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Abstract. In crop fields, weed density varies spatially in non-random patterns. Initial knowledge of weed

distribution would greatly improve weed management for Precision Agriculture operations. Site properties

could be correlated to weed distribution, since the former vary among crop fields and also certain factors

such as soil texture or nitrogen may condition the weed growth. This paper presents a method, based on

artificial intelligence techniques, for inducing a model that appropriately predicts the heterogeneous dis-

tribution of wild-oat (Avena sterilis L.) in terms of some environmental variables. From several experi-

ments, distinct rule sets have been found by applying a genetic algorithm to carry out the automatic

learning process. The best rule set extracted was able to explain about 88% of weed variability.

Keywords: artificial intelligence, data mining, genetic algorithms, machine learning, rules, weed density

Introduction

Weed infestations in crops are still a challenge that has to be met in agriculture.
Usually, weeds are heterogeneously distributed in agricultural fields (Cardina et al.,
1997). Thus, different sampling procedures have been used to detect and describe the
spatial distribution of weeds within a field (Rew and Cousens, 2001). However, weed
discrimination is often a difficult task, particularly when weeds and crops have
similar morphological and/or spectral characteristics. In spite of this, the spatial
variability of weed abundance constitutes the basis for site specific weed manage-
ment systems. Using these systems, farmers could spray selectively to reduce the
amount of herbicide usage thereby diminishing environmental impact as well as
economic cost (Earl et al., 1996).
The persistence of high-density weed areas in fields over time suggests a non-

random distribution that probably depends on environmental variability in the field.
Moreover, soil characteristics as well as the properties of plant species, have a strong
influence on the growth and reproduction of both crop and weed. Some studies
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conducted with several weed species indicate that the weed abundance could be
associated with soil properties. In fact, local relationships among weed abundance
and certain factors have already been derived using different types of approaches.
For example, Dieleman et al. (2000) used canonical correlation analysis to interpret
associations among several weed species and certain site properties by covariance-
based coefficients. Different canonical correlations were able to describe between
25% and 80% of weed variance and about 27–55% of variance in site properties.
From this, the authors concluded that associations among the presence of certain
weeds and variables such as herbicide activity, topography or soil type vary from
year to year. In recent years, geostatistics have been widely used to analyse the
spatial properties of the data. Cardina et al. (1995) used a combination of
semivariograms and an interpolation method (kriging) to model weed variability
based on spatial dependence. Spatial autocorrelation, another spatial statistical
technique, has been utilised to obtain spatial patterns for herbicide resistance of
wild-oat (Maxwell et al., 1995). Here, autocorrelation for wild-oat resistance has
been found at different spatial scales due to biological effects and cultural practices.
Although some of these authors have obtained such spatial dependencies for

certain weeds, there is no unique or generic method to study associations among the
site properties for all weed types. In addition, these statistical approaches require
extreme control of both data acquisition and data analysis processes. For instance, in
a canonical correlation analysis, the data should be analysed and modified until the
variables are completely independent spatially. Statistical procedures present some
other restrictions as they are based on stationary data, which is assumed to have a
normal distribution (Fortin et al., 2002). Sometimes the interpretation of results, for
example numerical indices of correlation and significance, do not allow a clear
determination of whether or not the analysed variables are related. Furthermore, the
statistical methods are based on measures of central tendency and spread (i.e.
average and variance) and, as a consequence, the results are affected notably by
noisy data. The important consequence of all this is that obtaining a precise ana-
lytical model for weed dynamics becomes quite a complex task. An alternative and
complementary solution could focus on finding an approximate model, such as a set
of rules that explain the data, in the same way as an expert farmer.
Currently, artificial intelligence methods such as neural networks, decision trees

and genetic algorithms are important in agricultural data modelling (Farkas, 2003;
Murase, 2000). These methods belong to an artificial intelligence area named
machine learning. A machine learning system aims to determine a description of a
given concept from a set of input training examples (Mitchell, 1997). The main
machine learning systems are listed below.

