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ABSTRACT

Motivation: The proper development of any organ or tissue requires
the coordinated expression of its underlying genes that can be located
on different genomes present in an organism. For instance, each step
in the development of seed for a higher plant is the consequence
of gene interactions from the maternal, embryo and endosperm
genomes.

Results: We present a multivariate statistical model for mapping
guantitative trait loci (QTL) by incorporating two important aspects of
seed development in plants—QTL interactions derived from different
genomes, the maternal, embryo and endosperm, and genetic correla-
tions among phenotypic traits expressed in different genome-specific
tissues. This model, which has a high dimensionality, is constructed
within the maximume-likelihood context based on a finite mixture model.
The implementation of the expectation—maximization algorithm allows
for the efficient estimation of QTL positions, their action and interaction
effects and pleiotropic effects. The application of this high-dimensional
model to a real rice dataset has validated its usefulness.
Conclusions: Our model was derived for self-pollinated plants, but it
can be extended to cross-pollinated plants and to animals. With the
burgeoning of genetic and genomic data, this high-dimensional model
will have many implications for agricultural and evolutionary genetic
research.

Availability: A package of software will be provided from the
corresponding author upon request.

Contact: rwu@stat.ufl.edu

INTRODUCTION

Studies of genome-wide scans for quantitative trait loci (QTL) thatt

1995; Korol et al., 1995; Knott and Haley, 2000). In this work,
we address problems associated with intergenomic epistasis and
multiple correlated traits that have not previously been addressed.

First, the genetic interaction between different genes or epistasis
provides important fuel for creating novel quantitative genetic
variation when an organism is forced to adapt to a new environment
(Whitlocketal., 1995). The conventional concept of epistasis implies
the effect of an allele at one gene affected by another allele at
another gene on the same genome or individual (Falconer and
Mackay, 1996). However, there is also another type of epistasis that
occurs between different genes each from a different genome
or individual (Wolf, 2000; Wolfet al., 1998). Such genome—genome
or individual-individual epistasis has been believed to be an import-
ant force in maintaining genetic variation in fluctuating environments
(Wolf et al., 2002) and to help select optimal life history strategies
(Wolf, 2003). An excellent example of genome—genome epistasis is
the coordinated regulation among the maternal, embryo and endo-
sperm tissues in a developing seed (Walbot and Evans, 2003). The
genetic mapping of genome—genome epistasis based on molecular
markers is in its infant stage. Cdi al. (2004) recently published a
series of statistical models for detecting epistatic effects on embryo-
or endosperm-specific traits between different QTL derived from
the maternal, embryo and endosperm genomes in seed plants. These
models take into account the genetic and developmental mechanisms
for seed development and can be of greater significance in the study
of genetic control of seed traits aimed at improving grain production
in crops with the aid of molecular biotechnologies.

Second, correlations between different biological traits are
ubiquitous, with the pattern and degree of trait correlations thought
0 be the consequence of natural selection and evolution (Scheiner,

determine phenotypic traits have received considerable attention '9993). Traditional correlation analysis deals with different traits from

the past 15 years (Lander and Botstein, 1989; Zeng, 1994¢t\Aly

the same individual. But it is common for two different traits each

2002a). The aim of these studies was to understand the genetic arciyiz , 5 gifferent individual to be correlated. For example, maternal

tectur(_a of quantitat_ive va_riatic_)n for comp_lex trai_ts of agricultural, preferences for oviposition sites affect the survival rate and develop-
evolutionary and biomedical interest (reviewed in Mackay, 2001).jyent of offspring in birds (Lloyd and Martin, 2004). In plants, the
The genetic principle behind these studies is the occurrence of reCoNkyel of hormones released by endosperm is thought to guide embryo

bination events between genetic loci when gametes are formed a'bqevelopment (Chaudhuggal., 2001). Genetic mapping approaches
transmitted from parents to offspring. Although statistical methods,, 1) jitipje traits capitalize on the information about interrelation-

for QTL mapping were proposed originally on the basis of a bivariateghins among different traits measured and, therefore, can affect the
approach that associates one gene with one trai, COns"der"’lbé‘:l}atistical power of QTL detection. Although a joint analysis of many

