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ABSTRACT
Motivation: The proper development of any organ or tissue requires
the coordinated expression of its underlying genes that can be located
on different genomes present in an organism. For instance, each step
in the development of seed for a higher plant is the consequence
of gene interactions from the maternal, embryo and endosperm
genomes.
Results: We present a multivariate statistical model for mapping
quantitative trait loci (QTL) by incorporating two important aspects of
seed development in plants—QTL interactions derived from different
genomes, the maternal, embryo and endosperm, and genetic correla-
tions among phenotypic traits expressed in different genome-specific
tissues. This model, which has a high dimensionality, is constructed
within the maximum-likelihood context based on a finite mixture model.
The implementation of the expectation–maximization algorithm allows
for the efficient estimation of QTL positions, their action and interaction
effects and pleiotropic effects. The application of this high-dimensional
model to a real rice dataset has validated its usefulness.
Conclusions: Our model was derived for self-pollinated plants, but it
can be extended to cross-pollinated plants and to animals. With the
burgeoning of genetic and genomic data, this high-dimensional model
will have many implications for agricultural and evolutionary genetic
research.
Availability: A package of software will be provided from the
corresponding author upon request.
Contact: rwu@stat.ufl.edu

INTRODUCTION
Studies of genome-wide scans for quantitative trait loci (QTL) that
determine phenotypic traits have received considerable attention in
the past 15 years (Lander and Botstein, 1989; Zeng, 1994; Wuet al.,
2002a). The aim of these studies was to understand the genetic archi-
tecture of quantitative variation for complex traits of agricultural,
evolutionary and biomedical interest (reviewed in Mackay, 2001).
The genetic principle behind these studies is the occurrence of recom-
bination events between genetic loci when gametes are formed and
transmitted from parents to offspring. Although statistical methods
for QTL mapping were proposed originally on the basis of a bivariate
approach that associates one gene with one trait, considerable
attempts have been made to develop multivariate approaches for
mapping multiple interacting QTL (reviewed in Carlborg and Haley,
2004) and multiple correlated phenotypic traits (Jiang and Zeng,
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1995; Korol et al., 1995; Knott and Haley, 2000). In this work,
we address problems associated with intergenomic epistasis and
multiple correlated traits that have not previously been addressed.

First, the genetic interaction between different genes or epistasis
provides important fuel for creating novel quantitative genetic
variation when an organism is forced to adapt to a new environment
(Whitlocket al., 1995). The conventional concept of epistasis implies
the effect of an allele at one gene affected by another allele at
another gene on the same genome or individual (Falconer and
Mackay, 1996). However, there is also another type of epistasis that
occurs between different genes each from a different genome
or individual (Wolf, 2000; Wolfet al., 1998). Such genome–genome
or individual–individual epistasis has been believed to be an import-
ant force in maintaining genetic variation in fluctuating environments
(Wolf et al., 2002) and to help select optimal life history strategies
(Wolf, 2003). An excellent example of genome–genome epistasis is
the coordinated regulation among the maternal, embryo and endo-
sperm tissues in a developing seed (Walbot and Evans, 2003). The
genetic mapping of genome–genome epistasis based on molecular
markers is in its infant stage. Cuiet al. (2004) recently published a
series of statistical models for detecting epistatic effects on embryo-
or endosperm-specific traits between different QTL derived from
the maternal, embryo and endosperm genomes in seed plants. These
models take into account the genetic and developmental mechanisms
for seed development and can be of greater significance in the study
of genetic control of seed traits aimed at improving grain production
in crops with the aid of molecular biotechnologies.

Second, correlations between different biological traits are
ubiquitous, with the pattern and degree of trait correlations thought
to be the consequence of natural selection and evolution (Scheiner,
1993). Traditional correlation analysis deals with different traits from
the same individual. But it is common for two different traits each
from a different individual to be correlated. For example, maternal
preferences for oviposition sites affect the survival rate and develop-
ment of offspring in birds (Lloyd and Martin, 2004). In plants, the
level of hormones released by endosperm is thought to guide embryo
development (Chaudhuryet al., 2001). Genetic mapping approaches
for multiple traits capitalize on the information about interrelation-
ships among different traits measured and, therefore, can affect the
statistical power of QTL detection. Although a joint analysis of many
traits does not necessarily lead to a higher power of detection due
to an increased number of parameters being estimated, it has been
shown that the statistical power to detect a QTL can be increased by
including a few correlated traits. Such an increase in power has been
demonstrated using regression methods (Knott and Haley, 2000),
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a maximum-likelihood method (Korolet al., 1995; Jiang and Zeng,
1995), and variance component models (Almasyet al., 1997). It
is particularly favorable to utilize the correlated information when
mapping QTL for low heritability traits that are correlated to a trait of
higher heritability. Lundet al. (2003) documented several advantages
of multitrait QTL mapping over a single trait analysis.

With the burgeoning recognition of the importance of genome–
genome epistasis and genetic correlations between individual-
specific traits, it is appealing to develop a multivariate statistical
model for mapping QTL interactions that affect multiple correlated
traits expressed on different individuals or genomes. This motivation
stimulates us to develop a high-dimensional model for estimating
and testing the gene action and interaction effects on individual-
specific traits between the QTL from different genomes. This high-
dimensional model was derived from a mixture-based likelihood
model and implemented with the expectation(E)–maximization(M)
algorithm (Dempsteret al., 1977) for Monte Carlo simulations under
different sampling strategies to investigate the statistical behavior of
our multivariate model. The successful detection of interactive QTL
in an example, for rice validates the usefulness of this model.

