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SUMMARY

In classification problems the most commonly used neural network is probably the multilayer perceptron network
(MLPN). The probabilistic neural network (PNN) is a possible alternative to the MLPN. The PNN is based on
the Bayesian approach and a non-parametric estimation of the probability density functions of the qualitative
classes. In this paper the performances of the PNN and the MLPN were compared on an illustrative application
which consisted of the discrimination of seed species by artificial vision. The colour images of individual kernels
of four species (two cultivated and two adventitious ones) were acquired. A set of 73 features characterizing the
seed size, shape and texture was extracted. The data collection was divided into a training set of 1600 seeds and
a test set of 800 seeds. A stepwise discriminant analysis made it possible to select the first four relevant variables
among the 73 available ones. The MLPN incorrectly classified 44 and 28 seeds of the training and test sets
respectively. Three configurations of the PNN were tested on the same data collection. The most sophisticated
version of the PNN gave 17 and 19 misclassifications in the same data sets. The PNN presents an architecture in
which all the units are operating in parallel and a hardware implementation of this kind of architecture is therefore
possible. All the scaling parameters of the PNN can be determined from the training set. In contrast, there is no
algorithm to automatically determine the structure of the MLPN. © 1997 by John Wiley & Sons, Ltd.
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INTRODUCTION

Neural network models are based on the interconnection of a set of non-linear computational units
called ‘neurons’. Each neuron achieves a simple task. Over the last decade scientists have been
proposing various architectures in order to model biological nervous systems for resolving numerical
problems.

In the last few years, neural networks have been tested with a number of deterministic problems,
e.g. pattern recognition.1 They have also been used for recognition and synthesis of speech.2 Neural
networks can serve many purposes, e.g. classification and generalized regression. Generalized
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regression aims at predicting the value of one or more unknown variables from one or more measured
variables. Classification with neural networks consists of assigning an unknown pattern to a qualitative
group. The non-linear boundaries of classes are built during the training process.

There are various topologies and algorithms of neural networks, which make it possible to
determine pattern statistics from a set of training samples and then classify new patterns on the basis
of these statistics. According to their topologies, neural networks may require either unsupervised or
supervised training. For example, the Carpenter and Grossberg neural network3 is used to form
clusters without any supervision. In this case no information concerning the correct class of each
training pattern is provided to the network during the training phase. Networks trained with
supervision, such as the Hopfield network,4 the multilayer perceptron network,5 and the probabilistic
neural network,6 are generally used as nonlinear classifiers. In these cases, the class of each training
sample is known. The most widespread neural network architecture is the multilayer perceptron
network (MLPN), which usually applies the well-known back propagation algorithm7 as a learning
rule. The main goal of the back propagation algorithm is to adjust the weights of the network in order
to reduce the errors of classification of the training set. In this algorithm, the available learning
patterns are presented, one after another, at the inputs of the network. Each corresponding output is
assessed forwards. The network weights are gradually adjusted, from the output to the input layers, by
taking the value of the observed error into account. This algorithm may be time-consuming and very
slow to converge. Moreover, it may stick at a local minimum.

High parallelism and analogical VLSI (very large scale integration) implementation techniques are
essential for high performance in pattern recognition. However, the back-propagation algorithm of the
MLPN does not present a structure which can be easily implemented in a completely parallel manner.
For this reason, neural networks which operate in parallel have been proposed. The probabilistic
neural network (PNN) has been developed in order to respect the requirement of high parallelism. The
PNN applies a comprehensive mapping strategy derived from the Bayesian decision rule8 and from
non-parametric estimators of probability density functions. It associates an unknown pattern to a class
in order to minimize the estimated misclassification risk. The Bayesian classification rule was
developed many decades ago, but its application required a lot of computational power, which was not
available. At that time the practical interest of the Bayesian classification rule was therefore small. For
this reason the method had been neglected by the statistician community and considered as a
theoretical approach. Today, as available computers are more powerful, the method of mapping which
is required by the Bayesian approach becomes feasible. The Bayesian classification rule was first
applied in the area of neural networks by Specht6 who invented the PNN model in early 1990.

