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FRASER, BURNELL and MILLER (1966) and FRASER and BURNELL (1967) have 
used computer simulation to examine the factors affecting the establishment of 
inversion polymorphism in the following model: A genetic system of n loci, with 
two alleles per locus, acting additively on a primary scale of phenotype (see 
WRIGHT 1935; FRASER 1960; LEWONTIN 1965) ; normalizing selection acting on 
the primary phenotype specifies the fitness. Two models of selection have been 
introduced, symmetric double truncation (see FRASER 1960; LEWONTIN 1965 ) , 
and a generalization of WRIGHT’S “squared deviations from an optimum” model. 

A P  Fitness = 1 - 1 - - 1 n l  
where A is the phenotype on the primary scale if alleles have effects of 0 and 1. 
The value of j3 specifies the intensity of normalizing selection; for /3 = 2.0, the 
model becomes WRIGHT’S squared deviations model. Figure 1 shows the relation- 
ship of fitness to the primary scale for a range of values of P. 

The term, “potency” is useful in discussion of this model. The potency is the 
allelic sum, which has the range 0-2n for zygotes, and 0-n for gametes. The 
model we have used includes variation of the degree of recombination ( r )  be- 
tween adjacent loci, from 0.5 (independence) to zero, with the restriction that for 
I < 0.5, then n loci were equally spaced along a single chromosome. Conse- 
quently, the recombinational length of a chromosome is ( n  - 1 ) r.  

I 

FIGURE 1.-The relationship of fitness to 
zygotic potency for  a range of values of p: 
showing how the intensity of normalizing se- 
lection decreases with increase of p.  
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The initial populations were of N parents, in which equal allelic frequencies 
were specified (qi = 0.5), at gametic equilibrium, or at some degree of potency 
disequilibrium. (The latter is defined by FRASER and BURNELL 1967, and dis- 
cussed by FRASER 1967). 

The effects of normalizing selection were first considered by WRIGHT (1935). 
ROBERTSON (1956) extended his analysis, concluding that this mode of selection 
would lead to homozygosis for an intermediate potency. FRASER (1960) using 
computer simulation concluded that although normalizing selection would lead 
to eventual fixation, the loss of heterozygosity would be extremely slow in large 
populations, particularly if n was not small. LEWONTIN (1964, 1965) in a de- 
terministic computer analysis of a 5-locus model showed that for r < 0.5 the rate 
of loss was considerably reduced, particularly for r < 0.10 (see also FRASER 1967). 
Ross ALLAN (personal communication) has shown that increasing the number 
of loci results in a marked decrease of the rate of loss of heterozygosity, with a 
concomitant decrease of the effect of linkage. In runs of a computer model for 
n = 30, he found that the rate of loss of heterozygosity was only slightly greater 
than that found for no selection. No difference of the rate of loss of heterozygosity 
was detected between runs made at r = 0.5 and r = 0.02. 

In  this model, for N infinite and r # 0, then normalizing selection will have 
markedly different effects dependent on the variation of gene frequencies ( ~ 9 % ) .  

Ifm, = 0, then normalizing selection will result in all gene frequencies changing 
equally until 4% takes a value such that the distribution of potencies is centered 
on the norm, e.g. for symmetric normalizing selection the gene frequencies will 
change until q,  = 0.5. The situation of uIZ = 0 is an algebraic fiction that will not 
occur in nature and that cannot be maintained indefinitely in computer analyses 
owing to round-off errors, and consequently, we will refer to this situation as a 
metastable equilibrium. If N is finite then random genetic dispersion will in- 
crease m i  and selection will then act such that heterozygosity is lost with loci be- 
coming fixed for either the 0 or l type allele such that the potency approximates 
to the norm. Even though the situation of mZ = 0 is an artificial state it is useful 
as a starting point for our analyses. 

The introduction of inversions into such populations involved replacing a speci- 
fied number of chromosomes with a defined chromosome identified such that 
recombination was completely suppressed in individuals heteromorphic for the 

inversion” chromosome. Only one type of inversion was introduced into any 
particular population. Our previous studies (FRASER, BURNELL and MILLER 1966; 
FRASER and BURNELL 1967) have shown that the probability of establishing a 
stable inversion polymorphism is markedly dependent on the initial frequency of 
the inversion, particularly where N is small, or where the potency of the inver- 
sion markedly deviates from the balanced state, i.e. where the potency of the in- 
version deviates from n/2. If the potency of the inversion equals 4 2 ,  then the 
population becomes fixed for the inversion. Decrease of the rate of recombination 
( r )  and increase of N and p, all decrease the probability of establishing inversion 
polymorphism. Increasing the number of loci increases the probability of estab- 
lishing inversion polymorphism to a degree that there is a real probability of es- 

( 6 .  