EXPERIMENTAL DESIGN
Our model will be developed for a simple backcross, but can be
extended to an F2 or other designs. Consider two homozygous inbred

Qt+1Qt+1 Qt+1qt+1 qt+1qt+1

Ptpt

ptpt


 µ12 = µ + 1

2at + at+1 + 1
2I µ11 = µ + 1

2at + dt+1 + 1
2J µ10 = µ + 1

2at − at+1 − 1
2I

µ02 = µ − 1
2at + at+1 − 1

2I µ01 = µ − 1
2at + dt+1 − 1

2J µ00 = µ − 1
2at − at+1 + 1

2I


 , (1)

lines which are crossed to generate the heterozygous F1. Cross-
ing the F1 to one of the two parents (say the homozygous recessive)
leads to two different genotypes at each locus in the backcross. The
progeny of the backcross can be obtained through self-pollination for
autogamous species, such as rice and soybean or through outcrossing
pollination for allogamous species, such as maize and animals.

The backcross is genotyped for a set of molecular markers to
construct a genetic linkage map. As shown in Wuet al. (2002a),
genotyping the diploid progeny of the backcross with the same set of
markers can increase the power to map the QTL that are expressed
in the progeny generation, such as the embryo and endosperm of the
seed. Here, we suppose that the markers from both the backcross and
its diploid progeny are available to characterize interactions between
multiple QTL from different genomes. For animals, a genome–
genome interaction may occur as a maternal–offspring interaction.
For plants, the progeny (seeds) develop within the maternal sporo-
phyte tissue after double fertilization of the gametophyte; hence there
are potentially extensive genome–genome interactions. Double fer-
tilization forms the diploid embryo by fusing the haploid egg with one
of the sperm cells and the triploid endosperm by fusing the maternal
homodiploid central cell with a second sperm cell (Chaudhuryet al.,
2001). Proper seed development requires the coordinated expression
of the maternal, embryo and endosperm tissues (van Hengelet al.,
1998; Opsahl-Ferstadet al., 1997). There has been a wealth of
evidence for the genetic control of different genes from these three

genomes over seed development (Chaudhuryet al., 2001; Evans
and Kermicle, 2001; Dilkeset al., 2002; Walbot and Evans, 2003).
Therefore, for plants, the genome–genome interaction should include
three possible types, maternal–embryo, maternal–endosperm and
embryo–endosperm. For this reason, the models to characterize
genome–genome interactions developed for plant systems will also
cover those for animal systems.

If the backcross is assumed to be at generationt , then its progeny
obtained through outcrossing pollination is viewed as generation
t+1. LetPt , Qt+1 andQ′

t+1 be three different QTL from the maternal
(generationt), embryo (generationt +1) and endosperm (generation
t+1) genomes, respectively. In generationt , there are two QTL geno-
types atPt , expressed asPtpt andptpt , whereas, in generationt +1,
there are three QTL genotypes atQt+1 in the embryo, expressed as
Qt+1Qt+1, Qt+1qt+1 andqt+1qt+1, and four QTL genotypes atQ′

t+1
in the endosperm, expressed asQ′

t+1Q
′
t+1Q

′
t+1, Q′

t+1Q
′
t+1q

′
t+1,

Q′
t+1q

′
t+1q

′
t+1 andq ′

t+1q
′
t+1q

′
t+1.

The maternal–embryo interaction model
The two QTL from the maternal (Pt ) and embryo genomes (Qt+1)
form six across-generation QTL genotypes. Their genotypic values
for a quantitative trait, denoted byµjt jt+1, wherejt jt+1 stands for
the genome-specific QTL genotypes in terms of different numbers
of capital QTL alleles, are assigned as follows:

whereµ is the overall mean,at andat+1 are the additive effects of
the maternalPt and embryoQt+1, respectively,dt+1 is the dominant
effect of embryoQt+1, and I and J are the across-generation
maternal-additive× embryo-additive and maternal-additive×
embryo-dominant effects between the two QTL, respectively.

We treat the genetic map location of the QTL as missing data,
to be inferred from known markers by the EM algorithm. The
marker information provided differently by the backcross and its
offspring will be combined for our mapping model. Assume that
the maternalPt is bracketed by two flanking markers,M1

t andM2
t ,

genotyped from the backcross, and the offspringQt+1 is bracketed
by two flanking markers,N1

t+1 andN2
t+1, genotyped from the off-

spring. Letr, r1 andr2 be the recombination fractions between the
two maternal markers, markerM1

t and maternalQt , and maternal
Qt and markerM2

t , respectively. The corresponding recombina-
tion fractions are denoted ass, s1 ands2 for the offspring markers
and QTL. The conditional probabilities of maternal QTL genotypes
given maternal marker interval,M1

t − M2
t , in the backcross can be

expressed in terms ofr, r1 and r2. Depending on the pollination
type, we can also derive the conditional probabilities of embryo
QTL genotypes in terms ofs, s1 ands2, given the across-generation
marker interval (N1

t − N2
t )/(N1

t+1 − N2
t+1). Wu et al. (2002) and

Cui et al. (2004) provided such conditional probabilities for self-
pollinated plants. Similar procedures can be used to derive these
conditional probabilities for cross-pollinated plants.
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If different from the offspring interval M1
t – M2

t is different from
the marker interval N1

t+1 – N2
t+1, the conditional probabilities of

across-generation QTL genotypes given across-generation marker
genotypes can be calculated as the product of QTL-specific con-
ditional probabilities. If these two markers are the same, i.e. the
maternal and offspring QTL are located on the same interval, then
the conditional probabilities of across-generation QTL genotypes
should be derived independently (Cui et al., 2004). These condi-
tional probabilities will be used for the test and estimation of the
positions of the two interacting QTL.