In the present study, we tried to compare the performances of the MLPN and the PNN in artificial
vision. In the field of artificial vision in chemistry, PNN have seldom been applied. The two kinds of
neural networks were tested on an application problem which consisted of the discrimination of seeds
in commercial lots. In many countries, seed lots cannot be commercialized if they contain some
adventitious seeds. In specialized seed laboratories, the control is currently achieved by visual
inspection. Visual inspection of seeds is time-consuming and difficult, because the number of
registered varieties is constantly increasing. Techniques such as gel electrophoresis9 and pattern
recognition combined with image analysis have been attempted for automatic seed classification.
However, gel electrophoresis is complex and requires sophisticated laboratory methods and skilled
operators. According to the published results, attempts at seed classification which involved computer
vision10–13 have often been confined to methods which apply linear classifiers, e.g. discriminant
analysis. Since discriminant analysis represents each qualitative group by a single centroid, it is not
a relevant method when a population of seeds of a given species is multimodal. The main goal of the
present work was to discriminate between four seed species (two cultivated and two adventitious
species) and to compare the respective performances of the MLPN and the PNN.
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THEORY

Let a pattern be denoted by a p-dimensional vector x=(x1 , x2 , . . . , xp )T, where p is the number of
measured variables. Let us assume there are k pattern classes, numbered from 1 to k, and n training
patterns. All the training data are gathered into a matrix X with n rows and p columns. Each row
represents a training pattern and each column represents a measured variable. Let xij be the jth variable
of row i. As the two classifiers presented here are supervised, the qualitative group of each training
pattern is known. The aim of the classification is to predict the qualitative group of each test pattern
by using neural networks.

Multilayer perceptron network

The MLPN is a feedforward network with one or more hidden layers of units between the input and
the output. As an example, a three-layer perceptron network with one layer of hidden units is shown
in Figure 1. It was proved that no more than three layers are required, because a three-layer network
can generate any arbitrarily complex decision region.14 The MLPN consists of an interconnection of
small units called ‘neurons’, all the connections being weighted. The task of each unit is to add all the
weighted inputs and then to apply a non-linear activation function on the weighted sum s. During the
training, a qualitative group of each training pattern must be known. In 1986, Rumelhart, McClelland
and Williams proposed the ‘back propagation’ algorithm, also called the ‘generalized delta rule’, as
a learning algorithm. The back propagation is an iterative learning algorithm which generally uses the

Figure 1. Structure of MLPN
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sigmoid as an activation function. The sigmoid function is defined by

f(s)=
1

1+e2as (1)

and has the range 0<f(s)<1, where a is a constant which controls the spread of the sigmoid function.
The network is trained by initializing the weights to small random values. Each time an unknown
training pattern p is presented to the inputs of the network, the corresponding output is assessed. The
error function is formulated on the basis of the current output op and the target tp . It is defined by

ep =Ok

i=1

(oip 2 tip )2 (2)

The main goal of the back-propagation learning rule is to gradually adjust the weights in order to
minimize ep . For this purpose the back propagation learning rule uses the gradient descent algorithm.
The weights are iteratively adjusted according to

wij(t+1)=wij(t)+hg(ep ) (3)

where h refers to the learning coefficient (0<h<1), wij(t) is the weight between node i and node j at
time t, and g(ep ) is a term depending on the error function.7 Moreover, equation (3) can be improved
by introducing a ‘momentum’ factor. The momentum factor is to weight adaptation what the highpass
filter is to analogical electronics. It amplifies large weight changes but attenuates small ones. Equation
(3) becomes

wij(t+1)=wij(t)+hg(ep )+a[wij(t)2wij(t21)] (4)

where a is the momentum factor and has the range 0<a<1. The momentum factor is sometimes
useful to escape from a local minimum. It may also speed up the convergence of the back-propagation
algorithm.

Probabilistic neural network

The structure of the MLPN is quite different from that of the PNN.15 The PNN takes its basic concept
from the optimum Bayesian decision rule. Before describing the architecture of the PNN, it is
necessary to explain the Bayesian approach.