1. The artificial neural networks (ANN) is a data-driven model, which can be con-
structed by a learning procedure such as a backpropagation algorithm employing
input–output data; therefore, it can be applied to the cases where sufficiently
detailed information about the phenomena to be controlled or modelled is not
available. For data analysis, the major disadvantage of ANN lies in the knowledge
representation. Acquired knowledge in the form of a network of units connected
by weighted links is difficult for humans to interpret (Berthold and Hand, 1999).
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2. In the decision tree learning process (one of the most widely used and practical
methods for inductive inference), the learnt model is represented by means of a
decision tree. In contrast to the ANN, a decision tree is a structure that can be
represented as sets of IF-THEN rules to improve human understanding. One of the
important drawbacks of decision-tree-building algorithms is the fragmentation
problem (Friedman et al., 1996), where the set of examples belonging to each tree
node gets smaller and smaller as the depth of the tree increases, making it difficult to
induce reliable rules from deep levels of the tree. To overcome this problem
Carvalho and Freitas (2002) proposed a decision-tree/genetic-algorithm approach.

3. Genetic algorithms (Goldberg, 1989) offer a powerful search methodology that is
independent of the problem. Genetic algorithms have most commonly been applied to
optimisation problems outside machine learning, such as for design optimisation
problems. When applied in machine learning processes, they are especially suited for
cases in which the hypotheses are complex (e.g. sets of rules) and the objective to be
optimised may be an indirect function of the hypothesis. Rather than search from
general-to-specific hypotheses, or from simple-to-complex as do the decision tree
methods, genetic algorithms generate successor hypotheses by repeatedly changing and
recombining parts of the best currently known hypotheses, as we will show later on.

The present study aims to identify complex associations among eight soil prop-
erties and the abundance of wild-oat within agricultural fields. The final goal is to
find a descriptive model (a set of IF-THEN rules) that adequately express available
knowledge covering the set of training examples. The use of genetic algorithms has
been considered as the most appropriate (machine learning system) hypothesis
search method due to their robustness and flexibility. The proposed approach has
been tested for discovering a rule set that explains the abundance of winter wild-oat
(Avena sterilis L.) based on eight soil properties.

Material and methods

Data

Data description. Data was obtained from a quadrangular grid sampling carried
out in five barley fields in two different locations in South-East Madrid (Spain). Field
size ranged from 0.5 to 1.6 ha. At each grid point, soil samples and wild-oat
abundance data was obtained according to the sampling features shown in Table 1.
Wild-oat density was estimated in a 0.33 · 0.33 m quadrat, either as seedlings
emerged early in the life-cycle or as seeds produced at the end of the life-cycle (seed
rain). Inside the quadrats, soil samples of approximately 2 kg were extracted from
the top 150 mm of soil. Soil attributes analysed for each grid point were: pH value
and content of extractable nitrogen (N), phosphorus (P), potassium (K), organic
matter (OM), sand, silt and clay as detailed in Table 2.

Data pre-processing. Descriptive statistical analysis of the data (see Table 2)
showed that, although soil properties in all fields did not have the same range of
values, all fields showed spatial variation in weed density. To reduce the effect of
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Table 1. Sampling features for the five tested fields

Field Size (ha) Topography Grid

spacing (m)

Number

of points

Wild-oat

count

Date

1 0.5 Flat 10 · 10 50 Seedlings Feb-2001

2 1.6 Flat 12 · 6 38 Seed rain Jul-2000

3 0.9 Hilly 10 · 10 96 Seed rain Jul-2000

4 1.2 Hilly 10 · 10 124 Seedlings Feb-2001

5 1.6 Flat 12 · 6 228 Seed rain Jul-2001

Table 2. Descriptive statistical analysis of the soil factors (i.e. Organic matter (OM), nitrogen (N), pH,

phosphorous (P), potassium (K), sand, silt, and clay) in the five fields

OM (%) N (%) pH P

(mg 100 g)1)

K

(mg 100g)1)

Sand

(%)

Silt

(%)

Clay

(%)

