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Solubility has become one of the key physicochemical screens at early stages of the drug development
process. Solubility prediction through Quantitative Structure–Property Relationships (QSPR) modeling
is a growing area of modern pharmaceutical research, being compatible with both High Throughput
Screening technologies and limited compound availability characteristic of early stages of drug develop-
ment. We resort to the QSPR theory for analyzing the aqueous solubility exhibited by 145 diverse drug-
like organic compounds (0.781 being the average Tanimoto distances between all possible pairs of
compounds in the training set). An accurate and generally applicable model is derived, consisting on a
linear regression equation that involves three DRAGON molecular descriptors selected from more than
a thousand available. Alternatively, we apply the linear QSPR to other 21 commonly employed validation
compounds, leading to solubility estimations that compare fairly well with the performance achieved by
previously reported Group Contribution Methods.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Importance of solubility in the early stages of a drug
development program

In the past, traditional drug development scheme focused on
biological activity and potency of drugs. As a consequence, many
drug development programs usually failed, because of toxicologi-
cal and pharmaco-kinetical issues, at late stages of the develop-
ment process, when large investments had already been made.
Thus, modern drug development paradigm (usually referred as ‘fail
early, fail cheap’) includes determination and/or estimation of
physicochemical properties related to bioavailability at the very
first stages of drug development, when a lead compound is being
sought.1 For many reasons, solubility stands out among such prop-
erties (along with pKa, lipophilicity and stability) as one of the key
physicochemical screens in early compound screening, which ex-
plains why solubility determination and estimation have been sub-
jects of several recent publications and reviews in Medicinal
Chemistry and Pharmaceutical specialized journals.2–7 Among
these reasons we may list:
ll rights reserved.
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1. To elicit their pharmacological activity, orally administered
drugs should exhibit certain solubility in physiological intesti-
nal fluids to be present in the dissolved state at the site of
absorption. Aqueous solubility is a major indicator for the solu-
bility in the intestinal fluids and its contribution to bioavailabil-
ity issues. Note that 56 out of 100 product launches between
1995 and 2002 belong either to class II or class IV of the Bio-
pharmaceutical Classification System, which means their oral
bioavailability may be improved by enhancing their solubility.2

2. Determination of the true concentration of the free drug is crit-
ical in the in vitro assays; wrong conclusions regarding efficacy
or toxicity may be drawn if unexpected low solubility or precip-
itation of the drug occurs.2,6–8 Achievement of solution state is
usually also needed for adequate in vivo testing.

3. Low solubility of compounds contributes to extent timelines,
since material engineering of the drug or formulation efforts
should be used to produce dosage forms that consistently deli-
ver the desired dose of the drug in the site of absorption.2–7

4. Compounds with high solubility are more easily metabolized
and eliminated from the organism, thus leading to lower prob-
ability of adverse effects and bioaccumulation.9

1.2. Solubility measurement and prediction

Solubility measurements determine either the thermodynamic
or the kinetic solubility of the compounds. Thermodynamic solu-
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Figure 1. Molecular structures for the training set compounds (N = 97).
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bility measurements are performed by dispensing a purified crys-
talline solid compound in a liquid, allowing an incubation time
(typically, 24–48 h) to ensure equilibrium.6,7 The necessary time
to measure thermodynamic solubility is not compatible with mod-
ern High Throughput Screening (HTS) technologies: standard equi-
librium solubility measures are restricted to about 25–50
compounds a week if handled by one specialist. Moreover, they de-
mand 3–10 mg of purified compound, at an early stage when usu-
ally only a few milligrams of product are available which should
also be used to measure other important absorption, distribution,
metabolization, and elimination (ADME) parameters and biological
activity.6 True HTS solubility assays are only available in a few spe-
cialized companies; and they involve complex task such as auto-
matically handling powders with different characteristics, with
the consequent cross-contamination potential, power loss during
movement of dosing heads and difficulties in equipment cleaning.
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Figure 1. (continued)
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Kinetic solubility measurement starts from a pre-dissolved
sample of the compound, usually in dimethyl-sulfoxide (DMSO).
Small volumes of the stock solution are added incrementally to
the aqueous solution of interest until the solubility limit is reached,
the resulting precipitation being detected optically. Although fas-
ter than thermodynamic solubility measurement, the DMSO might
well operate as a co-solvent, dramatically enhancing the solubility
of lipophilic compounds.6 Because of these reasons and also be-
cause the sample is in amorphous state, kinetic solubility tends
to overestimate thermodynamic solubility.
With this background, the use of QSPR methodologies to pre-
dict aqueous solubility appears as an interesting, increasingly
popular alternative to solubility measurement: they are compa-
tible with both HTS technologies and limited compound avail-
ability typical of early stages of development, since none of
the samples of compound is needed for the estimation of solu-
bility and relatively few computational time is needed for the
predictions. Balakin et al. have proposed the following classifi-
cation of in silico approaches for the assessment of aqueous
solubility3:



Table 1
Different linear methods applied on the same 21-test set compounds

Lead author Method Type of descriptors Number of parameters rms N/d Ref.