Suppose we have a set of random p-dimensional patterns belonging to one among k different
classes. Each class i has a a priori probability of occurrence hi . The main goal of the Bayesian
decision rule is to assign an unknown pattern x to a class to which this pattern is most likely to belong.
In some studies, the cost of misclassification can be different according to the actual class of x. In the
present study, it was assumed that the costs of misclassifications were equal for all the classes. The
Bayesian decision rule provides a means to estimate the a posteriori probability that the input pattern
x belongs to each class and then to assign this input pattern to the class which presents the maximum
a posteriori probability. The input pattern x is attributed to class i if

p(w=wi /x)= max
j={1, 2, . . . , k}

p(w=wj/x) (5)

From the Bayes theorem we have:
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p(w=wi /x)=
hi f(x/w=wi )

Ok

j=1

hj f(x/w=wj )

(6)

where hi refers to the a priori probability of population i and f(x/w=wi ) is the probability density
function (PDF) for class i. By using equation (6), the assignment criterion defined in equation (5) can
be replaced by

hi f(x/w=wi )= max
j={1, 2, . . . , k}

hj f (x/w=wj ) (7)

The main key to using equation (7) is the calculation of the PDF for each class. In the literature,
many non-parametric PDF estimators exist, such as the Rosenblatt estimator,16 the Parzen estimator,17

and the Loftsgaarden–Quesenberry estimator.16 Parzen proposed a powerful technique to estimate the
PDF in the univariate case. The principal advantage of Parzen’s PDF estimator is that it is both
unbiased and consistent. Parzen’s PDF estimator is simply a weighted sum of small units centred at
each training pattern:

f(x/w=wi )=
1
ni
Oni

j=1

WS||x2xj||
s D (8)

where s is a smoothing parameter, ni is the number of patterns in class i, and W is a unit function, also
called a kernel function, which must meet certain conditions.17 In principle, many kernel functions can
be used. The most widely applied is the Gaussian function, which is known to give satisfactory results
in many situations. The utilization of the Gaussian function does not imply that the training set was
supposed to present a normal distribution. Parzen has proved that the estimated PDF for a population
converges to the actual PDF as the size of this population increases. This means that Parzen’s PDF
estimator is consistent in a quadratic sense:

lim
ni→+°

E[|festimated (x/w=wi )2 factual(x/w=wi )|
2]=0 (9)

Cacoullos18 has extended Parzen’s PDF estimator to the multivariate case. The estimated density
function is now the sum of a multivariate kernel function centred at each training sample:

f(x1 , x2 , , , , xp /w=wi)=
1
ni
Onj

j=1

WSx1 2xj1

si1

,
x2 2xj2

si2

, . . . ,
xp 2xjp

sip
D (10)

Things are now becoming much more complicated, as we have to estimate a function of p variables.
The density estimate for class i and for the particular case where the kernel function is a multivariate
Gaussian function is given by:

f(x1 , x2 , . . . , xp /w=wi )=
1

(2p)p/2si1si2 . . . sipni
Oni

j=1

e2Di(x, xj) (11)

where
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Di(x, xj )=Op

k=1
Sxk 2xjk

sik
D2

(12)

On the basis of equations (7) and (11), Specht has proposed a PNN which is a four-layer feedforward
neural network. This network model presents a high degree of parallelism. Figure 2 shows an example
of the architecture of a PNN which deals with a problem where four classes are to be discriminated
and the dimensionality of each input pattern is also four. Each unit in the pattern layer represents a
training pattern. The pattern layer assesses the distance between the input pattern and each training
sample (equation (12)). The activation function, which is here the exponential function as in equation
(11), is then applied. The summation layer associated to a given class sums the output of the pattern

Figure 2. Structure of PNN
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layer units belonging to that class. In this way the output of each summation unit is proportional to
the PDF of the corresponding class. The output unit finds the maximum value of its inputs and returns
the class number associated to this maximum (equation (7)).

The density estimates use smoothing parameters (sik ) which must be chosen in order to minimize
the estimated PDF error. It is therefore necessary to define a criterion for evaluating the performance
of a trial value of sik and to choose an optimization algorithm enabling the minimization of this
criterion. The usual criterion is the observed percentage misclassification of the training set. Each time
a training sample is to be classified, the corresponding unit in the pattern layer is not taken into account
in order to have a non-biased classifier. The estimation of sik is achieved by an iterative optimization
algorithm, the conjugate gradient algorithm. The method is described by Schioler and Hartmann19 and
Specht.20

Several options in the way of assessing the smoothing parameters can be selected. (i) We can define
a single smoothing parameter for all the variables and all the populations. This sigma model has been
called BASIC. (ii) Variability between variables can be taken into account by associating to each
variable its own smoothing parameter (model called SEPVAR; p smoothing parameters to be
estimated). (iii) Density estimates of heterogeneous classes can be assessed by a more complete sigma
model in which a smoothing parameter is defined for each class and each variable (k3p smoothing
parameters). This sigma model has been called SEPCLASS. In this study the performances of the PNN
using these three sigma models were compared.