Field (1) : 50

samples

Max 2.63 0.154 8.14 374 700 37 53 22

Min 1.09 0.116 7.69 158 280 26 41 18

Avg 2.00 0.136 7.87 243 520 31.5 47.7 20.8

SD 0.29 0.011 0.1 56.1 93 2.8 3 1.3

Field (2) : 38

samples

Max 2.6 0.178 7.95 347 490 60 58 29

Min 1.33 0.077 7.43 214 240 16 27 13

Avg 1.85 0.121 7.7 281.2 370.5 33.6 46.0 20.4

SD 0.34 0.028 0.13 36 62.5 11.2 7.4 4.6

Field (3) : 96

samples

Max 2.07 0.149 8.31 127 360 45 43 30

Min 1.12 0.064 7.1 22 140 34.0 31.0 20.0

Avg 1.41 0.092 7.83 65 224.1 38.4 37.1 24.5

SD 0.21 0.015 0.23 22.3 52.3 2.1 2.7 2.4

Field (4) : 124

samples

Max 2.2 0.144 7.95 186.6 620 51 38 53

Min 0.76 0.054 6.09 17.8 215 16.0 23.0 25.0

Avg 1.36 0.088 7.14 67.9 350.6 36.0 30.0 34.0

SD 0.32 0.019 0.61 41.8 75.1 9.8 3.6 7.2

Field (5) : 228

samples

Max 2.69 0.181 7.99 940 590 60 60 32

Min 0.82 0.063 7.25 450 260 13 27 12

Avg 1.77 0.117 7.69 648.6 399 34.2 45.8 20.0

SD 0.3 0.025 0.14 90.1 63.6 10.8 6.5 4.9

MaxT. 2.69 0.181 8.31 940 700 60 60 53

MinT. 0.76 0.054 6.09 17.8 140 13 23 12

Some basic statistical values such as the Maximum, the minimum, the average (Avg) and the standard

deviation (SD) for the samples taken in each field are shown. The last two rows give the Maximum and

minimum values among all fields.
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factors such as field history and landscape characteristics on the weed evolution for
each field, the data were normalised by a linear scaling technique (Pyle, 1999)
making them comparable. Thus, all input data have continuous values in the range
from 0 to 1. Summarising, a value Vi was represented by a normalised value
V(Normal)i computed using the expression in Eq. (1).

VðNormalÞi ¼
Vi �minðV1; . . . ;VnÞ

maxðV1; . . . ;VnÞ �minðV1; . . . ;VnÞ
ð1Þ

where V1; . . . ;Vn are all input values for a variable V. Linear scaling is a simple,
straightforward technique to normalise a range of numerical values. Its greatest
advantage is that it introduces no distortion to the variable distribution and only
requires knowledge of the maximum and minimum values.
After the scaling process, the variables were categorised into high, middle or low

classes based on specific intervals as shown in Table 3. Reasoning with symbolic data
has an immediate advantage because the patterns will be expressed by linguistic
terms and, consequently they will be directly interpretable by and comprehensible to
a human operator. In addition, the use of this categorisation technique allows better
handling of data uncertainty. Categorisation thresholds, except for weed density,
were established for building regular intervals of values. For the soil variables, three
regular intervals were defined, except for pH values where two intervals were enough
due to their limited range. In the case of the wild-oat density variable, the value 0.2
was selected as an appropriate threshold as it gave rise to a similar partition for the
input data set. Using the 0.2 threshold, two classes, of the same size, for use in the
training step were defined: a high-density class and a low-density class, where each
sampled point belongs to one or the other class according to its wild-oat density.
As a consequence of previous categorisation, several instances with equal label

values belonged to both classes at the same time. This data conflict was resolved by a
cleaning step that eliminated the overlap. After the cleaning step, the training set was
formed from a total of 414 examples. The high-density class contained 271 (50.6%)
points having a weed density greater than 0.2. The other 265 examples (49.4%)
formed the low-density class. Although relative values of wild-oat abundance cannot

Table 3. Intervals and linguistic labels for the variables

Normalized

variable

Range Linguistic

labels

pH [0, 0.5] Low

(0, 0.5–1] High

OM, P, K, sand, silt, clay [0, 0.333] Low

(0.333, 0.666) Medium

[0.666, 1] High

Wild-oat density [0, 0.200] Low

(0.200, 1] High

We use the following notation for defining intervals. Square bracket means that the border value is

included as achievable variable value and round bracket represents the opposite situation.
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be used directly for preventative treatment purposes, they may allow identification of
zones of the field that would be susceptible to infestation by this weed species. This
information could be very useful for defining management zones and for adjusting
more precisely the treatment dosage.
Finally, the sampled data was integrated into a database where each record

stored the nine sampled variables (i.e. eight soil properties and weed density
value) at each grid point. Formally, a record m was defined by a features vector
Vm ¼ ðl1; l2; . . . ; lk; . . . ; lnÞ, where lk is the linguistic label for attribute k at the sampled
point m. An important characteristic of this data structure is that it allows additional
information from later experiments to be easily added to the database.