The maternal–endosperm interaction model
Across-generation QTL genotypes for the maternal (Pt ) and
endosperm (Q′

t+1) genomes include eight combinations between two
maternal genotypes and four endosperm genotypes. The genotypic
values of the maternal–endosperm QTL genotypes, µjt jt+1 , can be
assigned as follows:

Q′
t+1Q

′
t+1Q

′
t+1 Q′

t+1Q
′
t+1q

′
t+1 Q′

t+1q
′
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
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2
at − 3

2
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1 + 1

4
I ′ − 1

2
J ′

2 + 3
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I




, (2)

where a′
t+1 is the additive effect at endosperm Q′

t+1, d ′
(t+1)1 and

d ′
(t+1)2 are the dominance effects due to the intra-locus interaction

between QQ and q and between Q and qq at Q′
t+1, respectively,

I ′ is the cross-generation maternal-additive × endosperm-additive
epistatic effect, and J ′

1 and J ′
2 are the across-generation maternal-

additive × endosperm-dominant epistatic effects for d(t+1)1 and
d(t+1)2, respectively.

Assume that a pair of flanking markers N′1
t+1 and N′2

t+1 are used
to map the endosperm Q′

t+1. Let s ′, s ′
1 and s ′

2 be the recombina-
tion fractions between the two markers, marker N′1

t+1 and the QTL,
and the QTL and marker N′2

t+1, respectively. The conditional prob-
abilities of endosperm QTL genotypes given the across-generation
maternal–embryo marker genotypes can be derived in terms of s ′,
s ′

1 and s ′
2, depending on the type of pollination. These conditional

probabilities for self-pollinated plants have been derived by some
groups. The conditional probabilities for cross-pollinated plants can
be similarly derived.

The embryo–endosperm interaction model
For the embryo (Qt+1) and endosperm (Q′

t+1) QTL at the same gen-
eration t +1, we have 12 joint QTL genotypes whose values, µjt jt+1 ,
are expressed as

Q′
t+1Q

′
t+1Q

′
t+1 Q′

t+1Q
′
t+1q

′
t+1 Q′

t+1q
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t+1q

′
t+1 q ′
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′
t+1
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
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, (3)
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whereI is the embryo-additive× endosperm-additive and embryo-
dominant× endosperm-additive epistatic effect between embryo
Qt+1 and endospermQ′

t+1, J1 andJ2 are the embryo-additive×
endosperm-additive epistatic effect ford(t+1)1 andd(t+1)2, respect-
ively, K is the embryo-dominant× endosperm-dominant epistatic
effect, andJ1 and J2 are the embryo-dominant× endosperm-
dominant epistatic effects ford(t+1)1 andd(t+1)2, respectively.

Similarly, the conditional probabilities of embryo–endosperm
QTL genotypes given across-generation marker genotypes can be
derived separately for two different cases in which the two QTL are
located in the same interval or in different intervals. Such derivations
will be different for self- and cross-pollinated systems.

As shown in Cuiet al. (2004), the genetic effect parameter
vectors h1 = (µ,at ,at+1,dt+1, I ,J ) for the maternal–embryo
interaction model, h2 = (µ,at ,a′

t+1,d ′
(t+1)1, d ′

(t+1)2, I ′,J ′
1,J ′

2)

for the maternal–endosperm interaction model andh3 =
(µ,at+1,dt+1,a′

t+1,d ′
(t+1)1,d ′

(t+1)2,I,J1,J2,K,L1,L2) for the
embryo–endosperm interaction model can be estimated from the
corresponding genotypic values,µjt jt+1, by solving a group of reg-
ular linear equations as contained in matrices (1)–(3). As can be
seen below, we derive a closed-form solution for the EM algorithm
to obtain the maximum-likelihood estimates (MLEs) of the geno-
typic values. Thus, the MLEs of the genetic effect parameters can be
estimated accordingly.

STATISTICAL METHOD

Statistical model for multiple traits
Let us suppose there are three quantitative traits, one expressed in the mater-
nal tissue (denoted byx), the second expressed in the embryo tissue (denoted
by y) and the third expressed in the endosperm tissue (denoted byz). The
three QTL from different genomes,Pt , Qt+1 and Q′

t+1, interact through
coordinated pathways to affect each of these three traits. The statistical mod-
els for the phenotypic values of the three traits affected by the hypothetical
epistatic QTL are formulated for each of the three types of genome–genome
interactions.

For the maternal–embryo interaction model, the bivariate phenotypes
(xi ,yi ) for seedi in the backcross population in terms of genotypic values,
can be expressed, as

xi =
1∑

jt =0

2∑
jt+1=0

mx
jt jt+1

ξijt jt+1 + ex
i ,

yi =
1∑

jt =0

2∑
jt+1=0

m
y

jt jt+1
ξijt jt+1 + e

y

i ,

(4)

where ξijt jt+1 is the indicator variable defined as 1 if seedi carries the
maternal–embryo QTL genotypejt jt+1 and 0 otherwise;mx

jt jt+1
andm

y

jt jt+1
are the values of QTL genotypejt jt+1 for two traitsx andy, respectively, and
ex
i ande

y

i are the residual errors that follow a bivariate normal distribution
with means zero and covariance matrix

� =
(

σ 2
x σxy

σyx σ 2
y

)
.