Klopman GCM 2D substructures 34 1.213 0.62 18
Yan MLR 3D descriptors 40 1.286 0.53 50
Hou GCM atomic 78 0.664 0.27 51
Huuskonen MLR topologicals 30 0.810 0.70 52
Duchowicz MLR Dragon 3 1.202 7.00 This study
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Table 2
Experimental and predicted values for log10Sol (mg ml�1)

No. Chemical name Exp. Pred. Eq. (3)

Training set
1 2,4,5-Trichlorophenol 0.079 �0.943
2 2,4-DB �1.337 �1.29
3 2,6-Dibromoquinone-4-chlorimide �1.230 �1.194
4 2-Cyclohexyl-4,6-dinitrophenol �1.823 �1.275
5 2-Ethyl-1-hexanol �0.056 0.321
6 3,4-Dinitrobenzoic acid 0.826 -0.503
7 4-Amino-2-sulfobenzoic acid 0.477 0.134
8 Acequinocyl �4.173 �4.506
9 Acetamide 3.352 2.929

10 Acetamiprid 0.623 �0.6
11 Acetanilide 0.806 0.363
12 Acetazolamide �0.009 1.765
13 Acetochlor �0.652 �0.812
14 Acetylacetone 2.221 1.978
15 Acibenzolar-S-methyl �2.113 �0.212
16 Aconitic acid 2.698 1.021
17 Acrylamide 2.806 2.46
18 Acrylonitrile 1.872 2.396
19 Adenine 0.013 1.706
20 Adipic acid 1.414 0.951
21 Alanine 2.214 2.441
22 Aldicarb 0.780 �0.115
23 Allidochlor 1.294 �0.022
24 Allobarbital 0.258 0.468
25 Alochlor �0.620 �0.208
26 Alpha-acetylbutyrolactone 2.301 1.458
27 Amicarbalide 0.700 �0.282
28 Aminopromazine �3.239 �1.933
29 Amitraz �3.000 �2.534
30 Amobarbital �0.220 0.497
31 Ancymidol �0.187 �0.719
32 Aniline 1.556 0.979
33 ANTU �0.222 �0.663
34 Arabinose 2.698 2.168
35 Ascorbic acid 2.522 2.005
36 Aspartic acid 0.912 2.095
37 Asulam 0.699 �0.106
38 Azidamfenicol 1.301 0.258
39 Azintamide 0.699 �0.762
40 Azoxystrobin �2.000 �3.393
41 Badische acid �0.225 �0.817
42 Barban �1.958 �2.248
43 Barbital 0.873 0.857
44 Bendiocarb �0.585 �0.596
45 Benzidine �0.495 �1.026
46 Bifenox �3.397 �3.207
47 Bifentrhin �4.000 �3.5
48 Biotin �0.658 �0.217
49 Capric acid �1.209 �0.511
50 Caproic acid 1.012 1.128
51 Carbofuran �0.495 �0.836
52 Carbosulfan �3.522 �2.296
53 Carboxin �0.701 �0.274
54 Carfentrazone-ethyl �1.657 �2.226
55 Carisoprodol �0.523 1.088
56 Carmustine 0.602 0.597
57 Carnosine 1.914 0.791
58 1,6-Cleve’s acid 0.000 �0.577
59 Crotonic Acid 1.934 1.788
60 Cumic Acid �0.821 �0.404
61 Cyanazine �0.767 �0.417
62 Cyanuric Acid 0.301 1.614
63 Cyclizine 0.000 �1.525
64 Cyclobarbital 0.204 0.241
65 Cycloleucine 1.698 1.183
66 Cymoxanil �0.051 1.391
67 Cyproconazole �0.854 �1.399
68 Cyprodinil �1.886 �1.58
69 Cystine �0.951 0.781
70 Dehydroacetic Acid �0.161 0.997
71 Dexamethasone �1.051 �0.785
72 Diallate �1.853 �1.154
73 Dicamba �0.080 �1.003
74 Dichlobenil �1.673 �0.705
75 Dichlofenthion �3.610 �2.456

Table 2 (continued)

No. Chemical name Exp. Pred. Eq. (3)