Machine learning algorithm

The rule-based model. The extraction of an approximate model that explains the
input data would greatly improve management decisions. However, the knowledge
discovered should be as accurate and as comprehensible to humans as possible.
Knowledge comprehensibility is essential for at least two related reasons. First, the
user wants to use new knowledge in decision-making. In other words, it is important
to get an accurate prediction and also to know why a particular situation (the set of
conditions) has been classified in a specific group, because this information can
improve the field management. This feature of comprehensibility and/or justifiability
is lacking in ANN models, which can make good predictions but without explana-
tion or justification (Henery, 1994). Second, comprehensible knowledge allows a user
to validate it. The goal of discovering understandable knowledge can be facilitated
by using a high-level knowledge representation, such as the IF-THEN rules. A
linguistic rule can be expressed as follows:

IF cond1 ^ . . . ^ condi ^ . . . ^ condn THEN pred

The IF part, i.e. rule antecedent, contains conjunctions (�, i.e. ‘‘and’’) or dis-
junctions (�, i.e. ‘or’) of n conditions (cond) about attribute values (i.e. Attri =
Vi), whereas the THEN part, i.e. rule consequent (pred), contains a prediction/
classification for the value of a goal attribute. The semantic underlying this kind
of prediction/classification rule is as follows: If all the conditions specified in the
rule antecedent are satisfied by the attributes of a given data instance (a record in
the database) then the goal attribute of that instance will take on the value
specified in the consequent part of the rule. In the proposed approach, each of
the conditions in the rule antecedent has the form Attri , OpC , vij, where Attri
denotes the ith attribute in the set of attributes, vij the jth value of the domain of
Attri, and OpC is a comparison operator; in the present context, OpC 2 f¼; 6¼g.
Definitively, the rules induced by the proposed learning process are similar to the
following rule:

IF pH ¼ Low ^ Sand ¼ Low ^ Clay ¼ high

THEN Wild�Oat�Density ¼ High
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Genetic search. The induction algorithm to extract the model can be considered as a
hypothesis-space search, where a hypothesis/model is essentially a (or a part of a)
candidate solution and operators transform one hypothesis into another until a
specified model is reached. In the proposed approach, a hypothesis corresponds to a
candidate solution defined through a set of rules. On the other hand, operators are
usually implemented by generalisation/specialisation operations that transform one
candidate set of rules into another (Michalski, 1983). These deterministic operators
perform a kind of local search in the hypothesis space, in the sense that a single
application of an operator modifies a small part of a candidate set of rules. More-
over, typical rule-induction algorithms construct and evaluate a candidate set of
rules in an incremental way; that is, many of the hypotheses evaluated are only part
of the whole solution. In contrast, genetic algorithms working as search procedures
avoid some of the weaknesses of more classical search approaches. In fact, genetic
algorithms typically use stochastic operators and some of these operators, such us
crossover, usually perform a more global search in the hypothesis space, in the sense
that a single application of an operator can modify a relatively large part of a
candidate hypothesis. As a result, intuitively, genetic algorithms tend to cope better
with attribute (or condition) interaction problems (Freitas, 2002). Briefly, the basic
ideas of the genetic algorithm search are as follows (Holland, 1975): A genetic
algorithm maintains a population of individuals, each of them being a candidate
solution to a given problem; here, a hypothesis or set of rules. Each individual is
evaluated by a fitness function, which measures the quality of its corresponding
candidate solution. A fitness function defines the criterion for ranking potential
hypotheses and allows their selection according to their probability for inclusion in
the next generation population. Individuals evolve towards better and better indi-
viduals through a procedure based on natural selection, i.e. survival and reproduc-
tion of the fittest, and operators based on genetics, e.g. crossover (recombination)
and mutation. In essence, crossover swaps some genetic material between two or
more individuals, whereas mutation changes the value of a small part of the genetic
material of an individual to a new random value, simulating the erroneous
self-replication of individuals (Goldberg, 1989). The search process finishes when the
best hypothesis is reached, that is, when the candidate solution that produces the
maximum value for the fitness function has been identified. In our case, this means
the model or set of rules that can explain all input examples.
The development of a genetic algorithm for rule discovery involves a set of non-

