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Abstract - Several recombination operators have been
proposed in evolutionary computation. Standard pro-
cedures include one-point, two-point, and uniform
crossover. Little attention, however, has been given to
a recombination operator that preceded each of these,
which was offered in 1957 by Alex Fraser. Fraser’s
recombination assigns a variable probability for cross-
ing over between two solutions at each locus. This
operator subsumes the three standard forms of cross-
over. Experiments are conducted on a set of 10 test
functions where individuals in a population are tagged
to recombine in one of the four above-mentioned ways.
Attention is focused on the relative performance of
the various methods of recombination. Uniform cross-
over is seen to offer the greatest utility on the test func-
tions, and Fraser’s recombination repeatedly outper-
forms one-point and two-point crossover. Several is-
sues of the experimental design are discussed.

1 Introduction

Fraser (1957a) offered one of the earliest computer simu-
lations of genetic systems. Simulations were conducted
using diploid “organisms” represented by binary strings.
(Let the length of the string be described by n.) Each bit
in a string corresponded to an “allele” (dominant or re-
cessive) and the “phenotype” (expressed behavior) of each
string was determined by its “genetic” composition.
Fraser suggested a recombination operator that was a
variant of what would now be described as n-point cross-
over. When two strings were “mated,” each position along
each string was assigned a probability for crossing over
to the other string. Interactions between genes could be
addressed by forming linkage groups between alleles
based on the probabilities of crossing over at each locus.
Figure 1 illustrates Fraser’s recombination. Fraser’s pro-
cedure included a population of P parents that gave rise
to P′  offspring via recombination. Selection then elimi-
nated all but P of the offspring, and all of the parents.
(Today, this is referred to as (µ,λ) selection, following

the efforts of Rechenberg and Schwefel, see Bäck et al.,
1997.)

Fraser and colleagues studied this general system for
over a decade and published a series of papers (Fraser,
1957b; Barker, 1958; Fraser, 1960; and many others),
culminating in the book Computer Models in Genetics
(Fraser and Burnell, 1970). Looking back to these publi-
cations, Fraser’s algorithm was essentially equivalent to
what was later termed a genetic algorithm, following
Holland (1975), even including the inversion operator
which was introduced in Fraser (1968). Despite the ob-
vious similarities, comparatively little effort has been
made with crossover operators that involve probabilities
of alternating between solutions, let alone methods that
allow such probabilities to evolve as a function of the
evolutionary search. One-point and two-point crossover,
two common forms (Bäck et al., 1997), choose crossing
points uniformly at random. Uniform crossover (Reed et
al., 1967; Syswerda, 1989) applies a fixed probability,
typically 0.5, to crossing between parents at each locus.
Spears and De Jong (1991) suggested that the probabil-
ity of crossing under uniform crossover could be set to
values other than 0.5 (i.e., a fixed probability p ≠ 0.5).
They provided analysis comparing the disruptiveness, in
terms of schema processing, of such a parameterized
uniform crossover to one- and two-point crossover.
Fraser’s method of recombination subsumes all of the
above methods: By setting the probabilities of crossing
over at each locus, the technique can implement one-
point, two-point, uniform, or parameterized uniform
crossover. The current work describes a series of experi-
ments performed on standard test functions that com-
pares the efficiency of one-point, two-point, and uniform
crossover to Fraser’s recombination. A procedure is of-
fered to self-adapt the probabilities of crossing over at
each locus for individuals that undergo Fraser’s recom-
bination. The results indicate an advantage for uniform
crossover, but also indicate that Fraser’s recombination
outperformed one-point and two-point crossover consis-
tently.