76 Diclofop-methyl �3.096 �3.08
77 Difenoconazole �1.823 �3.469
78 Digallic Acid �0.301 �0.87
79 Dimethenamid 0.079 �0.951
80 Dimethirimol 0.079 0.019
81 Dimethomorph �1.728 �1.966
82 Dimorpholamine 2.698 1.118
83 Diniconazole �2.397 �1.725
84 EPTC �0.426 �0.065
85 Equilin �2.850 �2.385
86 Ethinamate 0.398 �0.064
87 Ethirimol �0.699 �0.26
88 Ethofumesate �1.301 �1.044
89 Ethohexadiol 1.623 0.772
90 Ethoprop �0.125 �0.377
91 Etofenprox �6.000 �3.456
92 Fenbuconazole �3.699 �2.248
93 Fenbufen �2.656 �2.072
94 Fenoxaprop-ethyl �3.046 �3.228
95 Fenpiclonil �2.318 �1.35
96 Fludrocortisone �0.854 �1.204
97 Flufenacet �1.252 �1.213

Test set val
98 Flufenamic acid �2.041 �1.585
99 Flumioxazin �2.747 �2.17

100 Fluspirilene �2.000 �4.587
101 Fluthiacet-methyl �3.070 �2.002
102 Folic acid �2.795 �2.532
103 Fumaric acid 0.845 2.145
104 Furametpyr �0.648 �0.611
105 Furazolidone �1.397 0.07
106 Ganciclovir 0.633 0.997
107 Gluconolactone 2.770 1.776
108 Glutamic acid 0.933 1.717
109 Glycine 2.396 2.883
110 Glyphosate 1.079 1.729
111 Guaifenesin 1.698 0.936
112 Haloperidol �1.853 �2.916
113 Heptabarbital �0.602 �0.651
114 Hexazinone 1.519 �0.268
115 Histidine 1.658 1.705
116 Hydrocortisone �0.495 �1.325
117 Hydroflumethiazide �0.523 �0.956
118 Hydroquinone 1.857 1.128
119 Hydroxyphenamate 1.397 0.05
120 Hydroxyproline 2.557 1.917
121 Hymexazol 1.929 2.116
122 Idoxuridine 0.301 0.688
123 Imazapyr 1.053 �0.193
124 Imazaquin �1.045 �1.316
125 Imazethapyr 0.146 �0.625
126 Iridomyrmecin 0.301 �0.272
127 Isoflurophate 1.187 0.614
128 Isoleucine 1.536 1.384
129 Isoniazid 2.146 1.64
130 Isophorone 1.079 0.542
131 Ketanserin �2.000 �2.602
132 Khellin 0.017 �0.417
133 Lenacil �2.221 �0.913
134 Linuron �1.124 �1.373
135 Methomyl 1.763 0.648
136 PABA 0.769 0.586
137 p-Fluorobenzoic acid 0.079 0.349
138 Phthalazine 1.698 0.776
139 Phthalic Acid 0.846 0.228
140 Phthalimide �0.444 0.303
141 p-Hydroxybenzoic Acid 0.699 0.645
142 Picloram �0.367 �0.035
143 Picric Acid 1.103 �0.426
144 Pirimicarb 0.431 �0.424
145 Thionazin 0.057 0.222

Test set 21
146 2,20 ,4,5,50-PCB �5.376 �3.932
147 Benzocaine �0.102 0.104
148 Theophylline 0.886 1.316
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Table 2 (continued)

No. Chemical name Exp. Pred. Eq. (3)

149 Antipyrine 2.665 0
150 Atrazine �1.216 �0.509
151 Phenobarbital 0.026 �0.208
152 Diuron �1.392 �0.713
153 Nitrofurantoin �1.003 0.511
154 Phenytoin �1.588 �0.581
155 Testosterone �1.610 �1.955
156 Lindane �2.136 �2.381
157 Parathion �1.826 �1.453
158 Phenolphthalein �0.397 �2.581
159 Malathion �0.841 �0.523
160 Chlorpyrifos �3.125 �1.833
161 Prostaglandin E2 0.077 �2.344
162 DDT �5.530 �4.244
163 Chlordane �4.247 �4.302
164 Diazepam �1.301 �2.282
165 Aspirin 0.663 �0.074
166 Diazinon �1.397 �0.535
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1. Solubility methods based on other experimental measurements,
such as the melting point and the experimental logP value.
Although they present good accuracy, the greatest drawback of
these methodologies is the requirement of experimentally mea-
sure one or more physicochemical properties, which in some
cases might be difficult or impossible to determine (e.g., com-
pounds with very low or very high logP values and compounds
with very high melting points that decompose before melting).

2. Methods exploring 3D structure, which suppose either low
speed of calculation (when ab initio approaches are employed)
or previous optimization of molecular structures.