MATERIALS AND METHODS

Sample collection

The aim of this study was the automatic characterization of four seed species by a colour image
analysis system. It is known that the growing location and environmental conditions have a
considerable effect on the visual appearance of the seeds. Some seeds belonging to the same species
present a wide heterogeneity in their morphometrical and colour features.

Samples of four seed species were provided by a French national seed-testing station (Station
Nationale d’Essais de Semences, Beaucouzé, France). The four studied species were chosen because
they corresponded to a real seed purity analysis problem. Wild oat and rumex seeds are very dangerous
for crops and the European standards21 include a rigorous identification of these wild seeds. For each
kind of seed lot to be commercialized, these European standards give the maximum level of foreign
material and adventitious seeds which is allowed in the lot. Seeds of red fescue (Festuca rubra L.),
perennial rye grass (Lolium perenne L.), wild oat (mixture of three varieties: Avena fatua L., Avena
pubescens L. and Avena sterilis L.) and rumex (mixture of three varieties: Rumex crispus L., Rumex
longifolius L., and Rumex obtusifolius L.) were randomly picked from lots. The seeds of Rumex
longifolius L. may be with or without an envelope, which drastically changes their external
appearance. Red fescue and perennial rye grass are cultivated seed species, whilst wild oat and rumex
are adventitious seeds which may devastate crops. Discrimination between the three varieties of rumex
is not achieved in purity analysis of seeds, nor between the three varieties of wild oat.

Image acquisition

A set of numerical images was acquired by a high resolution three-CCD camera (KY-F55B, JVC
Corp., Japan). A 35 mm macrolens (Nikkor AF, Nikon, Japan) was fitted on the camera. Lighting was
achieved by two 18 W neon lamps placed at either side of the working surface. The camera surface
was about 45 cm away from the working surface. Once the images were captured, they were digitized
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by a frame grabber (VP1300-768-E-AT, Imaging Technology Inc., Bedford, U.S.A.). An image was
just a matrix of size 512 rows by 768 columns, which represented a spatial resolution of 6 cm39 cm.
Each pixel in a colour image is represented by a three-dimensional vector corresponding to red, green
and blue luminance values. The luminance values at the co-ordinates of each pixel ranged from 0 to
255.

A total of 600 seeds were available for each of the four species. Sets of seeds were placed in the
field of the camera in random orientation and in non-touching positions. The number of seeds which
could be placed together in the field of the camera depended on the average size of each kernel. For
seeds of small size, such as perennial rye grass, red fescue and rumex, a single image contained about
100 seeds whereas an image of wild oat kernels included only 20 seeds. Forty-eight images of sets of
seeds were acquired and stored for further treatment.

Any colour can be reproduced by mixing an appropriate set of three primary colours. A few primary
colour spaces have been proposed during the past, all of which attempt to represent the trichromatic
nature of light for different purposes. In machine vision the popular choices of colour primaries are
RGB (red, green and blue) co-ordinates or HSI (hue, saturation and intensity) co-ordinates. In this
study, the RGB representation was used and no transformation was applied to enhance colour
differences within the colour space.

Image processing

The initial treatment of the images consisted of reducing the noise. For this purpose a median filter22

was applied on the images. In order to isolate the objects from the background, the colour images were
binarized by a spatial segmentation technique.23 The binarization algorithm proceeds as follows.

(i) Binarize the colour image into two regions by using an initial random threshold vector value.
We could use the average grey levels for the three channels of the whole colour image.

(ii) Calculate the respective mean grey level kzi l and the number of pixels ni of each region,
iP{1, 2}.

(iii) Calculate the spatial threshold value

t= 1
2 (kz1l+ kz2l)+

kz1l2 kz2l
2 log(n1 +n2 )

logSn2

n1
D

(iv) For each point z0 in the image evaluate the quantity

g= 1
9O8

p=0

zp , where z0 , z1 , . . . , z8 are the observed grey levels at points in the 333

neighbourhood window of z0 . If g is less than t (i.e. ;kP{1,2,3}, gk < tk , where k is the index
of the colour channel), then allocate z0 to region 1, otherwise to region 2.

