nonlinear time
series formulas. BIC is the criterion for selection of a
time series to match and diagnose the simulated results
for parameter estimates and standard errors. Therefore,
the characteristic of the BIC criterion can help to fit the
best type of nonlinear time series. In the study, the BIC
index was adopted to calculate the fitness function and
to choose the best formulas using GAs.

According to the result of the first GA stage, the
simulations were run to obtain the best parameters
corresponding the nonlinear time series models. The
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Figure 1. The hydrological station in the Wu-Shi watershed
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Figure 2. Results of calibration of 10-day streamflow data obtained at Da-Do Bridge between 1989 and 1998

coefficient of efficiency (CE) was selected as assessment
indicator to determine the fitness function for the second
stage genetic algorithms. CE is an assessment indicator
that can estimate how well the simulation results match
the real models.

The BIC (Bayesian Information Criterion) used to help
choose the best time series models is defined as follows:

BIC�M� D n ln O�2
ε � �n � M� ln�1 � M

n
� C M ln n

C M ln

[
� O�2

z / O�2
ε � 1�

M

]

where n is the number of data items, M is the number
of parameters, O�2

z is the variance of the sample, and O�2
ε

is the variance of the residual.
In GA terminology, an initial input, called a chromo-

some, is necessary. As in most optimization problems, a
random generator is used to produce chromosomes for the
initial optimization implementation. Fitness evaluation,
reproduction, mutation, and selection were performed for
each epoch. The algorithm was stopped when a speci-
fied criterion providing an estimate of convergence was
reached. The framework of the GA for the nonlinear time
series is shown in Figure 5.
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Figure 3. Results of verification of 10-day streamflow data obtained at Da-Do Bridge between 1999 and 2001
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Figure 4. Flowchart of the linear time series models

The generational evolutionary algorithm was imple-
mented identically and the parameters are described in
Table I.

Average 10-day streamflows exhibit a higher variance
in residual value during the wet season. Therefore, a
TAR threshold was defined to separate high flow values,

Table I. Parameters of the GAs

Fitness Sum of the integers in
chromosome

Model Binary
Initial population Random
Maximum length 50
Population size 500
Crossover probability 0Ð8
Mutation probability 0Ð001
First-stage fitness function Minimum value of BIC

(Bayesian Information
Criterion)

Second-stage fitness function Maximum value of CE
(Coefficient of Efficiency)

and an explanation variable was added to construct the
ARCH time series model. This procedure is illustrated in
Figure 6.

Assessment Indicator

Seven identification indicators were used in this
study. The assessment indicators 1–5 were implemented
for model calibration and indicators 1–7 for model
verification.

Indicator 1: Coefficient of efficiency (CE)

CE D 1 �
∑

�Qobs � Qest�
2∑

�Qobs � Qobs�
2

�8�

where Qest is the estimated flow from the forecast model
(cms), Qobs denotes the observed flow (cms), and Qobs is
the mean observed flow (cms).

Indicator 2: Error of peak discharge (EQp)

EQP D Qpest � Qpobs

Qpobs
�9�
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Figure 5. Flowchart of the non-linear time series models
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Figure 6. Flowchart of the autoregressive conditional heteroscedasticity
model

where Qpobs is the observed peak discharge (cms) and
Qpest denotes the forecast peak discharge from the model
(cms).

Indicator 3: Error of time to peak �ETp�

ETp D Tpest � Tpobs �10�

where Tpest is the estimated arrival time of the peak
discharge from the forecast model, and Tpobs denotes the
arrival time of the observed peak discharge.

Indicator 4: Mean absolute error (MAE)

MAE D 1

M

∑
jQobs � Qestj �11�

where M is the number of estimated runoff points and
MAE is the difference between estimated and observed
flow.

Indicator 5: Mean absolute percentage error (MAPE)

MAPE D �
1

M

∑ ∣∣∣∣Qobs � Qest

Qobs

∣∣∣∣�100%, �12�

MAPE is a measurement of the accuracy of the
estimated and observed flow.