trivial decisions. The remainder of this section describes in detail the hypothesis
representation (called individual representation in genetic approaches terminology)
and the fitness function. The most used and traditional representation for an indi-
vidual is a binary fixed-length string. In the present approach, individuals are
encoded by a set of conditions. Each condition is associated with a specific Attri and
encoded as a pair: fOpCi;Labelijg where OpC denotes a comparison operator (= or „ )
and Labelij denotes the jth value of the domain of Attri.
Note that this approach implicitly assumes a positional encoding of attributes in

the string. In other words, in each individual, the first condition refers to the first soil
property (pH), the second condition (OM) refers to the second attribute, and so on.
This positional convention simplifies the action of the genetic operators. The
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attribute ordering in our case is: pH, OM, N, P, K, Sand, Silt, and Clay. Keeping in
mind Table 3, two bits are needed to code each Labelij, so the binary codification of
labels is as follows: (low, 01), (medium, 10), (high, 11) and, for pH attribute (low, 10)
and (high, 11). The configuration 00 for the three-label attributes, and 01 and 00 for
the two-label ones, are used to represent the absence of a condition in the rule
antecedent. In the same way, only a single bit is needed to codify the comparison
operator (C)i, i.e. 1 for = and 0 for „. On the other hand, in the approach proposed
here, conjunction or disjunction of conditions generates individuals. Then, the log-
ical operators (OpL), that is, � and � are coded by 1 and 0, respectively. Disjunction
operator between conditions allows the splitting of the individual in more than one
rule. Finally, the rule consequent or the value of the wild-oat attribute is coded by
one bit, so that 0 means low and 1 high. An example of an individual, described with
the guidelines above is represented as follows:

This binary-string is decoded as:

P ¼ medium _ K ¼ high ^ Sand 6¼ low!Wild�Oat ¼ high

Notice that the antecedent of IF-THEN rules is a set of conjunctions and/or
disjunctions. Therefore, the previous statement represents the following set of rules
according to universal assumptions of logic:

IF P ¼ medium THEN Wild�Oat ¼ high

IF K ¼ high ^ Sand 6¼ low THEN Wild�Oat ¼ high

Finally, using the basic ideas described above, different types of approaches have
been tested for representing a set of rules as an individual codified by a binary string.
All of them give rise to different results that are analysed in the following section.
The representations that have been tested are as follows:

Case A. Logical operators (� and) are allowed to combine premises in the rule
antecedent indistinctly (i.e. first order relationship). The individual length is
restricted to contain only eight attributes. More concretely, 32 bits to codify the

(1) The part rule antecedent

Cond1 OpL cond2 OpL cond3 OpL cond4 OpL cond5 OpL cond6 OpL cond7 OpL cond8

00 1 1 00 1 1 00 1 1 10 1 0 11 1 1 01 0 1 00 1 1 00 1

pH = – AND OM = – AND N = – AND P = mediumOR K = highAND Sand „ low AND Silt = -AND Clay = -

(2) The part rule consequent

OpL Class

1 1

AND wild-oat=high
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rule antecedent and 1 bit to codify the consequent are needed. In the limit and as a
consequence of the use of the logical operator �, the set of rules could be formed
by eight conditions for each rule.

Case B. Operators among rule conditions are always � operators. To code a set of
rules, the antecedents are encoded in an individual with a number of bits which is
a multiple of 32. For example, an individual that is defined by means of 3 rules,
would have 97 bits (32 · 3 bits for antecedents and 1 bit to codify rule conse-
quent). In this case, the objective is to build more generic models that could
provide more accurate rules.