(v) Go to (ii) until the threshold is stable.

In order to characterize individual seeds, 73 features were then measured on each seed. These
features included 25 size and shape parameters measured from the binarized image (Table 1) and 48
(1633 colour channels) texture features (Table 2). The size and shape features are independent of grey
value statistics and were therefore extracted only from the binarized image. However, the texture
features were measured independently from the red, green and blue channels. Each texture feature was
therefore a three-dimensional vector representing the values of the texture on the three primary
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channels. All the features were normalized in order to have invariance to rotation and translation of
the seeds. The Fourier descriptors are attractive features which are assessed by the application of a
monodimensional fast Fourier transform to the seed contour.24 The number of Fourier descriptors
depends on the length of the contour of the seed. Moreover, the phase components contained useless
information about the orientation of the seed. Only the first ten magnitude components were kept.
Image texture includes coarseness, fineness, regularity, irregularity, etc. These terms relate to the
spatial distribution of the luminance signal in a neighbourhood. A region in which the grey levels
change slowly with distance is characterized by a coarse texture. In the case of a fine texture, the grey
levels tend to change rapidly with distance. The texture was characterized by three well-known
methods: local histograms,25 grey level co-occurrences,26 and grey level run lengths.27 The local
histograms are obtained from the monodimensional distribution of the grey levels of the seeds. In
order to summarize these histograms, parameters such as mean, variance, energy, kurtosis and
skewness were extracted. Grey level co-occurrence and grey level run length approaches are based on
the assessment of bidimensional distributions of the grey levels.

Variable selection

All the measured features were gathered into a matrix of size 2400 rows by 73 columns. Each row of
the matrix represented a particular seed and each column represented a measured feature. This matrix
was randomly divided into two matrices: a matrix of size 1600373 for the training set and one of size
800373 for the test set. Some variables could be highly correlated and therefore present no
discriminant ability. It was worth selecting a relevant subset of variables. To this end we used stepwise
discriminant analysis (SDA), which introduced the variables in a stepwise manner by maximizing a
specific criterion.28 Let T be the total covariance matrix of the training set and B the ‘between’ matrix
which describes the variations between the groups. At each iteration, SDA introduces the variable
which maximizes the trace of the matrix defined by T 21B. At the mth iteration, m among p variables
have already been selected by SDA. The procedure assesses the traces of all the matrices T 21B which
can be obtained by using the m previously selected variables and one among the p2m remaining
variables. In this way the traces of p2m matrices of the form T 21B are assessed. These traces are
denoted ti (i ranging from 1 to p2m). All the traces ti are then compared. At iteration m+1 the variable
which gives the maximum trace is selected. The procedure of SDA is able to order the variables
according to their discriminant abilities. However, it gives no simple criterion to make an end of the
variable selection at a given step. It was supposed that when the maximum value of ti did not notably

Table 1. Size and shape features used for seed characterization. All these features were measured from binarized
image

Feature Interpretation

Area Sum of all pixels in the region of a selected seed
Perimeter Sum of all pixels on the boundary of a selected seed
Length Maximum length of the seed through the centroid
Width
Thinness ratio (or circularity)
Elongation Ratio of the width to the length of a seed
First ten magnitude Fourier descriptors
Seven invariant moments
Eccentricity
Spread
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increase from one step to another, the optimal subset of variables was found. In order to have a
variable selection criterion which is independent of the step of SDA, we defined a relative variable
selection criterion v as the ratio of the maximum trace to the sum of all the traces:

v=
max

iP{1,2,. . . , p2m}
ti

Op2m

i=1

ti

(13)

From the examination of the evolution of v according to the step of SDA, a subset of relevant
variables was selected and used as input for the tested networks. In this way a subset of variables was
formed.

Table 2. Texture features used for seed characterization. Each of these features is a three-dimensional vector

Feature Interpretation

Local histogram
features

Mean grey level
variance
energy

Gives the variance of the histogram. It is minimized
when histogram elements are as equal as possible.
This arises from a very homogeneous seed surface.