Note that we use the superscript or subscriptx andy to distinguish between
the two traits in genotypic values, genetic effects and residual effects and
variances.

Equation (4) can be written, in matrix notation, as

ui =
1∑

jt =0

2∑
jt+1=0

mjt jt+1ξijt jt+1 + ei , (5)

whereui = (xi ,yi) is the vector for the phenotypic values of maternal and
embryo traits for seedi, mjt jt+1 = (mx

jt jt+1
,my

jt jt+1
) is the vector for the

genotypic values of a joint maternal–embryo QTL genotype andei = (ex
i , ey

i )

is the vector for the residual effects of seedi.
For self-pollinated plants, the maternal parent receives no genes from other

sources to generate its progeny. Thus, the gene segregation in the progeny
would not lead to the variation of the maternal trait. To reflect this character-
istic, the maternal–embryo interaction that occurs across generations should
be modeled with the constraints

mx
12 = mx

11 = mx
10 and mx

02 = mx
01 = mx

00, (6)

which imply that embryo QTLQt+1 has no genetic effect on traitx, i.e.
ax

t+1 = dx
t+1 = I x = 0 [see Matrix (1)].

Similarly, we can formulate a statistical model for the maternal–endosperm
interaction, except for four triploid QTL genotypes atQ′

t+1. But the embryo–
endosperm interaction model will be different because such an interaction
occurs within the same generation in which embryo (y) and endosperm traits
(z) are also affected by a QTL from the opposite genome. The bivariate model
for phenotypic traits (y, z) can be expressed as

wi =
2∑

jt+1=0

3∑
j ′
t+1=0

mjt+1j ′
t+1

ζijt+1j ′
t+1

+ εi , (7)

wherewi = (yi , zi ) is the vector for the phenotypic values of embryo and
endosperm traits for seedi, ζijt+1j ′

t+1
is the indicator for the embryo–

endosperm QTL genotype,mjt+1j ′
t+1

=
(
mx

jt+1j ′
t+1

,my

jt+1j ′
t+1

)
is the vector

for the genotypic values of a joint embryo–endosperm QTL genotype and
εi = (e

y

i , ez
i ) is the vector for the residual effects of seedi.

Bivariate mixture model
Finite mixture models are a type of density model that comprises a number
of component functions, usually Gaussian. These component functions are
combined to provide a multimodal density. Gaussian mixture models can
be employed to model genotypic segregation of specific genetic factors that
determine quantitative traits. According to mixture models, each observation
is assumed to have arisen from one of a known or unknown number of com-
ponents (QTL genotypes), each component being modeled by a multivariate
normal distribution density. Under the maternal–embryo epistasis model, the
bivariate likelihood function of phenotypic traits (u) and marker data (M)
based on mixture models is expressed as

L(� , m,�|u,M) =
n∏

i=1


 1∑

jt =0

2∑
jt+1=0

�jt jt+1|ifjt jt+1(ui ; mjt jt+1 ,�)


, (8)

where� = {�jt jt+1|i} is the vector for the conditional (or prior) probability of
maternal–embryo QTL genotypejt jt+1 given a particular across-generation
marker genotype for seedi andm = {mjt jt+1} is the vector of genotypic
means for two traits that follow a bivariate normal distributionN(mjt jt+1,�).

With the knowledge about conditional probabilities and genotypic values,
we can construct similar mixture-based likelihood functions for the maternal–
endosperm and embryo–endosperm interaction models. We provide a
procedure for estimating the parameters contained in the likelihood functions.

The EM algorithm
Conditional probabilities are a function of the recombination fractions
between QTL and their flanking markers and therefore can provide the
information about QTL locations. Mean vectors and the covariance mat-
rix are quantitative genetic parameters associated with the genetic effects of
QTL. Let � = (� , m,�) denote the unknown parameters. We implement
the EM algorithm to obtain the MLE of�. The log-likelihood function of
Equation (8) for the maternal–embryo interaction model is given by

logL(�) =
n∑

i=1

log


 1∑

jt =0

2∑
jt+1=0

�jt jt+1|ifjt jt+1(ui ; mjt jt+1,�)


 (9)
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with a derivative for an unknown�λ,

∂

∂�λ

logL(�)

=
n∑

i=1

1∑
jt =0

2∑
jt+1=0

�jt jt+1|i ∂
∂�λ

fjt jt+1(ui ; mjt jt+1,�)∑1
jt =0

∑2
jt+1=0 �jt jt+1|ifj (ui ; mjt jt+1,�)

=
n∑

i=1

1∑
jt =0

2∑
jt+1=0

�jt jt+1|ifj (ui ; mjt jt+1,�)∑1
jt =0

∑2
jt+1=0 �jt jt+1|ifjt jt+1(ui ; mjt jt+1,�)

× ∂

∂�λ

logfjt jt+1(ui ; mjt jt+1,�)

=
n∑

i=1

1∑
jt =0

2∑
jt+1=0

	ij

∂

∂�λ

logfjt jt+1(ui ; mjt jt+1,�),

where we define

	jt jt+1|i = �jt jt+1|ifjt jt+1(ui ; mjt jt+1,�)∑4
j=1 �jt jt+1|ifjt jt+1(ui ; mjt jt+1,�)

, (10)

which could be thought of as a posterior probability that seedi has
joint maternal–embryo QTL genotypejt jt+1. We then implement the EM
algorithm with the expanded parameter set{�,�}, where� = {	jt jt+1|i}.
Conditional on�, we solve for the zeros of(∂/∂�λ) logL(�) to get our
estimates of�.