Case C. In this case, the construction of the antecedents of the rule set is similar to
case B, but only the comparison operator = is used. This case highlights the
preference for specific rules versus more general ones.

The other essential key in the design of a genetic algorithm, besides the repre-
sentation, is the selection of the most appropriate fitness function that guarantees a
good trade-off between exploitation of the best candidate solutions and exploration
of the search space. In essence, selection based on fitness is the source of exploitation
of the best current candidate solutions, whereas genetic operators such as crossover
and mutation are the source of exploration of the search space, creating new can-
didate solutions.
To simplify the explanation without loss of generality, let us assume that there are

two classes. Let positive (+) class be the class predicted by a given set of rules, and
let negative ()) class be any class other than the class predicted by the rule. In the
proposed approach, each hypothesis or set of rules intends to explain positive
examples without covering negatives ones. To evaluate the quality of an individual,
the genetic algorithm uses the fitness function given by Eq. (2).

fitness ¼ TP

TP þ FN

� �
� TN

FP þ TN

� �
ð2Þ

where TP (true positives) is the number of + examples that were correctly classified
as + examples; FP (false positives) is the number of ) examples that were wrongly
classified as + examples; FN (false negative) is the number of + examples that were
wrongly classified as ) examples; TN (true negatives) is the number of ) examples
that were correctly classified as ) examples. In the above formula, the term (TP /
(TP+ FN )) is often called sensitivity, whereas the term (TN /(FP + TN )) is named
specificity. These two terms are multiplied to force the genetic algorithm to discover
rules that have both high sensitivity and high specificity, since it would be relatively
easy to maximise one of these terms by reducing the other.

Results and discussion

Out of the experimental data, about 90% (373 instances) of the inputs were chosen
randomly to form the training set of examples where the genetic algorithm process
searched for the best set of rules that modelled or explained this input data. The rest
of the set (10%) was used in the validation process, to test the predictive ability of the
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set of rules that were obtained by the genetic search. In the experiments, we con-
sidered as positive examples those where wild-oat density was high and the opposite
case as negative examples. Thus, our objective is to model the high density wild-oat
class. Current work used AGLearner, a genetic algorithm software environment
developed by us for experimentation with genetic algorithms and related techniques.
Results of the different experiments are shown in Table 4.
The different cases displayed in the table correspond to the representation cases

described in the previous section. As expected, the use of all comparison and logical
operators in the first test (A) resulted in a set of more general rules than in the other
tests (B and C). In fact, in case (A) two rules (A1:R1 and A1:R2) were found which
explained 78.28% of input data. These preliminary results were presented by Dı́az
et al. (2003).

IF OM ¼ low ^ P ¼ high ^ Clay ¼ low THEN Wild�Oat ¼ high

(A1:R1)

IF Silt ¼ high ^ Sand ¼ low THEN Wild�Oat ¼ high (A1:R2)

The second series of experiments (B) was able to discover a rule set that covered a
larger number of examples but, as was logically expected, was more complex. In each
series of experiments (for example, C3, C4, C5), the possible number of rules for each
set was increased by one, since one extra rule in the set can explain a new group of
data and, as a consequence can improve the classification accuracy. Experiments
were done for individuals that codified among 1–8 rules. Experiments showed that a
larger number of rules did not improve the classification accuracy greatly, whereas
the model became unnecessarily more complex. For case B, the set of rules with the
highest value of fitness was the following:

Table 4. Experimental results

Case Number

of rules

Fitness TP Truehigh FN Falselow TN Truelow FP Falsehigh Accuracy

(%)

A1 2 0.613 160 44 132 37 78.28

B1 1 0.546 153 51 123 46 73.99

B2 2 0.644 151 53 147 22 79.89

B3 3 0.685 170 34 139 30 82.84

B4 4 0.742 162 42 158 11 85.79

B5 5 0.757 161 43 162 7 86.60

B6 6 0.778 172 32 156 13 87.94

B7 7 0.782 175 29 154 15 88.20

B8 8 0.830 181 23 158 11 90.88

C1 1 0.390 133 71 101 68 62.73

C2 2 0.575 156 48 127 42 75.87

C3 3 0.618 142 62 150 19 78.82

C4 4 0.670 164 40 141 28 81.77

C5 5 0.683 167 37 141 28 83.11

C6 6 0.711 175 29 140 29 84.72

C7 7 0.722 166 38 150 19 84.72

C8 8 0.743 173 31 148 21 86.10

Fitness was computed from expression in Eq (2).
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IFN ¼ low AND P 6¼ high AND K 6¼ medium AND clay