Entropy Measures the homogeneity of the histogram. It is
maximized for uniform histograms

Kurtosis Characterizes the degree of asymmetry of the
histogram around its mean

Skewness Measures the relative peakedness or flatness of the
histogram

Grey level
co-occurrence
matrix features

Energy (or angular second moment) Gives the variance of the matrix. It is minimized
when matrix elements are as equal as possible. This
arises from a very homogeneous textured surface

Contrast Gives the inertia of the matrix according to its main
diagonal

Correlation Measure the resemblance between lines (respec-
tively columns). It is maximized when values are
uniformly distributed over the matrix

Entropy Gives a measure of the homogeneity of the matrix
elements. It is maximized for a uniform matrix

Inverse difference moment Gives high values if elements are concentrated
around the main diagonal of the matrix. This occurs
in images with very smooth transitions in grey
levels

Grey level
run length

Short-run emphasis Emphasizes the short run existing in the image. It
gives high values for complex texture

matrix features Long-run emphasis Emphasizes the long run lengths of an image. Gives
high values for homogeneous texture

Grey level distribution Gives high values if frequencies of occurrence of
run length are distributed over very few grey
levels

Run length distribution Gives high values if frequencies of occurrence of
run length are distributed over very few run lengths.
It should have its lowest value for a seed with the
most linear structure

Run percentages Low for homogeneous texture
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Classification by neural networks

The two neural networks were used as pattern classifiers. The MLPN had four inputs (representing the
number of selected variables), one hidden layer with four units, and four outputs. Each output
corresponded to one of the four qualitative groups representing the seed species. Each output node
took values ranging from 21 to 1. The transfer function was the sigmoid. The momentum factor (a
in equation (4)) and the learning coefficient (h in equation (3)) might have an important effect on the
classification performances. In order to study their effects, they were varied from 0 to 1 in steps of 0·1.
The MLPN was performed with the commercial software (NeuralWorks Explorer, NeuralWare Inc.,
Pittsburgh, U.S.A.).

The PNN models were implemented with the standard multivariate Gaussian function as a kernel
function. The four studied species were considered to have the same a priori probabilities. Three
models of the PNN were tested: BASIC, SEPVAR and SEPCLASS. For the BASIC sigma model, which
needs a single smoothing parameter s, the effect of values of s on the classification performances was
systematically studied by varying this parameter from 0·0001 to 40. In the second stage the golden
section technique29 was applied to assess the optimal value of s. For the SEPVAR and SEPCLASS
sigma models, the conjugate gradient technique29 was used to estimate the optimal values of the
smoothing parameters. Results of the MLPN and the PNN were compared with regard to their ability
to classify both the training and the test sets.

RESULTS

Image examination of seeds

The seeds showed some differences in their appearance: see Figure 3. This figure represents the blue
channel images of typical seeds. In order to simulate a real analysis of seeds, seeds were placed in
random orientations and non-touching positions. This was possible because all the measured features
were invariant to rotation and translation of the seeds.

The red fescue and perennial rye grass seeds presented approximately the same elongated shape and
brown colour. It is not a trivial task to discriminate between them even by visual examination. The
seeds of wild oat were larger and presented large variations in morphology and colour which ranged
from pure yellow to brown. They also might present some pelosity. The rumex seeds presented two
typical different appearances. In most cases the envelopes of rumex seeds were absent and the seeds
showed a small and regular lozenge shape. The colour was almost evenly dark brown. In some other
cases, the envelopes remained linked to the seeds. The size of rumex seeds with their envelopes was
larger and the colour was lighter.

Variable selection by stepwise discriminant analysis

SDA was applied for the selection of a subset of relevant variables from the 73 measured ones. Many
of the measured features were correlated. Figure 4 shows the evolution of the selection criterion v
defined in equation (13) in relation to the number of introduced variables. This criterion decreased up
to four introduced variables and then remained almost constant. This meant that only four variables,
namely elongation, length, blue channel skewness (BS) and long run emphasis of the blue channel
(BLRE), were relevant. The elongation is the ratio of the width to the length of the seed. This
parameter is close to unity if the seed is circular. BS characterizes the degree of asymmetry of the grey
level histogram of the blue channel. BLRE describes the homogeneity of the texture. It gives a high
value for a homogeneous texture. The four selected variables corresponded to different kinds of
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parameters which respectively describe the size, shape, local histogram and texture. Figure 5 shows
the biplot of the first two selected variables, namely elongation and length. In this figure each point
represents an individual seed. Adventitious species (rumex and wild oat) were well-separated from
cultivated ones (red fescue and perennial rye grass). The representations of seeds of red fescue and
perennial rye grass completely overlapped. This was to be expected because they presented almost the
same morphometrical and colour features. Wild oat presented a wide range of variations in features
and occupied a large area on the map. The representation of seeds of rumex could be divided into two
classes which corresponded to the presence or absence of envelopes. BS and BLRE seemed to play
a less important role in discrimination.