2 Method and Results

Experiments were conducted using the first 10 functions
offered in Yao et al. (1999). These are shown in Table I.
The objective was to find the minimum of each function.
In each case, a population of 2000 parent solutions was
sampled uniformly at random from the bounding area
associated with each function. Each solution was ran-
domly assigned a tag that designated the type of recom-
bination that it could perform: one-point crossover, two-
point crossover, uniform crossover (with a parameter p
= 0.5), or Fraser’s recombination. Each solution that was
tagged with Fraser’s recombination also carried an addi-
tional vector of probabilities for switching between itself
and another solution at each locus when mating. The
values in this vector were sampled uniformly at random
over [0, 1]. Evolution was conducted over 50 genera-
tions where each solution mated with another solution
of its same type, chosen at random from the population.
If no other solution of the same type could be found in
100 attempts, the solution served as its own mate. Each
mating generated a single solution. For solutions that
were tagged with Fraser’s recombination, each element
of the associated probability vector for the new offspring
was created by copying the first parent’s probability vec-
tor. All individuals that were tagged with Fraser’s re-
combination were then subjected to having the elements
in their probability vector modified by:

p′i = pi exp(N(0,1))

where p
i
 is the ith component of the vector of probabili-

ties, and N(0,1) is a standard Gaussian random variable,
this following a common form of mutation applied in
self-adaptive evolutionary algorithms. If the value of p′i
was lower than 0.0 or greater than 1.0, it was reset to the
bound it exceeded.

After each parent in turn participated in generating an
offspring, all 4000 individuals competed in a tournament
for survival. Each individual was paired against 10 ran-
domly chosen opponents from the population: if the (er-
ror) score of the individual was less than or equal to its

opponent, it received a “win.” Those solutions with the
greatest number of wins were selected to be parents of
the next generation.

After the 50th generation, the population was assessed
to determine the proportion of each type of tag on the
surviving individuals. In the case where no single tag
type had completely dominated the population, the trial
was recorded as “inconclusive.” A series of 100 inde-
pendent trials was conducted on each function. In es-
sence, each trial was a “race” between the various forms
of crossover to determine which could locate solutions
that came to dominate the population.

The results are shown in Table II. Uniform crossover
dominated the population in the vast majority of cases
across all functions. All results are statistically signifi-
cant using a chi-square test (P < 0.01) in favor of uni-
form crossover, with the exception of function 3, for which
the results are statistically significant in favor of one-
point crossover. None of the trials with function 7 con-
verged to a single tag type in 50 generations. Each trial
was examined and it was found that of the 100 trials, 17
were dominated by one-point crossover, 20 were domi-
nated by two-point crossover, 39 were dominated by uni-
form crossover, and 24 were dominated by Fraser’s re-
combination. Interestingly, with the exceptions of func-
tions 3 and 5, Fraser’s recombination dominated the
population more often than either one-point or two-point
crossover. Further independent experimentation will be
required to determine the statistical significance of that
relationship.

Figure 2 shows the results of a trial on function 7 where
the number of individuals of each tag type are plotted as
a function of the generation number. The most common
occurrence was for uniform crossover to rapidly increase
and swamp out the other forms of recombination. In this
case, however, uniform crossover was surpassed by
Fraser’s recombination at generation 14. This apparently
came at the expense of one-point crossover, which suf-
fered a steep reduction in its representation in the popu-
lation. Near the end of the 50 generations, uniform cross-
over was again gaining representation and it is unclear
what the final converged population would have com-

[x1   x2   ...   xn]

[p 1   p 2   ...   p n]{ Genet ic  Composi t ion
Crossover  Vector

Indiv idual

Figure 1.  In Fraser’s recombination, each individual in the population is represented by a vector x of genes with an
associated crossover vector p that indicates the probability of switching over to the other parent. Each locus is consid-
ered in turn from 1 to n. A sequence of small-valued entries (i.e., close to zero) in the vector p indicates a linked group
of genes because it is unlikely that recombination will disrupt that group.



prised. Figure 3 shows a trial on function 7 where one-
point crossover increased its representation in the popu-
lation after an initial slow beginning.