6¼ medium AND clay 6¼ medium AND sand ¼ high

THEN WildOat ¼ high ð15TP; 166TNÞ ðB8:R1Þ

IF P ¼ medium AND K ¼ medium AND silt ¼ low

THEN Wild�Oat ¼ high ð37TP; 167TNÞ ðB8:R2Þ

IF clay ¼ high AND silt 6¼ high AND sand ¼ high

THEN Wild�Oat ¼ high ð33TP; 167TNÞ ðB8:R3Þ

IF K 6¼ high AND clay 6¼ high AND silt ¼ low AND sand 6¼ high

THEN Wild�Oat ¼ high ð46TP; 168TNÞ ðB8:R4Þ

IF pH ¼ low AND P 6¼ high AND K 6¼ high AND silt 6¼ high AND sand 6¼ low

THEN Wild�Oat ¼ high ð52TP; 163TNÞ ðB8:R5Þ

IF OM 6¼ medium AND P ¼ medium AND K 6¼ medium AND clay

6¼ low AND silt 6¼ low AND sand ¼ low

THEN Wild�Oat ¼ high ð7TP; 169TNÞ ðB8:R6Þ

IF OM ¼ medium AND P 6¼ medium AND K 6¼ medium AND clay

6¼ high AND silt ¼ medium

THEN Wild�Oat ¼ high ð37TP; 166TNÞ ðB8:R7Þ

IF pH ¼ low AND N ¼ high AND P 6¼ high AND clay 6¼ low

THEN Wild�Oat ¼ high ð25TP; 169TNÞ ðB8:R8Þ
In these rules, the number of true positives (TP) and true negatives (TN) (defined in
Eq. (2)) that each rule covers is shown in parenthesis.
Finally, the third set of tests (C) showed a model with more specific rules, which

were discovered by a genetic search. In this case the rule set that showed the best
classification accuracy was as follows:

IFOM ¼ medium AND clay ¼ low AND silt ¼ medium

THENWild�Oat ¼ high ð23TP; 165TNÞ ðC8:R1Þ

IFP ¼ low AND silt ¼ low

THENWild�Oat ¼ highð58TP; 160TNÞ ðC8:R2Þ

IFOM ¼ medium AND P ¼ medium AND K ¼ medium AND clay ¼ medium

THEN Wild�Oat ¼ high ð21TP; 167TNÞ ðC8:R3Þ
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IF OM ¼ medium AND P ¼ lowANDK ¼ low AND silt ¼ medium

THEN Wild�Oat ¼ high ð31TP; 167TNÞ ðC8:R4Þ

IFP ¼ medium AND clay ¼ high

THEN Wild�Oat ¼ high ð30TP; 165TNÞ ðC8:R5Þ

IFOM ¼ high AND clay ¼ medium

THEN Wild�Oat ¼ high ð17TP; 168TNÞ ðC8:R6Þ

IFN ¼ medium AND P ¼ high AND K ¼ high AND sand ¼ medium

THEN Wild�Oat ¼ high ð3TP; 168TNÞ ðC8:R7Þ

IF pH ¼ low AND N ¼ high AND P ¼ low AND clay ¼ high

THEN Wild�Oat ¼ high ð8TP; 169TNÞ ðC8:R8Þ
As before, the true positives and true negatives are shown in parenthesis.
The best results were obtained in the experiments of series B, in particular when