3. Methods using low dimensional descriptors (1D–2D). These
include the group contribution methods (GCM) and QSAR
approaches relying on topological descriptors. They are not
computationally demanding, neither they require optimization
of the molecular structure. GCM are easy to apply, relying solely
on the sum of contributions of each molecular structure frag-
ment to the aqueous solubility.10–12 The basic assumption of
this approach is the transferability concept for a group; if this
hypothesis does not hold, then GCM can be corrected with
experimental data when available to achieve better predictions.
The methods proposed by Nirmalakhandan et al.,13 Suzuki et al.,
14 Kuhne et al.,15 Lee et al.,16 and Klopman et al.17,18 belong to
this category. Among all these approaches, only Klopman et
al.’s approach is a pure and general group contribution model
without using additional experimental parameters. Although
GCM have a simple and practical implementation, some com-
mon drawbacks of this methodology are the following: (a) they
require a large data set to obtain a contribution of each func-
tional group; (b) in its basic form (without corrections) it can-
not model isomeric structures; (c) they may contain a
‘missing fragment’ problem, which means that if a compound
contains a missing fragment which cannot be defined by the
group contribution model, its aqueous solubility cannot be pre-
cisely predicted; (d) measured data are not always available to
extend these methods to strange compounds such as molecules
containing fused aromatic rings or to organo-metallic
compounds.

Table 1 summarizes different linear estimation methods for
solubility prediction in terms of type and number of structural
descriptors used to derive the model, and the root mean square
error (rms) against a common test set of 21 ‘classic compounds’
found in many solubility prediction papers.18 It has been pointed
out that solubility modeling efforts have suffered from some ba-
sic concerns, among them: training sets that are not drug-like,
lack of structural diversity, unknown experimental error, incor-
rect tautomers or structures, neglect of ionization and crystal
packing effects, over-sampling of compounds with low molecular
weight and range in solubility data that is not pharmaceutically
relevant.4,19 In this paper, we present a QSPR that answers to
some of these issues, since it was developed from a structural
diverse training set composed by drug-like compounds with
more than half the data set presenting solubility values below
1 mg ml�1. Note that low solubility compounds are actually the
ones one would like to obtain more accurate predictions,4,19

since they have higher probability of presenting difficulties in
pre-clinic and clinic assays and formulation stages. We were also
careful not to over-represent compounds with low molecular
weight. In the present analysis, we decided to use Multivariable
Linear Regression (MLR)-based methods instead of the GCM ap-
proach for analyzing the aqueous solubilities of 166 organic
compounds. A great number of theoretical molecular descriptors
are simultaneously explored by including definitions of all clas-
ses. For this task, we employ the linear variable subset selection
approach Replacement Method (RM),20–23 and we draw conclu-
sions by contrasting our results with other previously reported
linear models of the literature.
2. Methods

2.1. Data set

The experimental aqueous solubilities (Sol) measured at 298 K
and expressed in mg ml�1 for 145 structurally diverse drug-like or-
ganic compounds were extracted from Merck Index 13th.24 Solubil-
ity data were checked at ChemID Plus (National Library of Medicine,
National Institute of Health).25 No differences in solubility data were
found between Merck Index and ChemID records except for crotonic
acid (DSol = 0.053 log units), cyanazine (DSol = 0.003), dexametha-
sone (DSol = 0.050) and PABA (DSol = 0.016). In those cases ChemID
data were considered. None solubility record at 25� was found in
ChemID Plus for 4-amino-2-sulfobenzoic acid, acequinocyl, aconitic
acid, amicarbalide, aminopromazine, ascorbic acid, axocystrobin,
ethirimol and furametpyr. For modeling purposes, these data are
converted into logarithm units (log10Sol) and are presented in Table
2; all the molecular structures are drawn in Figures 1 and 2. The
molecular set was split into a 97-compound training set (train)
and a 48-compounds test set (val), selecting the members of each
set in such a way to share similar structural characteristics of the
compounds. Additionally, we also used an external molecular set
(test set 21) that was not involved during the model design, com-
posed of 21 well-known compounds found in many solubility pre-
diction papers,4,18 in order to further examining the model’s
validation. In a recent work, we have already used this 145 data set
(plus aspirin, diazepam, and diazinon, which in the current study
are part of the classic 21-compound test) for modeling of aqueous
solubility through the RM.26 In that opportunity, however, we condi-
tioned the model to include at least one out of twelve descriptors in-
spired in Lipinski rules.27 In the present study, we imposed no
restriction regarding the descriptors included in the models.