attempts have been made to develop multivariate approaches f@iiis qoes not necessarily lead to a higher power of detection due
mapping multiple interacting QTL (reviewed in Carlborg and Haley, y;, 41, increased number of parameters being estimated, it has been
2004) and multiple correlated phenotypic traits (Jiang and Z€NYghown that the statistical power to detect a QTL can be increased by
including a few correlated traits. Such an increase in power has been
demonstrated using regression methods (Knott and Haley, 2000),
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a maximume-likelihood method (Korat al., 1995; Jiang and Zeng, genomes over seed development (Chaudhatrsd., 2001; Evans
1995), and variance component models (Almaswl., 1997). It  and Kermicle, 2001; Dilkest al., 2002; Walbot and Evans, 2003).
is particularly favorable to utilize the correlated information when Therefore, for plants, the genome—genome interaction should include
mapping QTL for low heritability traits that are correlated to a trait of three possible types, maternal-embryo, maternal-endosperm and
higher heritability. Lunatt al. (2003) documented several advantagesembryo—endosperm. For this reason, the models to characterize
of multitrait QTL mapping over a single trait analysis. genome—genome interactions developed for plant systems will also
With the burgeoning recognition of the importance of genome—cover those for animal systems.
genome epistasis and genetic correlations between individual- If the backcross is assumed to be at generatitimen its progeny
specific traits, it is appealing to develop a multivariate statisticalobtained through outcrossing pollination is viewed as generation
model for mapping QTL interactions that affect multiple correlateds+1. LetP;, Q, 1 andQ; , , be three different QTL from the maternal
traits expressed on different individuals or genomes. This motivatior{generation), embryo (generatior+- 1) and endosperm (generation
stimulates us to develop a high-dimensional model for estimating+1) genomes, respectively. In generatipthere are two QTL geno-
and testing the gene action and interaction effects on individualtypes aP,, expressed aB p, andp, p;, whereas, in generation-1,
specific traits between the QTL from different genomes. This high-there are three QTL genotypes@t; in the embryo, expressed as
dimensional model was derived from a mixture-based likelihoodQ:,10:+1, Qs +19:+1 @ndg4 1941, and four QTL genotypes &, ,
model and implemented with the expectation(E)-maximization(M)in the endosperm, expressed @5, ,0; 10,1, Q;,10;,19/ 1,
algorithm (Dempsteet al., 1977) for Monte Carlo simulations under Q. ,49;, 19, andq; 1q;,.4;1-
different sampling strategies to investigate the statistical behavior of
our multivariate model. The successful detection of interactive QTLT

) ; . . he maternal-embryo interaction model
in an example, for rice validates the usefulness of this model. y

The two QTL from the maternaP() and embryo genome€)(. 1)

form six across-generation QTL genotypes. Their genotypic values
EXPERIMENTAL DESIGN for a quantitative trait, denoted Ry ,,,, wherej, j,11 stands for
Our model will be developed for a simple backcross, but can behe genome-specific QTL genotypes in terms of different numbers
extended to anfor other designs. Consider two homozygous inbredof capital QTL alleles, are assigned as follows:

0r+101+1 Or+19r+1 qr+19r+1

Pip;s pz=p+3a +ap1+30  pu=p+za+dia+ 3] po=p+ 34 — a1 — 31
, )

PPt Ho2 = —%at+ar+1—%1 M01=M—%az+dr+1—%l M00=M—%ax—ar+1+%1

lines which are crossed to generate the heterozygeusCFoss-  wherepu is the overall meary; anda, .1 are the additive effects of
ing the F to one of the two parents (say the homozygous recessivethe maternaP, and embryd;, 1, respectivelyd; ;1 is the dominant
leads to two different genotypes at each locus in the backcross. Theffect of embryoQ,.,1, and I and J are the across-generation
progeny of the backcross can be obtained through self-pollination fomaternal-additivex embryo-additive and  maternal-additive
autogamous species, such as rice and soybean or through outcrossergbryo-dominant effects between the two QTL, respectively.
pollination for allogamous species, such as maize and animals. We treat the genetic map location of the QTL as missing data,
The backcross is genotyped for a set of molecular markers téo be inferred from known markers by the EM algorithm. The
construct a genetic linkage map. As shown in wl. (2002a), marker information provided differently by the backcross and its
genotyping the diploid progeny of the backcross with the same set abffspring will be combined for our mapping model. Assume that
markers can increase the power to map the QTL that are expresséiie maternaP; is bracketed by two flanking markens,! andM?2,
in the progeny generation, such as the embryo and endosperm of tigenotyped from the backcross, and the offsphg; is bracketed
seed. Here, we suppose that the markers from both the backcross algi two flanking markersN!, , andNZ2 ,, genotyped from the off-
its diploid progeny are available to characterize interactions betweespring. Letr, r1 andr; be the recombination fractions between the
multiple QTL from different genomes. For animals, a genome—two maternal markers, markat! and maternaQ,, and maternal
genome interaction may occur as a maternal-offspring interactiorQ, and markerM?, respectively. The corresponding recombina-
For plants, the progeny (seeds) develop within the maternal spordion fractions are denoted ass; ands; for the offspring markers
phyte tissue after double fertilization of the gametophyte; hence therand QTL. The conditional probabilities of maternal QTL genotypes
are potentially extensive genome—genome interactions. Double fegiven maternal marker intervaly — M2, in the backcross can be
tilization forms the diploid embryo by fusing the haploid egg with one expressed in terms of, r1 andr,. Depending on the pollination
of the sperm cells and the triploid endosperm by fusing the materndlype, we can also derive the conditional probabilities of embryo

homodiploid central cell with a second sperm cell (Chaudletiay., QTL genotypes in terms af, s; ands,, given the across-generation
2001). Proper seed development requires the coordinated expressiorarker interval K — NIZ)/(N}Jrl — Nt2+1). Wu et al. (2002) and

of the maternal, embryo and endosperm tissues (van Hetgkl| Cui et al. (2004) provided such conditional probabilities for self-
1998; Opsahl-Ferstadt al., 1997). There has been a wealth of pollinated plants. Similar procedures can be used to derive these
evidence for the genetic control of different genes from these threeonditional probabilities for cross-pollinated plants.
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If different from the offspring interval M} — M? is different from
the marker interval Nt] i N,2+1, the conditional probabilities of
across-generation QTL genotypes given across-generation marker
genotypes can be calculated as the product of QTL-specific con-
ditional probabilities. If these two markers are the same, i.e. the
maternal and offspring QTL are located on the same interval, then
the conditional probabilities of across-generation QTL genotypes
should be derived independently (Cui et al., 2004). These condi-
tional probabilities will be used for the test and estimation of the
positions of the two interacting QTL.