In the E-step, the prior conditional probabilities of the QTL genotypes
given the marker genotypes and the normal distribution function are used
to calculate the	jt jt+1|i matrix. In the M-step, the calculated posterior
probabilities are used to solve the unknown parameters using

m̂jt jt+1 =
∑n

i=1 	jt jt+1|iui∑n
i=1 	jt jt+1|i

, (11)

�̂ = 1

n


 n∑

i=1

1∑
jt =0

2∑
jt+1=0

	jt jt+1|i (yi − m̂jt jt+1)(ui − m̂jt jt+1)
T


 . (12)

Using sample parameters as initial values, we iterate the E and M steps
between Equations (10) and (12) until the specified convergence criteria are
satisfied. The values at convergence are regarded as the MLEs. The MLEs
of the genotypic valuesm can be used to solve the MLEs of the genetic
effectsh.

In the procedure described above for the EM algorithm, we treated the
positions of QTL as known parameters, although their MLEs can also be
obtained through iterative steps. We can use a grid approach to estimate
the QTL positions. By hypothesizing a pair of embryo and endosperm QTL
every 2 cM at marker intervals, we can draw the landscape of log-likelihood
test statistics throughout the entire genome. The positions corresponding to
the peak of the landscape across a linkage group are the MLEs of the QTL
positions.

The MLEs of the QTL positions and effects under the maternal–endosperm
and embryo–endosperm epistasis models can be similarly derived. The QTL
effects are specified differently among these three models, depending on the
dosage of QTL alleles (Table 1). As like in general QTL mapping models,
the proportion of the total variance explained by each QTL from a different
genome can be calculated for each trait.

Hypothesis testing
A number of statistical hypothesis tests can be performed for the underlying
parameters of interest. The presence of the QTL from different genomes with
joint effects on two quantitative traits expressed in different tissues can be
tested by a log-likelihood ratio (LLR) test statistic calculated under the full
model (assuming that there are such QTL) and the reduced model (assuming
that there is no QTL). The LLR is asymptoticallyχ2-distributed with the
degrees of freedom that are equivalent to the number of unknown parameters
estimated. For a mixture model like ours here, this may be violated due to

Table 1. The MLEs of the additive genetic effects of the embryo (at+1) and
endosperm (a′

t+1) QTL and their additive× additive epistatic interaction
effect (I) on gel consistency in the endosperm measured for two different
years in a backcross derived from two inbred lines in ricea

Trait
measured in
two years

µ̂ ât+1 â′
t+1 Î σ̂ 2 ρ̂

1999 36.62 17.54 −0.11 −2.06 42.87 0.2034
2000 44.51 13.95 1.08 1.00 30.06
LLR for
testing year-
dependent
difference

47.2 22.6 7.8

P -value 6.42× 10−12 1.98× 10−6 0.0052

aThe residual variances (σ 2) and residual correlation (ρ) are estimated between gel
consistency measured in 1999 and 2000.

some regularity problem (McLachlan and Peel, 2000). The critical threshold
value for declaring the existence of the testing QTL is empirically calculated
on the basis of permutation tests (Churchill and Doerge, 1994).

After the existence of QTL from different genomes is tested, we can
test the additive and dominant QTL effect from a particular genome and
additive× additive, additive× dominant, dominant× additive and dominant×
dominant epistatic effects derived from two different genomes. Our model
allows for testing the effects of specific QTL on individual traits, although,
for our experimental design, different genome–genome interaction models
characterize different types of genetic effects. All these effect-specific tests
are performed by implementing the EM algorithm and the critical value
for declaring significance can be obtained empirically through simulation
studies.

A WORKED EXAMPLE
The newly developed model was used to analyze published data
on the endosperm in rice (Tanet al., 1999). The F1 heterozygote
between two rice inbred lines, ZS97 and MH63, was self-crossed for
9 generations to produce 241 recombinant inbred lines (RILs) for
high-resolution genetic mapping of genes influencing endosperm
traits. These RILs that are homozygous for the alternative alleles
were genotyped for 221 polymorphic markers distributed through-
out the genome to construct a molecular linkage map composed of
12 rice chromosomes. These RILs as the female parent were back-
crossed toward one original inbred line, ZS97, as the male parent to
generate a backcross population containing 241 plants. All the back-
cross plants were evaluated for gel consistency in their endosperm
tissues in two successive years (1999 and 2000) to determine any
major QTL segregating in this material.

Because of the nature of this pedigree, we make some modifica-
tions to our general embryo–endosperm model to identify interacting
QTL on embryo and endosperm tissues. First, the conditional
probabilities that suit this pedigree are derived to predict the embryo–
endosperm QTL genotypes based on the markers collected in the
embryo. Second, in this design, the number of embryo–endosperm
QTL genotypes is reduced to 4 and, thus, the genetic effects that
can be estimated are the additive effects of embryoQt+1 (at+1) and
endospermQ′

t+1 (a′
t+1) and additive× additive epistatic effect (I)

between these two QTL. Third, our model was originally developed
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to analyze the phenotypes expressed in the embryo and endosperm,
but the data for this design were collected from the endosperm in
two different years. According to Falconer (1952), the same trait
measured in different years can be viewed as different traits.