Note that most of the drugs that compose the training and test
sets accomplish several drug-likeness criteria. It can be noticed
that more than 99% of the data set observes the Lipinski-rule crite-
ria for estimating drug oral bioavailability,28 while more than 93%
accomplish Veber et al. rule.29 More than 99% of the data set also
accomplishes more general rules for evaluating drug-likeness ex-
tracted from several recent publications30–32: 100 6molecular
weight 6 800 g mol�1; logP 6 7; number of H bond acceptors
610; number of H bond donors 65; rotatable bonds 615; halogen



N
HN

N

O

COOH

CH3
CH3

CH3

H
N

COOH
CF3

F O

N

O

O

N O

CH NH

N
N

O

F

F

N
N S

N

O

F

Cl
S

OCH3

O

N

H
N

N

NH2N

O

H
N

H
N COOH

O COOH

O

HO

O

OH

N
N
CH3

Cl

H3C

H
N

O

O
H3C

CH3

CH3

OO2N
N N

O

O HN

N N

N
O

H2N

O

H OH

HO
O

OH

OH
HO

O

HO

OH

O

HO

O

NH2

H2N
OH

O

P
O

OH
OH

H
NHOOC

OCH3

O
OH

OH N

OH
O

F
Cl

NH

H
NO O

OH3C

N N

N
CH3

O

ON
H3C

CH3

OH

O

HN
N NH2

O
O

O

HO

O
N

CH3

CH3
OH

H

H H

S NH

O O

N
H

F3C

H2N S
O O

OH

HO

O NH2

O

HO CH3
OH

O

NHHO N

NHI
O

O
O

HO

OH

N
O

OH

H3C

N

COOH

HN

N CH3

O

CH3

CH3
N

COOH

HN

N CH3

O

CH3

CH3

H3C

O

H

H CH3

O

CH3

98 99 100 101

102 103 104

105 106 107 108 109

110 111 112 113

114 115 116 117

118 119 120 121 122

123 124 125 126

Figure 2. Molecular structures for the test set compounds (N = 48).
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atoms 67; alkyl chains 6 (CH2)6CH3; no perfluorinated chains:
CF2CF2CF3; no big size ring with more than seven members; no
presence of other atoms than C, O, N, S, P, F, Cl, Br, I, Na, K, Mg,
Ca or Li and; presence of at least one N or O atom. Moreover, note
that low molecular weight compounds are not over-represented in
this molecular set. The structural diversity of the training set was
assessed through calculation of the average Tanimoto intermolec-
ular distances (based on atom pairs) for all the possible pairs of
structures that could be derived from the training set. For this pur-
pose, we used de PowerMV software provided by the National
Institute of Statistical Sciences.33 According to the results, the aver-
age Tanimoto intermolecular distance for the training set is 0.781
with a SD of 0.412, which confirms the high structural diversity
of the training set. Figure 3 includes a histogram representing
the distribution of the 166 aqueous solubilities under study, which
suggests that the experimental sample is normally distributed over
more than four logarithmic units and can thus be employed in
regression analysis.



Figure 3. Normal distribution of the experimental log10Sol values under analysis
N = 166.
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2.2. Molecular descriptors

The structures of the compounds were firstly pre-optimized
with the Molecular Mechanics Force Field (MM+) procedure
included in the Hyperchem 6.03 package,34 and the resulting
geometries were further refined by means of the Semi-Empirical
Molecular Orbitals Method PM3 (Parametric Method-3) using the
Polak-Ribiere algorithm and a gradient norm limit of 0.01 kcal Å�1.

We computed 1497 molecular descriptors using the software
Dragon 5.0,35 including descriptors of all types such as Constitu-
tional, Topological, Geometrical, Charge, GETAWAY (Geometry,
Topology and Atoms-Weighted AssemblY), WHIM (Weighted
Holistic Invariant Molecular descriptors), 3D-MoRSE (3D-Molecu-
lar Representation of Structure based on Electron diffraction),
Molecular Walk Counts, BCUT descriptors, 2D-Autocorrelations,
Aromaticity Indices, Randic Molecular Profiles, Radial Distribution
Functions, Functional Groups, Atom-Centred Fragments, Empirical
and Properties.36 Furthermore, four molecular descriptors were de-
rived taking into consideration Lipinski’s rule, based on combina-
tions of the detour index dd from the Chemical Graph Theory
(calculated as the ratio between the half sum of the elements of
the Detour Matrix (DD) and molecular features related to solubility
such as the number of H donors (D), the number of H acceptors (A),
and the number of hetero-atoms (H) present in the molecular
structure).26,27,37 We also considered the square and cubic roots
of these last descriptors. Finally, five quantum-chemical descrip-
tors not provided by the program Dragon were added to the pool:
molecular dipole moments, total energies, homo–lumo energies,
and homo–lumo gap (Dhomo–lumo) calculated at the PM3 level.
The total pool of explored descriptors consisted on D = 1514
variables.