Indicator 6: Coefficient of persistence (PC)

PC�k� D 1 �
∑

�Qobs � Qest�
2∑

�Qobs � Qobs�k��2
�13�

where PC�k� indicates the estimated coefficient of per-
sistence at the kth period and the observation value at k
periods before is as present observation Qobs�k�.
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Indicator 7: Coefficient of extrapolation (EC)

EC�k� D 1 �
∑

�Qobs � Qest�
2∑

�Qobs � Qest�k��2
�14�

where EC�k� is the estimated coefficient of extrapolation
at the kth period and Qest�k� is the estimated value at
the kth period extrapolated from the previous kth and
(k � 1)th observed values.

APPLICATION AND RESULTS

Linear times series analyses

The times series statistical package, SCA, was used for
linear time series analysis. The results from the ARMA
model and the outlier detection were obtained as follows:

(1) ARMA Model
The best model, ARMA (2(1, 18),1(5)), was obtained

using the BIC values

Yt D 76Ð76 C 0Ð47Yt�1 � 0Ð11Yt�18 C at C 0Ð20at�5

�6Ð71� �9Ð77� ��2Ð30� ��3Ð74�
�15�

In the above equation, the t-value in brackets are the
results from the T-test, indicating a significant difference
if the value is larger than 1.96. The t-value is the statistic
by T-test.
(2) Outlier detection

After application of outlier detection the estimated
parameters were in steady state and obtained using the
following expression:

Yt D 76Ð43 C 0Ð47Yt�1 � 0Ð11Yt�18 C at C 0Ð21at�5

�8Ð53� �7Ð33� ��1Ð61� ��3Ð30�
�16�

The linear model ARMA and outlier consider sea-
sonal fluctuations. Equations (15) and (16) indicate the
significance of Yt�18, and the equations demonstrate the
strong influence of a period of one-half year as 18 ten-day
periods were chosen by the model as the optimum. The
seasonal fluctuation of 18 ten-day periods fits the physi-
cal phenomenon, since the hydraulic streamflow data can
be divided into that for wet and dry seasons.

Nonlinearity test

Integrating Ramsey’s RESET auxiliary regression into
Equation (15) and proposing h D 2, the following expres-
sion was obtained:

Yt D 76Ð76 C 0Ð47Yt�1 � 0Ð11Yt�18

C υ2 OY2
t C at C 0Ð20at�5 �17�

where OYt indicates the estimated value. The original null
hypothesis H0 : υ2 D 0, has to be rejected for P-values
less than 0Ð05. In this case study, the F-test resulted
in F D 4Ð93 and P D 0Ð027. Hence, the null hypothesis
H0 was rejected, and existence of the H0 nonlinear

term υ2 confirmed. The following expression was again
regressed:

Yt D 62Ð42 C 0Ð69Yt�1 � 0Ð07Yt�18

�6Ð10� �15Ð53� ��1Ð73�

�0Ð0004 OY2
t C at C 0Ð29at�5

��2Ð17� �5Ð50�
�18�

From the coefficients of the nonlinear terms in
Equation (18) it is obvious that nonlinearity character-
istics do exist even when the value of the nonlinear term
is not high. The parameters are insignificant when h > 2.

Equation (18) confirms that the hydraulic time series
was nonlinear. We utilize the nonlinear time series
models to simulate and forecast the streamflow.

Nonlinear time series analyses

There were two stages in the construction of the GA
model; the number of initial population genes was 50. In
the first stage, the BIC was applied to formulate the opti-
mized equation (e.g. Yt�1, Yt�2, Yt�5 . . .) for the TAR,
TARMA, and BL models. In the second stage a CE value
was utilized to fit the best parameters of the optimized
equation formula from the first stage. In addition, the
algorithm ranking method for reproduction and uniform
cross for crossover were accepted: a crossover rate of 0Ð8
and a mutation rate of 0Ð01 were selected through trial
and error. The highest number of generations when pick-
ing the chromosomes was set a 50. The ARCH model
was constructed using the E-views package.