The maternal-endosperm interaction model

Across-generation QTL genotypes for the maternal (P;) and
endosperm (Q;, ;) genomes include eight combinations between two
maternal genotypes and four endosperm genotypes. The genotypic
values of the maternal-endosperm QTL genotypes, (., can be
assigned as follows:

where a;, is the additive effect at endosperm Q;_,, dét e and
dé, +1y2 are the dominance effects due to the intra-locus interaction
between QQ and ¢ and between Q and gq at Q,_, respectively,
I’ is the cross-generation maternal-additive x endosperm-additive
epistatic effect, and J| and J} are the across-generation maternal-
additive x endosperm-dominant epistatic effects for d11); and
d(+1y2, respectively.

Assume that a pair of flanking markers N, | and N2 | are used
to map the endosperm Q;_ . Let s’, 5| and s; be the recombina-
tion fractions between the two markers, marker N;l+ , and the QTL,
and the QTL and marker N;%H, respectively. The conditional prob-
abilities of endosperm QTL genotypes given the across-generation
maternal-embryo marker genotypes can be derived in terms of s,
s; and s}, depending on the type of pollination. These conditional
probabilities for self-pollinated plants have been derived by some
groups. The conditional probabilities for cross-pollinated plants can
be similarly derived.

01419111 Q111 0141 Q1419141 Q141911191 +1 4119119141
Pip, M1z = K K2 = 1 MHio = K K1t = 1
1 3, 1 1, , 1 1, , 1 3,
Tt S TR+ S +dg, T = s +digp T4 = S
3, L R 23
4 4 27! 4 272 4
. )
PiPe o3 = 1 Koz = [ Moo = [ Hr=p
3, 1 l, / L, / 1 3,
Tt S 5%t S T —5% = 3 gy T4 T 5%
3, L oy 23
L 4 4 27! 4 272 4 .
The embryo-endosperm interaction model
For the embryo (Q;1) and endosperm (Q, +1) QTL at the same gen-
eration 7 + 1, we have 12 joint QTL genotypes whose values, i, j.
are expressed as
Q:+1Q;+1Q;+1 Q;HQ;H‘];H Q;+lq//+lqz/+l q//+lqt/+lqu+l
Q101 [ pup=p Mo =W a1 = @ 2o = K
1 3, 1 1 1 1 3
Frat sany ot San +dtn 5= Fae +dgt12 t5a = S
3 1 1 1 1
27 T4 L i s
+3 +3T+ 5T FEREr)
Qr+191+1 i3 = [ K12 = [ M =@ 1o = K
1 3 1 1 1 1 1 3
Jriaz + E“H—l +5at + Ear+l +dir +Ear - Ear+l +dir1y2 +§ar — E“H—l (3)
3 1 1 1 1
27 T4 L i -’z
+4 +4 + 2.71 ) + zjz
qr+191+1 Ho3 = 1 Moz = [ Mot = [ oo = [
+1 + 3 +1 + ! +d +1 ! +d +1 3
—a; + —a —a;+ -a —a; — =a —a;— -a
7@+ S 7%+ Fack +datin 7% = Far1 +datin 7%~ 5
3 1 1 1 1
27 iy L i -’z
+3 +7T+57 PR
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whereZ is the embryo-additivex endosperm-additive and embryo- whereu; = (x;, y;) is the vector for the phenotypic values of maternal and

dominant x endosperm-additive epistatic effect between embryoembryo traits for seed, mj, ., = (m} ; ,m}; ) is the vector for the

Q:+1 and endosperm; ;, J1 and 7, are the embryo-additive genotypic values of a joint maternal—embryo QTL genotypesarsl (¢}, ;)

endosperm-additive epistatic effect {@f;1)1 andd+1)2, respect- is the vector for the residual effects of seed

ively, K is the embryo-dominank endosperm-dominant epistatic For self-pollinated plants, the maternal parent receives no genes from other

effect, and7; and J, are the embryo-dominant endosperm- ~ Sources to generate its progeny. Thus, the gene segregation in the progeny

dominant epistatic effects fak, 1,1 andd..12, respectively. would not lead to the variation of the maternal trait. To reflect this character-
Similarly, the conditional (lgrgbabilitig; )0% embryo—en.dosperm istic, the maternal-embryo interaction that occurs across generations should

. R be modeled with the constraints
QTL genotypes given across-generation marker genotypes can be

derived separately for two different cases in which the two QTL are mip=my =miy and mg, = mp; = mg, (6)
located in the same interval or in different intervals. Such derivationsyhich imply that embryo QTLQ,.1 has no genetic effect on tratt, i.e.
will be different for self- and cross-pollinated systems. af,, =d’,, = I* = 0 [see Matrix (1)].