Classification with neural networks

The MLPN was tested with the previously defined training and test sets. The back-propagation
algorithm was used to select the optimal weights. The MLPN was trained with 1600 seeds and tested
on 800 other seeds. In order to study the relation between the training time and the classification
performances, we trained the network by applying the training set many times. Each application of the
whole training set is called a ‘pass’. Furthermore, the momentum factor and learning coefficient values
were varied from 0 to 1. The error probability of the classification of the training set was assessed for

Figure 3. Example of blue channel images of seeds: (a) red fescue; (b) perennial rye grass; (c) wild oat; (d)
rumex
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each value of these parameters. Figure 6 showed that these parameters have a great effect on the
classification results. For example, only 35 among 1600 seeds were misclassified when the momentum
factor was set to 0·9 and the learning coefficient was set 0·9. However, 400 among 1600 seeds were
not correctly classified when the momentum factor was 0·5 and the learning coefficient was 0·1. From
Figure 6 it was shown that for this particular problem the optimal values of both the momentum and
the learning coefficient were 0·9. These optimal values were used in the following experiments.

Figure 7 shows the percentage of misclassification as a function of the number of passes. The
misclassifications for both the training and test sets dropped drastically from one to ten passes. With
only one pass the network misclassified 401 and 200 seeds for the training and test sets respectively.
The performances of the MLPN were almost constant when the number of passes exceeded ten. The
classification results were therefore highly dependent on the number of passes through the training set.
Table 3 gives, for the training and test sets, the confusion table in the case when the number of passes
was equal to ten. The rows of this table represent the actual species of seeds and the columns the
species predicted by the MLPN. Each block contains the number of corresponding patterns. The
diagonal terms, showing the numbers of seeds correctly classified, are the most important figures.
Classification errors were 44 among 1600 seeds for the training set and 28 among 800 seeds for the
test set. Confusions were essentially between red fescue and perennial rye grass. As the appearances
of these seeds were rather comparable, these confusions were not surprising. It must be noticed that
some seeds of wild oat were classified as cultivated seeds. These misclassifications are costly in purity
analyses, because wild oat seeds are injurious for field cultivation.

On the same data collection, three sigma models (BASIC, SEPVAR and SEPCLASS) of PNN were
investigated. The optimal value of the smoothing parameter is problem-dependent. The BASIC model

Figure 4. Variation in variable selection criterion as a function of number of variables introduced by stepwise
discriminant analysis
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requires the estimation of a single smoothing parameter s. In a first experiment the value of s was
varied from 0·0001 to 40. Figures 8(a) and 8(b) show how the percentage of misclassification of the
training set varied in relation to s. The percentage misclassification was highly dependent on the value
of s . This parameter took relevant values only in a very narrow range from about 0·1 to 0·2 (Figure
8(b)). When s was outside this interval, the percentage misclassification increased drastically and
could reach as much as 75, which corresponded to random classification. This shows the high
importance of optimizing the value of s. A ‘golden section technique’ was applied for automatically
finding the best value of s. For this sigma model, 18 among 1600 seeds and 33 among 800 seeds were
misclassified for the training and test sets respectively.

As the SEPVAR sigma-model required the estimation of four smoothing parameters, it was not
possible to independently study the effect of each of them. The optimal values of the smoothing
parameters were estimated by the conjugate gradient technique. The SEPVAR sigma model gave the
worst classification results, with as many as 27 and 37 errors for the training and test sets
respectively.