3 Discussion

For the problems studied, the relative performance of-
fered by the respective variation operators suggests that
maintaining building blocks of linked elements within
solutions may not be particularly important. (Several of
the test problems are known to have independent com-
ponents.) Only in one case did one-point crossover come
to dominate the population with the greatest frequency;
two-point crossover never dominated the population with
the greatest frequency. In contrast, uniform crossover and
Fraser’s recombination, both of which are more prone to
disrupt linkages between elements than are one- or two-
point crossover, offered a more effective search by locat-
ing solutions with improved performance that overtook
the population. Further investigation will be taken to
examine if the evolved probability vectors associated with
Fraser’s recombination ever converged to values that
would suggest the discovery of tightly linked elements
(e.g., if the probability vector for a solution that was
tagged with Fraser’s recombination was [0 0 0 0 1 1 1 0
0 0], that would indicate two sets of tightly linked ele-
ments).

The use of a lognormal perturbation on the probabili-
ties in the vector of elements controlling Fraser’s recom-
bination follows traditional methods of self-adaptation;
however, no scaling factor was applied to this perturba-
tion. One possibility for examining the efficacy of Fraser’s
recombination is to use the scaling factor exp(τN(0,1)),

where τ = (2n)−0.5 (see Bäck et al., 1997) or perhaps other
values. The sensitivity of the procedure remains to be
determined.

When taken across all possible problems, the no free
lunch theorems (Wolpert and Macready, 1997; English
1996; and others) mandate that none of the crossover
operators tested here will be advantageous in general.
Fraser’s recombination, however, offers a versatility not
found in the standard versions of crossover. It may be
that this versatility yields a robustness across a range of
problems that would not be found with the standard one-
point, two-point, or uniform crossover operators. Dis-
covering such problems remains for future investigation.

The choice of executing each of the trials for 50 gen-
erations was arbitrary, but served as a useful termination
point in 9 of the 10 cases. For function 7, however, evalu-
ating 100,000 solutions was insufficient. This raises the
interesting possibility that the utility of different opera-
tors may cycle or present nonstationary patterns as a func-
tion of time and races such as those conducted here may,
in fact, never converge to a single type of variation op-
erator. Furthermore, it is interesting to consider the pos-
sibility for mutating the tag type, thereby re-entering dif-
ferent forms of crossover even after they have gone “ex-
tinct.” These possibilities are being examined currently.
It would also be interesting to examine the quality of
evolved solutions under different forms of recombina-
tion, including Fraser’s recombination, or in the presense
of mutation or other variation operators.

The authors hope that the preliminary experiments
offered here serve to increase interest in applying Fraser’s
recombination to other interesting problems in diverse
areas.
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Table I. The 10 functions used for the experiments conducted here, taken from Yao et al. (1999). The ranges for
each function are [−100, 100]n , [−10, 10]n, [−100, 100]n, [−100, 100]n, [−30, 30]n, [−100, 100]n, [−1.28, 1.28]n,
[−500, 500]n, [−5.12, 5.12]n, and [−32, 32]n, respectively.
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Figure 2. The results of a trial on function 7 where the number of individuals of each tag type is plotted as a function
of the generation number. Uniform crossover was surpassed by Fraser’s recombination at generation 14. As Fraser’s
recombination increased, one-point crossover decreased, indicating its ineffectiveness at that point in time. After
generation 30, uniform crossover was once again increasing its representation.

Table II. The tabulated results from 100 trials on each of the 10 functions. The entries in the table indicate the
number of times that the population was completely taken over by a particular type of crossover operator. If the
population did not converge to a single type within the maximum of 50 generations, the results were tabulated as
“inconclusive.”

Function 1-Point 2-Point Uniform Fraser’s Inconclusive
     1                    2                   11                     60                     25                            2
     2                    0                   13                     62                     23                            1
     3                   64                   11                      0                      2                           23
     4                    3                   18                     48                     21                           10
     5                    1                   17                     61                     13                            8
     6                    0                    5                     66                     20                            9
     7                    0                    0                      0                      0                          100
     8                    0                    9                     64                     26                            1
     9                    1                   11                     61                     27                            0
    10                    2                   11                     61                     24                            2
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Figure 3. A trial on function 7 where one-point crossover increased its representation in the population after an initial
slow beginning. This was an unusual circumstance. In the vast majority of cases, one-point and two-point crossover
did not compare well with uniform crossover or Fraser’s recombination.
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