2.3. Model search

The computer system Matlab 5.0 was used in all our calcula-
tions.38 Our purpose was to search the optimal subset of d descrip-
tors from the total number of D descriptors which to accomplish
the following criterion: d� D and d with minimum standard devi-
ation S:

S ¼ 1
ðN � d� 1Þ

XN

i¼1

res2
i ð1Þ

where N is the number of molecules in the training set, and resi the
residual for molecule i (difference between the experimental and
predicted property p). More precisely, we want to obtain the global
minimum of S(d) where d is a point in a space of D!/[d!(D � d)!]



Table 3
Linear QSPR models established for the training set of aqueous solubilities (N = 97)

da Descriptors involved Rb Sc FITd Rloo
e Sloo

f Rval
g Sval

h

1 DP03 0.722 1.257 1.053 0.708 1.283 0.794 1.047
2 DP03, MLOGP 0.831 1.016 2.071 0.817 1.054 0.798 0.983
3 X1sol, RDF060u, MLOGP 0.871 0.903 2.747 0.849 0.971 0.848 0.899
4 X1sol, RDF060u, RDF020e, MLOGP 0.889 0.844 3.078 0.870 0.911 0.838 0.986
5 Sp, nR09, H3D, Mor04u, MLOGP 0.895 0.829 2.991 0.878 0.890 0.891 0.758

The best relationship found appears in bold.
a d: number of descriptors in the linear regression.
b R: correlation coefficient of the model.
c S: standard deviation of the model.
d FIT: Kubinyi function.
e Rloo: R of Leave-One-Out.
f Sloo: S of Leave-One-Out.
g Rval: R of validation test set.
h Sval: S of validation test set.

Table 4
Symbols for molecular descriptors involved in different models

Molecular descriptor Dima Type Description

DP03 3D Randic molecular profiles Molecular profile No. 3
MLOGP 1D Properties Moriguchi octanol–water partition coefficient
X1sol 2D Topological Solvation connectivity index chi-1
RDF060u 3D Radial Distribution Function Radial distribution function – 6.0/unweighted
RDF020e 3D Radial Distribution Function Radial distribution function – 2.0/weighted by atomic Sanderson electronegativities
Sp 0D Constitutional Sum of atomic polarizabilities (scaled on carbon atom)
nR09 0D Constitutional Number of nine-membered rings
H3D 3D Geometrical 3D-Harary index
Mor04u 3D 3D-MoRSE 3D-MoRSE-signal 04/unweighted

a Dim, dimensionality of the descriptor.
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ones. Usually, a full search (FS) of optimal variables is unfeasible be-
cause it requires D!/[d!(D � d)!] linear regressions. Some time ago
we proposed the Replacement Method (RM) that produces linear
QSPR-QSAR models that are quite close the FS ones with much less
computational work.20–23 This technique approaches the minimum
of S by judiciously taking into account the relative errors of the coef-
ficients of the least-squares model given by a set of d descriptors
d = {X1,X2, . . . ,Xd}. The RM gives models with better statistical
parameters than the Forward Stepwise Regression procedure and
similar ones to the more elaborated Genetic Algorithms.39,40

The Kubinyi function (FIT)41 is a statistical parameter that clo-
sely relates to the Fisher ratio (F), but avoids the main disadvan-
tage of the latter that is too sensitive to changes in small d
values and poorly sensitive to changes in large d values. The FIT(d)
criterion has a low sensitivity to changes in small d values and a
substantially increasing sensitivity for large d values. The greater
the FIT value the better the linear equation. It is given by the fol-
lowing equation, where R(d) is the correlation coefficient for a
model with d descriptors.

FIT ¼ R2ðN � d� 1Þ
ðN þ d2Þð1� R2Þ

ð2Þ
2.4. Model internal validation

The theoretical ‘internal validation’ practiced over each devel-
oped linear model is based on the Leave-More-Out Cross-Valida-
tion procedure (l-n%-o),42 with n% representing the percentage of
molecules removed from the training set. The number of cases
for random data removal analyzed in every l-n%-o is of 5,000,000.
The percentage n% depends simultaneously upon the number of
compounds (N), as one cannot remove many molecules from the
training set if a small sample is analyzed as the normality condi-
tion of the fitted data has to be obeyed, and upon their structural
diversity, since if the molecules are structurally very different,
more compounds would have to be removed from the set for
checking the predictive performance of the model. We choose
the value of n% = 10% (10 compounds) in Cross-Validation in order
to properly validate the QSAR equations.