As shown in Cuiet al. (2004), the genetic effect parameter  Similarly, we can formulate a statistical model for the maternal-endosperm
vectorshy = (u,ar,ar41,di+1,1,J) for the maternal-embryo interaction, except for four triploid QTL genotypest, , . But the embryo—
interaction model,h, = (u,a;,a.,,d. d’ I',J,J)) endosperm interaction model will be different because such an interaction

’ U S D %+ Y4120 T Y V2 . . . . .
for the maternal-endosperm interaction model ahg = occurs within the same generation in which embrypand endosperm traits

(a1, dry1, a;+1’ dEt+_1)1' dér+1)21 T, 71, T2, K, L1, L2) for the (z) are also affected by a QTL from the opposite genome. The bivariate model

embryo—endosperm interaction model can be estimated from thfé’r phenotypic traitsy, z) can be expressed as

corresponding genotypic valugs;, ;. ,, by solving a group of reg- 2 3
ular linear equations as contained in matrices (1)—(3). As can be Wi = Z Z M1l Sl T €0 ™
seen below, we derive a closed-form solution for the EM algorithm ir+1=0 ji;4=0

to obtain the maximum-likelihood estimates (MLESs) of the geno-wherew; = (y;,z;) is the vector for the phenotypic values of embryo and
typic values. Thus, the MLEs of the genetic effect parameters can bendosperm traits for seed ¢;; il is the indicator for the embryo—

estimated accordingly. o _x y ) ;
endosperm QTL genotypenmur+1 = m/’z+1/[+1’m/'f+1/'/+1 is the vector

for the genotypic values of a joint embryo—endosperm QTL genotype and

STATISTICAL METHOD € = (¢}, €f) is the vector for the residual effects of seed
Bivariate mixture model

Statistical model for multipletraits
Finite mixture models are a type of density model that comprises a number

LeIttL_JS SUP%OSE :hzre artithree qudantltatlve tl('ja_ltst,hone eépreised n (tjhe n;aff “component functions, usually Gaussian. These component functions are
nal tissue (denoted by), the second expressed in the embryo tissue (denote ombined to provide a multimodal density. Gaussian mixture models can

by y) and the thirq expressed in the endosperm tissue_r (denote}l Bre be employed to model genotypic segregation of specific genetic factors that
three _QTL from different genomesy;, Q1 and Q;Jrl'_ Interact th_ml_Jgh determine quantitative traits. According to mixture models, each observation
coordinated pathways to affect each of these three traits. The statistical mog: assumed to have arisen from one of a known or unknown number of com-
els_ for _the phenotypic values of the three traits affected by the hypothetic%om_jntS (QTL genotypes), each component being modeled by a multivariate
epistatic QTL are formulated for each of the three types of genome—-genomg, g gistribution density. Under the maternal—embryo epistasis model, the

interactions. ) ) o bivariate likelihood function of phenotypic traita)and marker data1)
For the maternal-embryo interaction model, the bivariate phenotypegased on mixture models is expressed as

(x;, y;) for seed: in the backcross population in terms of genotypic values,

can be expressed, as n 12

L@ mEUM =TT D D @ieali fijea Wi My, Z) |, (8)
i=1] ji=0ji+1=0

Xi

I
™=

2
X L. X
D MG e
Jt 0

0z wherew = (@, j,,,|:} iSthe vector for the conditional (or prior) probability of

(4) maternal-embryo QTL genotypej,+1 given a particular across-generation
12 y N marker genotype for seedandm = {mj,;_,} is the vector of genotypic
Vi=20 20 M e means for two traits that follow a bivariate normal distributtémj, ., , ).
Jr=0jr1=0 With the knowledge about conditional probabilities and genotypic values,
whereg;;,;,., is the indicator variable defined as 1 if seedarries the ~ Wwecan construct similar mixture-based likelihood functions for the maternal—
maternal-embryo QTL genotygigj,+1 and O otherwisen* andm’. endosperm and embryo—endosperm interaction models. We provide a

are the values of QTL genotypgj, .1 for two traitsx andy,lﬁgg;,ective'ﬂ/{téhd procedure for estimating the parameters contained in the likelihood functions.

e’ ande! are the residual errors that follow a bivariate normal distribution .
V\[Iith me:':ms zero and covariance matrix The EM algor ithm
o2 oo Conditional probabilities are a function of the recombination fractions
Y= (GX ;5). between QTL and their flanking markers and therefore can provide the
Ty information about QTL locations. Mean vectors and the covariance mat-
Note that we use the superscript or subscripndy to distinguish between  rix are quantitative genetic parameters associated with the genetic effects of
the two traits in genotypic values, genetic effects and residual effects an@TL. Let 2 = (=, m, X) denote the unknown parameters. We implement