(1) TAR and TARMA model
As stated above, the optimization results from the GA

were implemented in the TAR model as follows:

Yt D
{

40 C 0Ð584Yt�1 C a1,t Yt�d � r
287Ð5 C 0Ð5Yt�1 � 0Ð079Yt�4 C a2,t Yt�d > r

�19�
where d D 1, and r D 320.

The Equation of (19),(20),(22),and (24) were divided
into two piecewise linear model by d and r. The positive
integer d is commonly referred to as the delay (or
threshold lag) of the model. The r is the threshold value
of the model.

Owing to the larger variations of 10-day streamflows
between dry and wet seasons, variables, such as MA
terms, were integrated into the TAR model, and the
maximum order was 5. The results of the TARMA model
were as follows:

Yt D




96 C 0Ð42Yt�1 C 0Ð071Yt�2

�0Ð135Yt�4 C 0Ð50at�1 C 0Ð211at�2

�0Ð125at�3 C a1,t Yt�d � r
511Ð5 � 0Ð1563Yt�4 C 1Ð87at�2

�0Ð1504at�5 C a2,t Yt�d > r
�20�

where d D 1, and r D 281.
(2) BL model
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The optimization implemented through GA in the
bilinear model can be determined as follows:

Yt D 84Ð63 C 0Ð20Yt�3 C 0Ð34Yt�4

C at C 0Ð25at�1 C 0Ð20at�4 C 0Ð11at�5

C 0Ð0005Yt�1at�1 C 0Ð0008Yt�1at�5

C 0Ð001Yt�2at�3 C 0Ð0001Yt�3at�2

C 0Ð0017Yt�4at�2 �21�

(3) ARCH model
High streamflows in the wet season show higher

variations. Hence in this study the thresholds from the
TAR and TARMA models were utilized to separate the
high streamflow data. In addition, a virtual variable, Dt,
was proposed as an explanatory variable. The primary
function of Dt is to increase the significance of the value
over the threshold in the model. The results from this
model are shown in Equations (22)–(25). The values in
brackets indicate the identifier of the T-test. In additions,
the virtual variable shows significance if the modulus of
Dt is greater than 1Ð96.

(i) If threshold r D 320

Yt D 57Ð65 C 0Ð25Yt�1 � 0Ð05Yt�18

�14Ð84� �20Ð30� ��2Ð17�

CDt�153� C Dt�0Ð73�Yt�1 C at C 0Ð11at�5

�5Ð40� �6Ð86� �4Ð11�

εtjI�t � 1� ¾ N�0, ht�

ht D 1088Ð88 C 0Ð82a2
t�1 C Dt�8804�

�14Ð94� �7Ð50� �2Ð02�
�22�

Dt

{
0 Yt < r
1 Yt ½ r

�23�

(ii) If threshold r D 281

Yt D 59Ð19 C 0Ð25Yt�1 � 0Ð06Yt�18

�12Ð67� �18Ð18� ��2Ð41�

CDt�287� C Dt�0Ð18�Yt�1 C at C 0Ð17at�5

�15Ð88� �2Ð83� �5Ð15�
�24�

εtjI�t � 1� ¾ N�0, ht�

ht D 1261 C 0Ð64a2
t�1 C Dt�5460�

�13Ð73��6Ð19� �4Ð94�

Dt

{
0 Yt < r
1 Yt ½ r

�25�

From the above implementation it can be seen that
different threshold values represent different explanation
variables. Finally, r D 281 is preferable for calibration.

DISCUSSION

Calibration and verification

Calibration and verification of the linear and nonlinear
time series are shown in Tables II, III and IV, and
Figures 7–20:

(1) The characteristics of the dry and wet seasons cannot
be captured using the ARMA model. Hence the results
of this simulation were not very representative of the
true situation. Consequently, this study utilized outlier
detection technology to capture the characteristics and
occurrence of outliers, and then re-adjusted the series.
Finally, it was found that the number of outliers
was much less than in the original data. Thus, there
was no significant improvement in the calibration and
verification of the results.

(2) Even though the modified linear models, which used
outlier detection technology, performed much better
than ARMA in identification, the performance of
CE and the values of the forecast capacity, PC
and EC, although better than those of the ARMA
model—were still not very representative owing to
the fact that the occurrence and size of outliers cannot
be forecasted.