The phenotypic correlation between endosperm gel consistency
measured in two different years is 0.68, suggesting that some com-
mon genetic basis is shared over years. A genome-wide scan was
performed to detect the existence and distribution of interacting QTL
throughout the entire genome. Significant joint genetic effects were
detected between two QTL on chromosomes 6 and 8. The maximum
LLR value throughout the genome is 270.9, markedly larger than
the genome-wide critical threshold 30.5, empirically obtained from
permutation tests at the 0.005 significance level. One of the detected
significant QTL is located at 12.0 cM from the first marker on chro-
mosome 6 of the embryo genome, whereas the second QTL is located
at 29.4 cM from the first marker on chromosome 8 of the endosperm
genome. The embryo QTL is located at a candidate gene,Waxy, that
is associated with a critical step of amylose biosynthesis (Okagaki
and Wessler, 1988), which well validates our model.

We estimated the additive effect,at+1, of the embryo QTL, the
additive effect,a′

t+1, of the endosperm QTL and their epistatic
effects,I, on gel consistency in two different years (Table 1). Further
hypotheses were performed for the significance tests of the additive
and epistatic genetic effects. The LLRs for testing the significance
of these effect parameters suggest that the additive effect of the
embryo QTL is highly significant, whereas the additive effect of
the endosperm QTL and the additive× additive effect between the
two QTL are significant, but at lower levels.

In this example, we can use our model to test how genetic effects
are expressed differently from year to year. If the genetic effect
of a QTL is year-dependent, then this QTL is thought to display
a significant genotype× year interaction. Figure 1 illustrates the
unparallel changes of the four joint embryo–endosperm QTL gen-
otypes across different years for gel consistency in the endosperm.
The LLR test for the year-dependent non-parallel response suggests
that there are significant QTL× year interactions (P < 0.0001).
Further tests indicate that the additive effects of the QTL from the
two genomes are expressed differently between the two years studied
(P = 6.42×10−12 for the embryo QTL andP = 1.98×10−6 for the
endosperm QTL; Table 1). The additive× additive epistatic effect
between the embryo and endosperm QTL is also different between
the two years (P = 0.005). These pieces of information obtained
from data analyses by our model are fundamental to the design of
crop breeding aimed at improving high-quality starch in rice.

MONTE CARLO SIMULATION
We carried out a series of simulation studies to examine the stat-
istical properties of our genome–genome models by focusing on
the epistatic model from the embryo and endosperm genomes. A
similar statistical behavior should be held for the other two epistatic
models, maternal–embryo and maternal–endosperm. Our simulation
studies aim to examine the model performance under different situ-
ations when heritability, sample size and QTL location change. Five
equidistant markers are simulated from the embryo population and
are ordered asM1–M5 on a linkage group with the length of 80 cM.
The Haldane map function was used to convert the map distance
into the recombination fraction. For simplicity, we use two traits
to achieve our goals. Three different combinations of heritability
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Fig. 1. Four joint genotypic values at the embryo (Qt+1) and endosperm
(Q′

t+1) QTL for endosperm-specific gel consistency (mm) measured for rice
in two different years. Data from Tanet al. (1999).

between two traits (0.1, 0.1), (0.1, 0.4) and (0.4, 0.4) and two different
sample sizes (200, 400) were used.

Suppose there are two different putative QTL on the embryo and
endosperm genomes. Both the embryo (Qt+1) and endosperm (Q′

t+1)
QTL are assumed to pleiotropically affect two traits, one expressed
in the embryo (y) and the other expressed in the endosperm (z).
The two QTL could be either linked together and located on the
same marker interval or located on different marker intervals. The
phenotypic values for each seed were simulated according to a bivari-
ate normal distribution with different joint QTL genotypic values,
determined by effect parameters, the overall (µ), additive effect of
Qt+1 (at+1), additive effect ofQ′

t+1 (a′
t+1), the additive× additive

epistatic effect (I) between the two QTL for each trait,y andz, and
residual variances (σ 2) and correlation (ρ).

Tables 2 and 3 give the hypothesized values and MLEs of the
QTL effect parameters for each trait, as well as the square roots of
the mean squared errors used to evaluate the precision and accuracy
of the parameter estimation, under different simulation schemes. In
general, our model can provide reasonable estimates of the paramet-
ers with estimation precision increasing with increased heritability
levels and sampling sizes. The QTL position estimates when loc-
ated in the same interval (Table 3) were not as good as when they
were located at different intervals (Table 2). But this problem can be
avoided if it is possible to increase the density of mapped markers to
reduce the probability that two QTL are located in the same interval.

Our model has an excellent capacity to detecst epistatically inter-
acting embryo and endosperm QTL effects. In all cases of different
sample sizes and heritabilities, the maximum values of the LLR
landscapes from 100 simulation replicates are all beyond the critical
thresholds at theα = 0.001 level determined from 1000 permutation
tests for the simulated data. Furthermore, there is reasonable estim-
ation precision for the additive× additive genetic effects even when
the heritability is at a modest level.