variances. the EM algorithm to obtain the MLE of. The log-likelihood function of
Equation (4) can be written, in matrix notation, as Equation (8) for the maternal-embryo interaction model is given by
1 2 n 1 2
u; = Z Z My, 1 &ijijria T € (%) logL(R) = Z log Z Z Dy jesali L jrys Uis My g0 B) 9
Jr=0j1+1=0 i=1 Jr=0j;+1=0
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with a derivative for an unknowg;, Table1. The MLEs of the additive genetic effects of the embrypo.{) and
P endospermd;_,) QTL and their additivex additive epistatic interaction
—— log L(2) effect (Z) on gel consistency in the endosperm measured for two different
92 years in a backcross derived from two inbred lines in&ice
_ i 21: 22: @i jisali 3y Fiia (Uii My B)
i=1 ji=0 j11=0 Y0 Xm0 Pl [ Ui My, E) Trait B dmn a.,, 7 52 5
n 1 2 ] measured in
“YY Y ;U./r/r+1|ifj(u[Y Mjijisar %) two years
21 520 120 22i=0 24120 Pitisali Feya (Uis My 10 )
P 1999 36.62 17.54 -0.11 —2.06 42.87 0.2034
X FIoN 109 i, jppa (Ui My yp s XD 2000 44.51 13.95 1.08 1.00 30.06
LLR for 47.2 22.6 7.8
nr2 3 testing year-
=>> > “U@ 109 £ j 12 (Ui My ji 00 T, dependent
i=17i=0i+1=0 difference
where we define P-value 6.42x 10712 1.98x 10°¢® 0.0052
0o e — Piivaali Fijisa (Ui Mg ) (10) A . _ . .
Jedrali 24_ @il finia (UM ):)' aThe_ residual vanancegrf) and residual correlationp are estimated between gel
J=1 P itielt jedera N e consistency measured in 1999 and 2000.
which could be thought of as a posterior probability that séedas
joint maternal-embryo QTL genotypgj;+1. We then implement the EM ) N
algorithm with the expanded parameter @t 11}, wherell = {I1,,.,;}. some regularlty_problem (McLachIan and P_eel, 2009). The_ _cntlcal threshold
Conditional onII, we solve for the zeros afd/d<2;) log L(R) to get our value for declaring the existence of the testing QTL is empirically calculated

estimates of2. on the basis of permutation tests (Churchill and Doerge, 1994).

In the E-step, the prior conditional probabilities of the QTL genotypes ~After the existence of QTL from different genomes is tested, we can

given the marker genotypes and the normal distribution function are use#fSt the additive and dominant QTL effect from a particular genome and
to calculate thell},;,,; matrix. In the M-step, the calculated posterior additivex additive, additivec dominant, dominant additive and dominamnt

probabilities are used to solve the unknown parameters using dominant epistatic effects derived from two different genomes. Our model
u allows for testing the effects of specific QTL on individual traits, although,

M. = Dica T i Ui (11) for our experimental design, different genome—genome interaction models

e P Wl characterize different types of genetic effects. All these effect-specific tests

are performed by implementing the EM algorithm and the critical value

s 1EE S P = for declaring significance can be obtained empirically through simulation
T=— [Z DY My O — My D =My T [ (12) g s pirically d

studies.
i=1 ji=0 ji4+1=0

Using sample parameters as initial values, we iterate the E and M steps
between Equations (10) and (12) until the specified convergence criteria ark \WORKED EXAMPLE
satisfied. The values at convergence are regarded as the MLEs. The MLEs
of the genotypic valuem can be used to solve the MLEs of the genetic 1he newly developed model was used to analyze published data
effectsh. on the endosperm in rice (Taat al., 1999). The I heterozygote

In the procedure described above for the EM algorithm, we treated théetween two rice inbred lines, ZS97 and MH63, was self-crossed for
positions of QTL as known parameters, although their MLEs can also be&d generations to produce 241 recombinant inbred lines (RILs) for
obtained through iterative steps. We can use a grid approach to estimaffigh-resolution genetic mapping of genes influencing endosperm
the QTL positions. By hypothesizing a pair of embryo and endosperm QTlyrajts. These RILs that are homozygous for the alternative alleles

every 2 cM at marker intervals, we can draw the landscape of Iog-IikeIihooc{Nere genotyped for 221 polymorphic markers distributed through-
test statistics throughout the entire genome. The positions corresponding to .
the peak of the landscape across a linkage group are the MLEs of the QT?Ut the genome to construct a molecular linkage map composed of

positions. 2 rice chromosomes. These RILs as the female parent were back-
The MLES of the QTL positions and effects under the maternal-endosperrfi0sse€d toward one original inbred line, ZS97, as the male parent to
and embryo—endosperm epistasis models can be similarly derived. The QT@€nerate a backcross population containing 241 plants. All the back-
effects are specified differently among these three models, depending on ti§$0ss plants were evaluated for gel consistency in their endosperm
dosage of QTL alleles (Table 1). As like in general QTL mapping models,tissues in two successive years (1999 and 2000) to determine any
the proportion of the total variance explained by each QTL from a differentmajor QTL segregating in this material.
genome can be calculated for each trait. Because of the nature of this pedigree, we make some modifica-
Hypothesistesting tions to our general embryo—endosperm model to identify interacting
o ] ~ QTL on embryo and endosperm tissues. First, the conditional
A number of statistical hypothesis tests can be performed for the underly'n%robabilities that suit this pedigree are derived to predict the embryo—