(3) Regardless of data identification and verification, the
nonlinear TAR and TARMA models performed much
better than the linear models.

(4) A stable forecast of the total water amount is more
important than the forecast of peak values in water
resources management. Accordingly, for CE, MAPE,
and MAE values, the nonlinear models TARMA,

Table II. Calibration results of each model

Assessment Index CE EQp ETp MAE MAPE

ARMA 0Ð2886 �0Ð4716 1 60Ð456 0Ð7440
Outlier 0Ð2886 �0Ð4716 1 60Ð45 0Ð7437
TAR 0Ð7311 �0Ð2657 1 42Ð54 0Ð5008
TARMA 0Ð7541 �0Ð4872 154 40Ð61 0Ð4841
ARCH-320 0Ð7625 �0Ð2411 0 41Ð35 0Ð4759
ARCH-281 0Ð7338 �0Ð3797 102 42Ð14 0Ð4785
BL �0Ð2487 �0Ð0203 1 104Ð43 1Ð4099

Table III. Verification results of each model

Assessment Index CE EQp ETp MAE MAPE PC EC

ARMA 0Ð3817 �0Ð3595 1 41Ð82 0Ð5349 0Ð2902 0Ð7279
OUTLIER 0Ð3022 �0Ð4007 1 37Ð99 0Ð3521 0Ð1989 0Ð6929
TAR 0Ð5884 0Ð1152 40 33Ð84 0Ð3891 0Ð5275 0Ð8189
TARMA 0Ð6058 0Ð0946 32 33Ð33 0Ð3878 0Ð5474 0Ð8265
ARCH-320 0Ð4784 0Ð1152 40 38Ð38 0Ð3830 0Ð4011 0Ð7704
ARCH-281 0Ð4973 0Ð1152 40 37Ð36 0Ð3782 0Ð4228 0Ð7788
BL 0Ð0938 �0Ð4191 1 61Ð28 0Ð9102 �0Ð0403 0Ð6012
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Figure 7. Calibrated results for 10-day streamflows between 1989 and 1998 using the ARMA model
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Figure 8. Calibrated results for 10-day streamflows between 1989 and 1998 using the outlier detection model
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Figure 9. Calibrated results for 10-day streamflows between 1989 and 1998 using the TAR model
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Figure 10. Calibrated results for 10-day streamflows between 1989 and 1998 using the TARMA model
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Figure 11. Calibrated results for 10-day streamflows between 1989 and 1998 using the BL model
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Figure 12. Calibrated results for 10-day streamflows between 1989 and 1998 using the ARCH-281 model
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Figure 13. Calibrated results for 10-day streamflows between 1989 and 1998 using the ARCH-320 model
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Figure 14. Verified results for 10-day streamflows between 1999 and 2001 using the ARMA model
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Figure 15. Verified results for 10-day streamflows between 1999 and 2001 using the outlier detection model
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Figure 16. Verified results for 10-day streamflows between 1999 and 2001 using the TAR model
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Figure 17. Verified results for 10-day streamflows between 1999 and 2001 using the TARMA model
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Figure 18. Verified results for 10-day streamflows between 1999 and 2001 using the BL model
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Figure 19. Verified results for 10-day streamflows between 1999 and 2001 using the ARCH-281 model
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Figure 20. Verified results for 10-day streamflows between 1999 and 2001 using the ARCH-320 model

TAR, and ARCH performed better in calibration and
verification. However, with regard to forecast capacity
PC and EC, TAR and TARMA performed better with
values of PC and EC larger than 0Ð5 and 0Ð8, in both
models.

(5) Even though the multiplied oscillation effect of the
BL model produces a better performance regarding
peak discharge simulation, it cannot represent all data
equally well because data during the dry season do not
change much. Therefore, verification standards cannot
be satisfied for both wet and dry seasons.