DISCUSSION
We have proposed a general statistical framework for simultaneously
mapping multiple correlated traits expressed in different
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Table 2. The MLEs of the QTL position and effect parameters exerted by an embryo QTL and an endosperm QTL each on different intervals for a backcross
of size 400 under different heritability combinations and residual variances estimated from 100 simulation replicates

True parameter ρ = 0.1 ρ = 0.6
0.1, 0.1 0.1, 0.4 0.4, 0.4 0.1, 0.1 0.1, 0.4 0.4, 0.4

τt+1 = 8 7.16 7.68 8.16 7.04 7.72 7.52
(4.7729) (3.1653) (2.4120) (5.1787) (3.0878) (2.5421)

τ ′
t+1 = 48 48.16 48.12 48.04 48.52 48.24 47.72

(4.0201) (2.7561) (2.6968) (4.5302) (2.8426) (2.6360)
µy = 10 9.9959 9.9959 10.0028 9.9943 9.9957 9.9987

(0.0698) (0.0565) (0.0276) (0.0683) (0.0564) (0.0293)
a

y

t+1 = 0.5 0.5019 0.5003 0.4906 0.4959 0.5020 0.4973
(0.1650) (0.1428) (0.0572) (0.1559) (0.1391) (0.0667)

a
′y
t+1 = 0.5 0.4940 0.5059 0.5062 0.4921 0.5049 0.5047

(0.1673) (0.1545) (0.0518) (0.1591) (0.1525) (0.0659)
Iy = 0.3 0.3118 0.2884 0.2937 0.3334 0.2936 0.3088

(0.2980) (0.2966) (0.1173) (0.3097) (0.2952) (0.1115)
µz = 11 10.9983 10.9989 11.0022 10.9953 10.9981 11.0000

(0.0891) (0.0311) (0.0328) (0.0882) (0.0299) (0.0378)
az

t+1 = 0.6 0.5818 0.5953 0.5971 0.5946 0.5980 0.5907
(0.1983) (0.0844) (0.0718) (0.1759) (0.0850) (0.0746)

a′z
t+1 = 0.6 0.6364 0.6028 0.5991 0.6089 0.6031 0.6163

(0.2035) (0.0783) (0.0623) (0.1856) (0.0811) (0.0830)
Iz = 0.4 0.4388 0.3902 0.4028 0.3853 0.3891 0.4102

(0.3462) (0.1303) (0.1419) (0.3658) (0.1344) (0.1372)
σ 2

y 1.1712 1.1783 0.1943 1.1545 1.1774 0.1957
(0.0884) (0.0831) (0.0153) (0.0869) (0.0820) (0.0160)

σ 2
z 1.7145 0.2819 0.2791 1.6967 0.2850 0.2876

(0.1473) (0.0226) (0.0249) (0.1114) (0.0236) (0.0262)
ρyz 0.0933 0.1060 0.0941 0.5990 0.6055 0.5998

(0.0506) (0.0538) (0.0511) (0.0347) (0.0345) (0.0333)

The squared roots of the mean square errors of the MLEs are given in parentheses.
The locations (τt+1 andτ ′

t+1) of the two QTL are described by the map distances (in cM) from the first marker of the linkage group (80 cM long). The hypothesizedσ 2
y value is 1.1756

for H 2 = 0.1 and 0.1959 forH 2 = 0.4. The hypothesizedσ 2
z value is 1.71 forH 2 = 0.1 and 0.285 forH 2 = 0.4.

genome-specific tissues. Different from previous multitrait QTL
mapping (Jiang and Zeng, 1995; Korolet al., 1995; Knott and
Haley, 2000; Evans, 2002; Lundet al., 2003), our model framework
implements interactions between multiple QTL located on different
genomes. It has been well recognized that the coordinated expres-
sion of genes from different genomes is essential for the proper
development of organs. For example, in higher plants, support and
nourishment of embryo and endosperm tissues by the maternal tissue
is fundamental to proper seed development (Chaudhuryet al., 2001;
Evans and Kermicle, 2001; Dilkeset al., 2002; Walbot and Evans,
2003).

The current literature has well established the belief that multiple
correlated traits can add information to each other and, therefore,
multitrait linkage analysis can give rise to more precise inferences
about the position and effects of pleiotropic QTL affecting mul-
tiple traits, as compared to single-trait analyses (Jiang and Zeng,
1995; Korolet al., 1995; Knott and Haley, 2000; Evans, 2002; Wu
et al., 2002c; Lundet al., 2003). Somewhat equivalent to the role
of repeated measurements, information from correlated traits can
reduce the effect of error variance, thus making it easier (more
powerful) to detect QTL. Not only is the power of QTL detection
increased, but also the estimation of the QTL map position is more
precise. The model proposed in this paper deals with a different
type of trait correlation that occurs between different individuals

connected through coherent pathways. The best example is the
impact of the growth vigor of a plant on its seed development by
supplying adequate nutrients. In light of the consideration of the
coordinated expression of traits owing to genes and development,
our model, which can be viewed as ‘high-dimensional’, should be
able to produce results that are closer to biological realism than those
without such a solid developmental basis of phenotypic traits.