In addition, we applied the y-randomization technique43 with
the purpose of demonstrating that the model established does
not result from happenstance but involves a real structure–prop-
erty relationship. This method consists on scrambling the experi-
mental property of each compound in such a way that it does
not correspond to the respective compound. After analyzing
5,000,000 cases of y-randomization for each developed QSPR, the
smallest S value obtained using this procedure turned out to be a
poorer value when compared to the one found when considering
the true calibration.
2.5. Orthogonalization procedure

We employ the orthogonalization procedure introduced several
years ago by Randic44,45 as a way of improving the statistical inter-
pretation of the model built by interrelated indices. From our point
of view, the co-linearity of the molecular descriptors should be as
low as possible, because the interrelatedness among the different
descriptors can lead to highly unstable regression coefficients,
which makes it impossible to know the relative importance of an
index and underestimates the utility of the regression coefficients
of the model. The crucial step of the orthogonalization process is
the choice of an appropriate order of orthogonalization, which in
present analysis is the order that maximizes the correlation be-
tween each orthogonal descriptor and the observed aqueous solu-
bilities. From now on, an orthogonalized descriptor will be
represented with notation X.
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3. Results and discussion

The application of the RM method on the training set of 97 het-
erogeneous drugs leads to the best 1–5 variables linear regression
models listed in Table 3, while the specific details for all the molec-
ular descriptors reported in this article are provided in Table 4. A
close inspection of Table 3 reveals that the best linear QSPR equa-
tion found for modeling the aqueous solubility of the organic com-
pounds includes the following satisfactory three molecular
descriptors relationship:

log10Sol ¼ � 0:435ð�0:03Þ �XðX1solÞ � 0:503ð�0:06Þ �XðMLOGPÞ
þ 0:0767ð�0:01Þ �XðRDF060uÞ þ 2:970ð�0:3Þ ð3Þ
Figure 4. (a) Predicted (Eq. 3) versus experimental log10Sol for the training and test
sets. (b) Dispersion plot of the residuals for the training and test sets according to
Eq. 3.
Ntrain = 97, Ntrain/d = 32.333, R = 0.871, S = 0.903, FIT = 2.747
Rloo = 0.849, Sloo = 0.971, Rl�10%�o = 0.809, Sl�10%�o = 1.090,
p < 10�4

Nval = 48, Rval = 0.848, Sval = 0.899

Here, the absolute errors of the regression coefficients are pro-
vided in parentheses, p is the significance of the model, and loo
sub-index stands for the Leave-One-Out Cross-Validation tech-
nique.42 The QSPR derived does not incorporate redundant struc-
tural information, as it involves orthogonal descriptors.
Furthermore, by means of a proper standardization39 of such
orthogonal variables it is feasible to assign a greater importance
to those molecular descriptors that exhibit larger absolute stan-
dardized coefficients (st.coeff.). The order of appearance of each
descriptor within the QSPR of Eq. 3 corresponds to its order of
importance in the established relationship, and each variable in-
cludes the following standardized coefficients: X(X1sol): 0.71,
X(MLOGP): 0.42, and X(RDF060u): 0.28.

Table 2 also includes the predicted residuals as obtained via Eq.
(3) for the training and test sets, while the plot of predicted versus
experimental aqueous solubilities shown in Figure 4a suggests that
the 97 training and 48 test set val compounds follow a straight line.
The behavior of the plotted residuals in terms of the predictions in
Figure 4b leads to a normal distribution. This figure includes two
calibration outliers with a residual exceeding the value
2S = 1.806: compounds 15 (Acibenzolar-S-Methyl, 1.902) and
91(Etofenprox, �2.545), while none of the training compounds ex-
ceed the value 3S = 2.709; the presence of these outliers may be
attributed exclusively to be a pure consequence of the limited
number of structural descriptors participating in Eq. 3, since this
model have a high ratio of number of observations to number of
parameters (N/d = 32.333). The predictive power of the linear mod-
el is satisfactory as revealed by its stability upon the inclusion or
exclusion of compounds, as measured by the loo parameters
Rloo = 0.849 and Sloo = 0.971, and by the more severe test of
higher percentage of compounds exclusion Rl�10%�o = 0.809 and
Sl�10% �o = 1.090. These results are in the range of a validated mod-
el: Rl�n%�o must be greater than the value of 0.50, according to the
specialized literature.46 Furthermore, the predictive capability of
the so-established equation is demonstrated by its performance
in the test set val, leading to Rval = 0.848 and Sval = 0.899. Finally,
after analyzing 5,000,000 cases fory-randomization, the smallest
S value obtained using this procedure was 1.650, a poorer value
when compared to the one found considering the true calibration
(S 0.903). In this way, the robustness of the model could be
assessed, showing that the calibration was not a fortuitous correla-
tion and therefore results in a structure–activity relationship.