the model contained eight rules since this case gave the best fitness value (0.830) and
produced the highest classification accuracy (91%). However, the set of rules C8 in
case C, with only a small difference in the classification accuracy compared to rule set
B8, was both more specific and more comprehensible. The rules in case C8 contain
fewer conditions than rules in case B8 and the conditions embed an equality test on
an attribute value, so they are more specific. Although it is extremely important that
farmers spray every infested weed area for weed control purposes, in this application
domain it is more important to find a model to explain high density examples (TP)
rather than to procure high accuracy. Of course, a trade-off between true positives
and accuracy would be meaningless when the accuracy approaches 100%. This
premise is satisfied by some rule sets, like for instance, C6 compared to B6 that
belong to the same complexity level. This is because while B6 explains 172 examples,
C6 describes perfectly 175 high density examples which is the more important
requirement for a farmer. Notice that the classification accuracy of B6 is higher than
accuracy of C6 because of the larger number of negative examples covered by B6
versus those covered by C6 (TNB6 < TNC6).
In the last step of this process, the rules sets were validated with about 10% of the

input data (the validation data set). This validation analysis, shown in Table 5,
confirmed previous results of the training set (Table 4), resulting in similar accuracy

Table 5. Percentages of well-estimated examples in the validation data set

Case TP FN TN FP Accuracy (%)

A1 19 7 13 2 78.05

B8 21 5 13 2 82.93

C8 19 7 14 1 80.5
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Figure 1. Actual and estimated infestation maps of five studied fields at Madrid site (Spain). Dark circles

represent high density weed, while light ones are samples with low density weed.
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percentages. Rule set A1, composed of A:R1 and A:R2, classified correctly 19 of the
existing 26 high weed density instances and 13 of the 15 low weed density instances,
giving a classification accuracy of about 78.1%. B8 and C8 estimated correctly 21
records from the 26. However, B8 set, which consists of rules B:R1 to B:R8, pro-
duced a better result as it correctly classified one more example of low class of the
weed density. Therefore, B8 accuracy (90%) was higher than accuracy (86%) of C8,
which consists of rules C:R1 to C:R8.
Spatial distribution of results is shown in Figure 1 which depicts the actual and the

predicted infestation estimated by the best set of rules, B8. It can be seen that the
model estimates the weed distribution especially well in field number 5.
As a further verification, the performance of the method proposed here has been

compared with the C5.0 algorithm, included in SPSS Clementine �, using the same
data set.
The C5.0 algorithm can induce two kinds of model: decision trees and rule sets

working in two ways, namely finding general models or specific ones. In the specific
category, C5.0 induced a model composed of 15 rules that classified positive
examples as well as negatives examples; that is, the model contains rules for
describing both classes at the same time. Eight rules from this set described the high
weed density class and seven rules the low weed density class. The model obtained by
C5.0 produced the following values for accuracy: TP ¼ 186, FN ¼ 18, TF ¼ 147,
FP ¼ 22, and 89.43% of examples properly classified. With the general approach, the
rule set induced by the C5.0 algorithm was composed of 7 rules (3 for positives and 4
for negatives) and values for accuracy were: TP ¼ 174, FN ¼ 30, TF ¼ 132, FP ¼ 37,
in consequence 82.03% of the input data were well classified. Obviously, the specific
approach gives more complex models. In fact, it needed 15 rules in order to reach a
similar, or even lower, accuracy than that achieved by our genetic algorithm model
that has only eight rules. In contrast with the specific model, the general model was
less complex, but it was almost 10% less accurate than the rule set B8.
In spite of the fact that categorisation is a fundamental key to handle uncertainty,

the threshold selection for defining the attribute boundaries still remains a
non-trivial matter. More experimental work for classification of high weed infesta-
tion is required using expert criteria in the attribute categorisation. Then, for the
categorisation task, other machine learning techniques such as fuzzy logic (Zadeh,
1988) can be used to manage the inherent uncertainty. Some experiments and
preliminary results in this area are presented in Ribeiro et al. (2003).

Conclusions

This paper presents a general technique that has been developed to induce a set of
rules that describe wild-oat density in terms of soil properties from a set of input
data. The proposed approach is based on a machine learning technique that per-
forms a genetic search to discover the best rule set according to the classification
instances of an experimental database. The use of linguistic terms in the rules
antecedent facilitates straightforward interpretation and analysis of the rules dis-
covered. The proposed approach has produced a set of eight rules that can explain
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around 91% of the particular input data set for wild-oats. Comparisons of the
performance of our proposed genetic approach tool versus that of a commercial one
were carried out and show the improvements obtained with the proposed approach.
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