parameters of interest. The presence of the QTL from different genomes wit| .
joint effects on two quantitative traits expressed in different tissues can be ndosperm QTL genotypes based on the markers collected in the

tested by a log-likelihood ratio (LLR) test statistic calculated under the fullembryo' Second., in this design, the number of embryp—endosperm
model (assuming that there are such QTL) and the reduced model (assumifgT L 9enotypes is reduced to 4 and, thus, the genetic effects that
that there is no QTL). The LLR is asymptoticalj?-distributed with the ~ €an be estimated are the additive effects of emi@yo (a,+1) and
degrees of freedom that are equivalent to the number of unknown paramete@fidospernQ;_; (a;, ;) and additivex additive epistatic effect))
estimated. For a mixture model like ours here, this may be violated due tdetween these two QTL. Third, our model was originally developed
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to analyze the phenotypes expressed in the embryo and endosperm, [

but the data for this design were collected from the endosperm in
two different years. According to Falconer (1952), the same trait
measured in different years can be viewed as different traits.

The phenotypic correlation between endosperm gel consistency
measured in two different years is 0.68, suggesting that some com-
mon genetic basis is shared over years. A genome-wide scan was
performed to detect the existence and distribution of interacting QTL
throughout the entire genome. Significant joint genetic effects were
detected between two QTL on chromosomes 6 and 8. The maximum
LLR value throughout the genome is 270.9, markedly larger than
the genome-wide critical threshold 30.5, empirically obtained from
permutation tests at the 0.005 significance level. One of the detected
significant QTL is located at 12.0 cM from the first marker on chro-
mosome 6 of the embryo genome, whereas the second QTLis located 15555 2000
at 29.4 cM from the first marker on chromosome 8 of the endosperm Year
genome. The embryo QTL is located at a candidate géhey, that
is associated with a critical step of amylose biosynthesis (Okagaktig. 1. Four joint genotypic values at the embry®,{1) and endosperm
and Wessler, 1988), which well validates our model. (Q}.1) QTL for endosperm-specific gel consistency (mm) measured for rice

We estimated the additive effeat,.;, of the embryo QTL, the intwo different years. Data from Taat al. (1999).
additive effect,at’H, of the endosperm QTL and their epistatic
effects,Z, on gel consistency in two different years (Table 1). Furtherbetween two traits (0.1, 0.1), (0.1, 0.4) and (0.4, 0.4) and two different
hypotheses were performed for the significance tests of the additiveample sizes (200, 400) were used.
and epistatic genetic effects. The LLRs for testing the significance Suppose there are two different putative QTL on the embryo and
of these effect parameters suggest that the additive effect of thendosperm genomes. Both the embi@p,;) and endospernt),_ ;)
embryo QTL is highly significant, whereas the additive effect of QTL are assumed to pleiotropically affect two traits, one expressed
the endosperm QTL and the additixeadditive effect between the in the embryo ¢) and the other expressed in the endosperm (
two QTL are significant, but at lower levels. The two QTL could be either linked together and located on the

In this example, we can use our model to test how genetic effectsame marker interval or located on different marker intervals. The
are expressed differently from year to year. If the genetic effeciphenotypic values for each seed were simulated according to a bivari-
of a QTL is year-dependent, then this QTL is thought to displayate normal distribution with different joint QTL genotypic values,

a significant genotypex year interaction. Figure 1 illustrates the determined by effect parameters, the overal, @dditive effect of
unparallel changes of the four joint embryo—endosperm QTL genQ; 1 (a:41), additive effect ofQ;_, (4, ,), the additivex additive
otypes across different years for gel consistency in the endosperrepistatic effectl) between the two QTL for each trait,andz, and
The LLR test for the year-dependent non-parallel response suggesiasidual variances:#) and correlation g).
that there are significant QTk year interactions®# < 0.0001). Tables 2 and 3 give the hypothesized values and MLEs of the
Further tests indicate that the additive effects of the QTL from theQTL effect parameters for each trait, as well as the square roots of
two genomes are expressed differently between the two years studi¢ide mean squared errors used to evaluate the precision and accuracy
(P = 6.42x 10~ 2for the embryo QTL and® = 1.98x 108 for the of the parameter estimation, under different simulation schemes. In
endosperm QTL; Table 1). The additiveadditive epistatic effect general, our model can provide reasonable estimates of the paramet-
between the embryo and endosperm QTL is also different betweeears with estimation precision increasing with increased heritability
the two years P = 0.005). These pieces of information obtained levels and sampling sizes. The QTL position estimates when loc-
from data analyses by our model are fundamental to the design afted in the same interval (Table 3) were not as good as when they
crop breeding aimed at improving high-quality starch in rice. were located at different intervals (Table 2). But this problem can be
avoided if it is possible to increase the density of mapped markers to
reduce the probability that two QTL are located in the same interval.
MONTE CARLO SIMULATION Our model has an excellent capacity to detecst epistatically inter-
We carried out a series of simulation studies to examine the statcting embryo and endosperm QTL effects. In all cases of different
istical properties of our genome—genome models by focusing osample sizes and heritabilities, the maximum values of the LLR
the epistatic model from the embryo and endosperm genomes. Randscapes from 100 simulation replicates are all beyond the critical
similar statistical behavior should be held for the other two epistaticdhresholds at the = 0.001 level determined from 1000 permutation
models, maternal-embryo and maternal-endosperm. Our simulatidests for the simulated data. Furthermore, there is reasonable estim-
studies aim to examine the model performance under different situation precision for the additive additive genetic effects even when
ations when heritability, sample size and QTL location change. Fivehe heritability is at a modest level.
equidistant markers are simulated from the embryo population and
are ordered a81,—Ms5 on a linkage group with the length of 80 cM.
The Haldane map function was used to convert the map distandg!SCUSSION
into the recombination fraction. For simplicity, we use two traits We have proposed a general statistical framework for simultaneously
to achieve our goals. Three different combinations of heritabilitymapping multiple correlated traits expressed in different
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Table 2. The MLEs of the QTL position and effect parameters exerted by an embryo QTL and an endosperm QTL each on different intervals for a backcross
of size 400 under different heritability combinations and residual variances estimated from 100 simulation replicates