The three structural descriptors mentioned in Eq. 3 quantify dif-
ferent aspects of the molecular geometry and can be classified as
follows: (i) a topological 2D-descriptor: X1sol, the solvation con-
nectivity index chi-1, (ii) a Property 1D-descriptor: MLOGP, the
Moriguchi octanol–water partition coefficient; and (iii) a Radial
Distribution Function 3D-descriptor: RDF060u, the radial distribu-
tion function �6.0/unweighted. As can be appreciated, different
definitions of descriptors are needed to correctly represent the
structures for the drug-like heterogeneous compounds. Figure 5 in-
cludes the histograms of the 166 organic compounds for each of
the three descriptors appearing in the optimal QSPR equation
found.

The most important structural factor of the model, the bi-
dimensional descriptor X1sol, was proposed by Zefirov and Palyu-
lin47 in 1991 in order to treat the enthalpies of non-specific solva-
tion. For instance, the solvation enthalpy of propane (CH3CH2CH3)
and di-methyl-mercury (CH3HgCH3) differs enormously, but both
of these molecules are represented by the same hydrogen depleted
graph, and, hence, have the identical topological indices which do
not take into account atom types. The solvation index was created
exactly to differentiate such cases, having the following general
formula when calculated for hydrogen- and fluorine-depleted
molecular graphs:

Xmsol ¼ ð1=2mþ1Þ
X ZiZj . . . Zk

ðdidj . . . dkÞ1=2 ð4Þ

where m is the order of index; summation is over all sub-graphs of
order m; didj . . .dk are connectivities of vertexes of sub-graph; and



Figure 5. Histograms for the molecular descriptors appearing in the QSPR solubility
model (N = 166).
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ZiZj . . .Zk are coefficients characterizing the atom size, which coin-
cide to the number of the period in the Periodic Table. The term
1/2m+1 just normalizes values of Xmsol to provide their coincidence
with the connectivity index Xm for the elements of the second row.
The second important descriptor involved in Eq. 3 corresponds to
the Moriguchi octanol–water partition coefficient,48 revealing that
a compound’s hydrofobicity plays a crucial role in explaining the
aqueous solubility data. Finally, the contribution of a 3D-Radial Dis-
tribution Function49 helps to improve the predictive power of the
QSPR. Such a kind of molecular descriptor defined for an ensemble
of atoms may be interpreted as the probability distribution of find-
ing an atom in a spherical volume of certain radius, incorporating
different types of atomic properties in order to differentiate the nat-
ure and contribution of atoms to the property being modeled. For
the case of RDF060u, the sphere radius is of 6.0 Å and no atomic
property is employed, thus characterizing the molecular size.

It is feasible to discuss the numerical effect of the optimal sub-
set of structural descriptors selected in Eq. 3 on the aqueous solu-
bility predictions. Since the orthogonal descriptor X(X1sol) is
numerically positive for all the structures under study, its contri-
bution to log10Sol results in a negative quantity, according to the
regression coefficient (�0.435). This causes that chemical com-
pounds displaying greater values of X(X1sol) would tend to exhibit
lower predicted values of aqueous solubilities. For the case of the
orthogonal variable X(MLOGP), drugs manifesting higher positive
values of this descriptor would tend to manifest their preference
to the octanol lipophilic phase rather than to the water phase,
and according to the sign of the regression coefficient in Eq. 3
(�0.503) would lead to a lower prediction of the aqueous solubil-
ities. Finally, the tri-dimensional descriptor X(RDF060u) would
tend to lead to higher predictions of log10Sol whenever it presents
higher numerical values.

Applying now the designed QSPR model of Eq. 3 to the classical
test set 21, whose data are considered ‘unknown’ and that do not
participate during the model development (as is the case of test
set val), leads to a square root mean quadratic residual (rms) of
1.202. The statistical quality achieved on this test set is comparable
to that obtained by the previously reported models for aqueous
solubilities in Table 1, and the main advantage here is that only
three molecular descriptors are employed to model the physical
property and thus leads to a favorable ratio N/d = 7. This equation
results in a superior predictive quality than that obtained by the
GCM of Klopman (rms = 1.213) involving 34 parameters,18 and also
outperforms the MLR of Yan (rms = 1.286) using 40 parameters.50

4. Conclusions

The chemical information encoded by three theoretical molecu-
lar descriptors of the one-, two-, and three-types participating in a
linear QSPR model enabled to explain the variation of the experi-
mental aqueous solubilities in a satisfactory extent, and allowed
a proper characterization of structurally heterogeneous drug-like
organic compounds from both the training and test sets. The QSPR
designed involved molecular descriptors that have a quite direct
interpretation, and this relationship proved to have general appli-
cability. The statistical parameters of the proposed model compare
fairly well with others published previously based on Group Con-
tribution methods. Furthermore, among the different linear regres-
sion based-algorithms, the Replacement Method continues
demonstrating to be an efficient technique for the search of a re-
duced set of numerical variables from a huge number of them. This
has application for the analysis of any physicochemical, biological,
or pharmacological property of interest.
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