The statistical behavior of our high-dimensional model has been
carefully investigated through computer simulation. The model has
been found to provide reasonable power and estimation of interact-
ive QTL from the embryo and endosperm genomes in a range of
trait heritabilities and sample sizes. Nevertheless, the best valida-
tion for our model may be the successful detection of significant
QTL that exert considerable effects on an endosperm trait measured
in two consecutive years. These two annual measurements can be
viewed as two different traits (Falconer, 1952). Previous approaches
for endosperm mapping are purely based on the triploid inheritance
of the endosperm (Wuet al., 2002a,b; Xuet al., 2003; Kao, 2004).
Our model has the power to identify interactive QTL from the embryo
and endosperm genomes. Using our high-dimensional model, both
the embryo and endosperm genomes were detected to harbor QTL
for gel consistency in rice, with the embryo QTL located almost at
the same position as theWaxy gene on the short arm of chromo-
some 6 (Teradaet al., 2002). TheWaxy gene is known to influence a
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Table 3. The MLEs of the QTL position and effect parameters exerted by an embryo QTL and an endosperm QTL on the same interval for a backcross of
size 400 under different heritability combinations and residual variances estimated from 100 simulation replicates

True parameter ρ = 0.1 ρ = 0.6
0.1, 0.1 0.1, 0.4 0.4, 0.4 0.1, 0.1 0.1, 0.4 0.4, 0.4

τt+1 = 8 7.96 7.56 7.12 9.88 6.80 7.40
(5.1010) (4.2732) (3.7271) (5.5818) (4.6867) (4.3107)

τ ′
t+1 = 16 36.68 25.00 21.84 43.48 29.12 27.28

(31.7777) (18.6664) (16.9318) (37.1637) (25.5374) (22.6347)
µy = 10 10.0120 10.0239 10.0113 10.0647 10.0371 10.0295

(0.1817) (0.1796) (0.0777) (0.1593) (0.1522) (0.0855)
a

y

t+1 = 0.5 0.6763 0.5809 0.5245 0.7946 0.5766 0.6115
(0.4938) (0.4352) (0.2479) (0.5565) (0.3981) (0.3063)

a
′y
t+1 = 0.5 0.3175 0.4189 0.4756 0.2199 0.4414 0.3825

(0.5002) (0.4294) (0.2376) (0.5676) (0.3994) (0.3159)
Iy = 0.3 0.2873 0.2722 0.2486 0.0340 0.1529 0.1643

(0.8087) (0.7277) (0.3203) (0.7375) (0.6813) (0.3629)
µz = 11 11.0539 11.0403 11.0269 11.0819 11.0417 11.0481

(0.2347) (0.1070) (0.0957) (0.2681) (0.0905) (0.1067)
az

t+1 = 0.6 0.8667 0.7386 0.6237 0.9166 0.7071 0.7550
(0.6054) (0.3748) (0.3233) (0.7003) (0.3634) (0.3824)

a′z
t+1 = 0.6 0.3220 0.4737 0.5807 0.3047 0.4958 0.4420

(0.6102) (0.3686) (0.3200) (0.6991) (0.3658) (0.3954)
Iz = 0.4 0.1343 0.2613 0.2952 0.0677 0.2200 0.2004

(1.0798) (0.4213) (0.3821) (1.1530) (0.3931) (0.4624)
σ 2

y 1.1525 1.1506 0.1921 1.1390 1.1468 0.1938
(0.1069) (0.0928) (0.0164) (0.1025) (0.0914) (0.0152)

σ 2
z 1.6621 0.2815 0.2798 1.6622 0.2771 0.2803

(0.1473) (0.0208) (0.0224) (0.1298) (0.0239) (0.0218)
ρyz 0.1014 0.0992 0.1002 0.6007 0.5994 0.6024

(0.0445) (0.0513) (0.0504) (0.0345) (0.0318) (0.0353)

The squared roots of the mean square errors of the MLEs are given in the parentheses.
The locations (τt+1 andτ ′

t+1) of the two QTL are described by the map distances (in cM) from the first marker of the linkage group (80 cM long). The hypothesizedσ 2
y value is 1.1756

for H 2 = 0.1 and 0.1959 forH 2 = 0.4. The hypothesizedσ 2
z value is 1.71 forH 2 = 0.1 and 0.285 forH 2 = 0.4.

major step in amylose synthesis in the endosperm for many grasses
including maize and rice. Our bivariate mapping model also has the
power to discern how genetic effects of the embryo and endosperm
QTL are different across years. Whereas the embryo QTL triggers a
large effect on gel consistency, a significant additive effect× interac-
tion year of the endosperm QTL suggests that this QTL can modify
the endosperm trait to make seed development better adapted to a
year-to-year environmental change. Beyond traditional single trait
mapping, our high- dimensional mapping model can detect the inter-
action for gel consistency between the additive× additive epistatic
effect and year of interaction. Further functional analysis of these
detected embryo and endosperm QTL will accelerate their usefulness
to improve the quality and quantity of rice grains.

The derivations of our model were based on the plant system that
undergoes self-pollinated reproduction. This model can be extended
in several aspects. First, by incorporating unique segregation patterns
of genes in the mixture-based likelihood function, this model can
be modified to map genome–genome interactive QTL for cross-
pollinated systems. Such a modified model will also be useful for
animals in which birth weight is influenced by the uterine envir-
onment through the coordinated expression of the maternal and
offspring QTL. Second, a mature cereal plant contains three sets of
genomes, the maternal, embryo and endosperm. The current model
allows for the modeling of interactions between any two sets of

genomes. It is crucial to extend it to consider the triple-genome
interactions among these three organs. With this triple interaction
model, we can understand better the network of gene expression and
regulation during seed development.
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