The SEPCLASS sigma model gave the best classification results. There were only 17 and 19
misclassified seeds for the training and test sets respectively. Table 4 shows the confusion table for this
model. All the confusions were between seeds of red fescue and perennial rye grass. It should be
noticed that all the adventitious seeds were correctly identified. The comparison between the four
tested neural networks is summarized in Figure 9. The bars represent the numbers of errors for each
of the PNN sigma models and for the MLPN. If the results obtained for only the test set were

Figure 5. Biplot of first two variables selected by stepwise discriminant analysis. Each seed is represented by a
single point: f, red fescue; g, perennial rye grass; o: wild oat; r, rumex
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considered, the methods could be classified according to their decreasing performances in the order
SEPCLASS, MLPN, BASIC, SEPVAR. In this study the PNN with the SEPCLASS sigma model
outperformed the MLPN and the other two PNN sigma models. For the SEPCLASS sigma model the

Figure 6. Variation in classification of training set with respect to values of the momentum factor and learning
coefficient of MLPN

Figure 7. Classification results by MLPN for training and test sets as a function of number of passes through
training set
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Table 3. MLPN confusion table for training and test sets. Results are given for ten passes through training set

Predicted species

Training set Test set

Actual Red Perennial Wild Red Perennial Wild
species fescue rye grass oat Rumex fescue rye grass oat Rumex

Red fescue 385 14 1 188 12
Perennial rye grass 27 373 15 185
Wild oat 2 398 1 199
Rumex 400 200

Figure 8. Effect of s on misclassification percentage for PNN with BASIC sigma-model: (a) smoothing
parameter ranging from 0·0001 to 40; (b) detail of same curve for smoothing parameter ranging from 0·1 to 0·6
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smoothing parameters were dependent on the measured features and populations. It was therefore not
unreasonable to associate its own smoothing parameter with each class and with each measured
feature. In this sense the SEPCLASS sigma model takes into account the variability which may exist
between the measured features of the available qualitative groups. Moreover, the training phase of
SEPCLASS was less time consuming than that of the MLPN.

DISCUSSION AND CONCLUSIONS

The performances of two network topologies were compared on the basis of a practical pattern
recognition problem. The results of the discrimination of four species of seeds from their colour image

Table 4. PNN confusion table for training and test sets. Results are given for SEPCLASS sigma model

Predicted species

Training set Test set

Actual Red Perennial Wild Red Perennial Wild
species fescue rye grass oat Rumex fescue rye grass oat Rumex

Red fescue 396 4 195 5
Perennial rye grass 13 387 14 186
Wild oat 400 200
Rumex 400 200

Figure 9. Comparison between performances of three PNN sigma models and MLPN. Results of MLPN are
given for ten passes through training set. Training set size, 1600 seeds; test set size, 800 seeds
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features by the PNN were better than those obtained by the MLPN. The PNN with the SEPCLASS
sigma model configuration classified correctly 98·93% and 97·62% for the training and test sets
respectively, whereas the MLPN gave 97·25% and 96·5% percent of correct classifications. All the
adventitious seeds were correctly identified by the PNN.

The MLPN uses the training patterns only for the optimization of the weights. Once the network is
trained, the training patterns are no longer used. One drawback of the MLPN is the requirement to
define the optimal network topology. There is no algorithm which automatically defines the optimal
MLPN structure for a given problem. Moreover, the back propagation is a heuristic algorithm, which
makes it possible to gradually approach the solution and usually requires a lot of computation time.
Many passes through the training set are required to adjust the network weights. Even if it has been
proven that the back propagation always converges, it can stick at a local minimum. Moreover, we do
not really understand how it converges. For this reason, this algorithm has never been used in
applications which require a lot of reliability. It is impossible to examine the trained network in order
to analyse both the predictive importance and the respective role of each variable. In contrast, the
PNN, since it is based on the Bayesian classification rule, makes it possible to mathematically assess
the error probability values.

In the PNN all the training patterns take part in the classification process of an unknown pattern.
It is required to retain the whole training data. On the other hand, all the PNN scaling parameters can
be automatically assessed using the training set, whilst there is no algorithm to select the optimal
structure of the MLPN. If new learning patterns are available, they can be added to the pattern layer.
It is generally not necessary to readjust the smoothing parameters and the updating of the network is
immediate. The PNN is based on the Bayesian decision rule and the confidence figures can be easily
computed. This is the main advantage of the PNN with respect to other neural network models.

Image analysis in combination with a probabilistic neural network showed promise for designing
an automatic system for seed discrimination. It can be an alternative to the current manual seed purity
analysis. The measurement of new relevant seed features, e.g. qualitative features, may substantially
improve seed recognition. Further research is also needed to reduce the size of the training set of the
PNN. This can be achieved by the application of a clustering algorithm on the predictive variables. In
this way, only a consistent subset of the training set will be used.
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