True parameter p=01 p=0.6
0.1,0.1 0.1,04 04,04 0.1,0.1 0.1,04 04,04
T+1 =28 7.16 7.68 8.16 7.04 7.72 7.52
(4.7729) (3.1653) (2.4120) (5.1787) (3.0878) (2.5421)
T/, =48 48.16 48.12 48.04 48.52 48.24 47.72
(4.0201) (2.7561) (2.6968) (4.5302) (2.8426) (2.6360)
u’ =10 9.9959 9.9959 10.0028 9.9943 9.9957 9.9987
(0.0698) (0.0565) (0.0276) (0.0683) (0.0564) (0.0293)
“ty+1 =05 0.5019 0.5003 0.4906 0.4959 0.5020 0.4973
(0.1650) (0.1428) (0.0572) (0.1559) (0.1391) (0.0667)
a;il =05 0.4940 0.5059 0.5062 0.4921 0.5049 0.5047
(0.1673) (0.1545) (0.0518) (0.1591) (0.1525) (0.0659)
7Y =03 0.3118 0.2884 0.2937 0.3334 0.2936 0.3088
(0.2980) (0.2966) (0.1173) (0.3097) (0.2952) (0.1115)
ut =11 10.9983 10.9989 11.0022 10.9953 10.9981 11.0000
(0.0891) (0.0311) (0.0328) (0.0882) (0.0299) (0.0378)
aj,, =06 0.5818 0.5953 0.5971 0.5946 0.5980 0.5907
(0.1983) (0.0844) (0.0718) (0.1759) (0.0850) (0.0746)
at’jl =0.6 0.6364 0.6028 0.5991 0.6089 0.6031 0.6163
(0.2035) (0.0783) (0.0623) (0.1856) (0.0811) (0.0830)
7: =04 0.4388 0.3902 0.4028 0.3853 0.3891 0.4102
(0.3462) (0.1303) (0.1419) (0.3658) (0.1344) (0.1372)
Uvz 1.1712 1.1783 0.1943 1.1545 1.1774 0.1957
‘ (0.0884) (0.0831) (0.0153) (0.0869) (0.0820) (0.0160)
022 1.7145 0.2819 0.2791 1.6967 0.2850 0.2876
(0.1473) (0.0226) (0.0249) (0.1114) (0.0236) (0.0262)
Pyz 0.0933 0.1060 0.0941 0.5990 0.6055 0.5998
(0.0506) (0.0538) (0.0511) (0.0347) (0.0345) (0.0333)

The squared roots of the mean square errors of the MLEs are given in parentheses.
The locations¢,.1 andz/, ) of the two QTL are described by the map distances (in cM) from the first marker of the linkage group (80 cM long). The hypotﬁasilmﬂis 1.1756
for H? = 0.1 and 0.1959 fot/? = 0.4. The hypothesizes? value is 1.71 for? = 0.1 and 0.285 fo/? = 0.4.