(6) The indicator ETp in Table 2 and Table 3 showed that
the linear time series models have the characteristic
of one time lag. The nonlinear time series model
ARCH-320 in calibration, could solve the problem of
one time lag. When the hydraulic 10-day streamflow
series has multiple peaks, the TAR, TARMA, and
ARCH-281 models may find the wrong peak in the
wet season.

Relationships between each model and analysis system

(1) The ARMA and outlier detection models presented
significant differences at the 18th order, and a neg-
ative relation as can be seen in Equations (17) and
(18). Half-year periods were observed in the 10-day
streamflows, representing the dry and the wet seasons
and showing the seasonal change.

(2) In the TAR model, by using the CE value as a
fitness function for parameter optimization, better
performance was obtained for wet and dry sea-
sons, but not for the simulation of peaks. However,
peaks caused by typhoons and/or stormwater are out-
liers. Moreover, in this study long-term MA param-
eters were added to the TAR model in order to
improve this model. The resulting TARMA model
showed positive effects with regard to calibration,
but negative effects withn regard to verification.
Good simulation of whole watershed streamflow
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Table IV. Comparison results of each model

Model Properties Characteristics Model program Result Model Application

1 ARMA Linear model Easy and stationary
model

Easy Not good

2 Outlier Linear model Can detect outliers Easy Not good

3 TAR Nonlinear model States the wet and dry
data by using different
linear models

A little complex Good Whole watershed
streamflow forecasting

4 TARMA Nonlinear model States the wet and dry
data by using different
linear models

A little complex Good Whole watershed
streamflow forecasting

5 ARCH-320 Nonlinear model Utilizes residual
variances and adds an
explanation variable to
simulate inconsistent
variance data

Complex Good Whole watershed
streamflow forecasting

6 ARCH-281 Nonlinear model Utilizes residual
variances and adds an
explanation variable to
simulate inconsistent
variance data

Complex Good Whole watershed
streamflow forecasting

7 BL Nonlinear model Cross of AR and MA can
produce amplitude of
oscillation

A little complex Not good High flow and peak value
forecasting

forecasting was obtained with the TAR and TARMA
models so that if one requires to separate high
and low streamflows, these two models should be
used.

(3) In the BL model, a combination of AR and MA
resulted in oscillation of the streamflows, showing
much higher peaks during the wet season. Although
all streamflows were positive, the amplitudes of the
BL model were so large that they resulted in negative
oscillations at times, thus overfitting the performance.
10-day streamflow simulation and verification were
both not good enough. If consideration of the flood
case and the influence of the flood peak is of prime
concern, then the BL model best captures high peak
values, and could help in mitigating the consequences
of floods.

(4) The TAR and TARMA models have the same prob-
lems in simulating the physical properties of max-
imum peaks during the wet season. Consequently,
this study attempted to solve the problem of incon-
sistent variance by using the ARCH model. How-
ever, the ARCH model showed a higher residual
variance caused by the higher peaks. This caused
divergence in the simulation and the null hypothe-
sis was rejected. Hence, this study again separated
the peaks by a threshold, and then added an expla-
nation variable to simulate the high streamflows and
high variance. However, the results were still not sta-
ble even when the residual variance of the ARCH
model was reduced. Thus, the results of simulation
and verification did not improve much. The results
of hydrograph verification were not ideal because the
explanation variable caused some overforecasting of
streamflows.

CONCLUSIONS

(1) A nonlinear model is better able to follow variations
than a linear model.

(2) TARMA is simple to maintain and apply. Owing to
the use of 10-day streamflows for water resources
management, forecasting total series amounts is much
more important than peak forecasting. The TARMA
model showed the best performance with regard to
CE, MAPE, and MAE as verification, compared with
the forecast capacity PC and EC.

(3) The characteristics of 10-day streamflows in wet and
dry seasons exhibited differences in the calibration
and verification of the piecewise linear models TAR,
TARMA, and ARCH. Figures 9, 10, 12, 13, 16, 17,
19 and 20, show better fitness for dry seasons than
for wet seasons.

(4) When considering overall streamflow amounts, use of
the TAR and TARMA models is recommended.

(5) When considering peak streamflow values, use of the
BL model is recommended.
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