genome-specific tissues. Different from previous multitrait QTL connected through coherent pathways. The best example is the
mapping (Jiang and Zeng, 1995; Korel al., 1995; Knott and impact of the growth vigor of a plant on its seed development by
Haley, 2000; Evans, 2002; Luratial., 2003), our model framework supplying adequate nutrients. In light of the consideration of the
implements interactions between multiple QTL located on differentcoordinated expression of traits owing to genes and development,
genomes. It has been well recognized that the coordinated expresur model, which can be viewed as ‘high-dimensional’, should be
sion of genes from different genomes is essential for the propeable to produce results that are closer to biological realism than those
development of organs. For example, in higher plants, support andithout such a solid developmental basis of phenotypic traits.
nourishment of embryo and endosperm tissues by the maternal tissueThe statistical behavior of our high-dimensional model has been
is fundamental to proper seed development (Chaudétaly, 2001;  carefully investigated through computer simulation. The model has
Evans and Kermicle, 2001; Dilkes al., 2002; Walbot and Evans, been found to provide reasonable power and estimation of interact-
2003). ive QTL from the embryo and endosperm genomes in a range of
The current literature has well established the belief that multipletrait heritabilities and sample sizes. Nevertheless, the best valida-
correlated traits can add information to each other and, thereforgion for our model may be the successful detection of significant
multitrait linkage analysis can give rise to more precise inference®QTL that exert considerable effects on an endosperm trait measured
about the position and effects of pleiotropic QTL affecting mul- in two consecutive years. These two annual measurements can be
tiple traits, as compared to single-trait analyses (Jiang and Zengjewed as two different traits (Falconer, 1952). Previous approaches
1995; Korolet al., 1995; Knott and Haley, 2000; Evans, 2002; Wu for endosperm mapping are purely based on the triploid inheritance
et al., 2002c; Lundet al., 2003). Somewhat equivalent to the role of the endosperm (Wat al., 2002a,b; Xwet al., 2003; Kao, 2004).
of repeated measurements, information from correlated traits ca®ur model has the power to identify interactive QTL from the embryo
reduce the effect of error variance, thus making it easier (morend endosperm genomes. Using our high-dimensional model, both
powerful) to detect QTL. Not only is the power of QTL detection the embryo and endosperm genomes were detected to harbor QTL
increased, but also the estimation of the QTL map position is moréor gel consistency in rice, with the embryo QTL located almost at
precise. The model proposed in this paper deals with a differenthe same position as théaxy gene on the short arm of chromo-
type of trait correlation that occurs between different individualssome 6 (Teradet al., 2002). ThéMaxy gene is known to influence a
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Table 3. The MLEs of the QTL position and effect parameters exerted by an embryo QTL and an endosperm QTL on the same interval for a backcross of
size 400 under different heritability combinations and residual variances estimated from 100 simulation replicates

True parameter p=01 p=0.6
0.1,0.1 0.1,04 04,04 0.1,0.1 0.1,04 04,04
T+1 =28 7.96 7.56 7.12 9.88 6.80 7.40
(5.1010) (4.2732) (3.7271) (5.5818) (4.6867) (4.3107)
7/, =16 36.68 25.00 21.84 43.48 29.12 27.28
(31.7777) (18.6664) (16.9318) (37.1637) (25.5374) (22.6347)
n’ =10 10.0120 10.0239 10.0113 10.0647 10.0371 10.0295
(0.1817) (0.1796) (0.0777) (0.1593) (0.1522) (0.0855)
“ry+1 =05 0.6763 0.5809 0.5245 0.7946 0.5766 0.6115
(0.4938) (0.4352) (0.2479) (0.5565) (0.3981) (0.3063)
“;11 =05 0.3175 0.4189 0.4756 0.2199 0.4414 0.3825
(0.5002) (0.4294) (0.2376) (0.5676) (0.3994) (0.3159)
7Y =03 0.2873 0.2722 0.2486 0.0340 0.1529 0.1643
(0.8087) (0.7277) (0.3203) (0.7375) (0.6813) (0.3629)
pt =11 11.0539 11.0403 11.0269 11.0819 11.0417 11.0481
(0.2347) (0.1070) (0.0957) (0.2681) (0.0905) (0.1067)
aj,, =06 0.8667 0.7386 0.6237 0.9166 0.7071 0.7550
(0.6054) (0.3748) (0.3233) (0.7003) (0.3634) (0.3824)
“;11 =0.6 0.3220 0.4737 0.5807 0.3047 0.4958 0.4420
(0.6102) (0.3686) (0.3200) (0.6991) (0.3658) (0.3954)
7 =04 0.1343 0.2613 0.2952 0.0677 0.2200 0.2004
(1.0798) (0.4213) (0.3821) (1.1530) (0.3931) (0.4624)
avz 1.1525 1.1506 0.1921 1.1390 1.1468 0.1938
’ (0.1069) (0.0928) (0.0164) (0.1025) (0.0914) (0.0152)
0.22 1.6621 0.2815 0.2798 1.6622 0.2771 0.2803
(0.1473) (0.0208) (0.0224) (0.1298) (0.0239) (0.0218)
Pyz 0.1014 0.0992 0.1002 0.6007 0.5994 0.6024
(0.0445) (0.0513) (0.0504) (0.0345) (0.0318) (0.0353)

The squared roots of the mean square errors of the MLEs are given in the parentheses.
The locations {1 andt/, ;) of the two QTL are described by the map distances (in cM) from the first marker of the linkage group (80 cM long). The hypatResikesis 1.1756
for H? = 0.1 and 0.1959 fo/2 = 0.4. The hypothesizes® value is 1.71 for/?> = 0.1 and 0.285 for/? = 0.4.

major step in amylose synthesis in the endosperm for many grassgenomes. It is crucial to extend it to consider the triple-genome
including maize and rice. Our bivariate mapping model also has thénteractions among these three organs. With this triple interaction
power to discern how genetic effects of the embryo and endospermnodel, we can understand better the network of gene expression and
QTL are different across years. Whereas the embryo QTL triggers eegulation during seed development.

large effect on gel consistency, a significant additive effeirtterac-
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