MODELS OF INVERSION POLYMORPHISM 269 

tablishing stable polymorphism for inversions at frequencies of 1/ ( 2 N ) ,  i.e. mu- 
tational frequencies. Gametic disequilibrium has been shown to have a marked 
effect with relatively small amounts of repulsion disequilibrium resulting in a 
marked decrease of the probability of establishing stable polymorphism. 

The effect of normalizing selection on this model of inversion polymorphism 
can be represented in the following form. 

Let the array of frequencies of normal chromosomes be 
{gz} f o r i = O ,  . . . ,  n 

where g ,  is the frequency of chromosomes having a potency of i. Let qr be the 
frequency of an inversion chromosome whose potency is Z such that 

q1+ g ,  = 1.0. 
The zygotic frequencies will then be 

q'[ : 2qr {gz} : {g,gj} for i = O , .  . . , n 
i = 0 , .  . . , n. 

The fitness of a particular zygote is given by 

Fitness=l - 11 -- 
n 1  

where P is the zygote's potency. 
The survival frequencies of the various zygotic classes will then be given by 

q " ( l - ,  I l--1 2 I l P )  

2qr {gL(1  - I , 1 - - - - ,  1 11 

igtgi(1 - I ~ 1 - i+i I P ) }  

Inversion homozygotes 

Inversion heterozygotes 
for i = 0 , . . . . , n 

Normal homozygotes 
f o r i = O , .  . . , n ;  j = O , .  . . , n .  

n 

n 

n 

A stable inversion polymorphism can occur, under symmetric normalizing se- 
lection, at qr = 0.5. The inversion chromosomes will be balanced against an array 
of normal chromosomes which will reduce in the case of no recombination to 
{ g l }  

This reduction will not proceed to this limit if r # 0. In this case the array of 
normal chromosomes will have a mean potency of n - I ,  with variation around 
this mean determined by the amount of recombination. For simplicity we will 
consider the situation for I = 0, and Z = ( n / 2 )  - 1. Then, at balanced equilibrium 
the array of frequencies of normal chromosomes reduces to g(n / z  +, ). 

for i = n - 1. 

The population fitness at this point of balanced equilibrium will then be 

The model is symmetric allowing the expression to be reduced to 

The segregation load at balanced equilibrium for the inversion is then 
Y2 (2 /n) f l .  
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A similar argument can be made for the genetic structure of the population in the 
absence of the inversion. 

If r = 0, then the population will be modified by normalizing selection to the 
array of frequencies of normal chromosomes being reduced to 

gn/z = 1.0; zzj = 1.0. 
If r # 0, then W will be less than 1 by an amount dependent on recombination 

and segregation extending the array of frequencies. Suppose the population is at 
the metastable equilibrium of q1 = 0.5, and that the array of frequencies of nor- 
mal chromosomes is then {gp’}, the population fitness will then be 

i+i Ip, = xgz g n - i  + xgl. gj (1 - 1 1 - 7 
% + - I  

=l-xgzgj i i - y  i+i , Ip . 
a Zn-1 

The recombination load at the metastable equilibrium is then given by 

I’ i f n - j  
The end points of selection in this model are 

(a) q,= 1.0 

LEWONTIN (1965) and FRASER (1967) have discussed some of the complexities 

i+i 
of (d) above, showing that 

Egagi I 1 -,n l”f[Dt,l, 
i fn- i  

where [Dij] is the matrix of coefficients of gametic disequilibrium. 
The development of a stable inversion polymorphism will be dependent in a 

rather complicated way on the values of p, r, and the potency of the inversions. 
It should be possible, but difficult, to expand this sketchy treatment to allow a full 
appreciation of the model, but in the absence of such an expansion it has been 
possible to establish some of the limits to the validity of this model of inversion 
polymorphism using computer simulation. 

WRIGHT (personal communication) has raised the objection that the intensities 
of selection studied in this model ( p  < 0.2) would be improbable in nature. An- 
other objection is that the restriction of population size to the range of 64-1024 
parents introduced another artificiality. We have attempted to examine the 
validity of these objections in two ways. In one we have made use of a computer 
program (GSD-4) based on the recurrence expression introduced by LEWONTIN 
(i964), modified to the /? form of selection, and to allow inclusion of inversions. 



MODELS O F  INVERSION POLYMORPHISM 271 

The GSD-4 program, as are all programs of this type, is subject to round-off 
errors, and it is limited to n < 8. It  does, however, allow us to examine this model 
of normalizing selection in the absence of the random genetic dispersion conse- 
quent from finite population size. The other way we have examined these objec- 
tions is to use the GSD-2 computer simulation program to examine the effect of 
a wide range of values of p. 

A series of runs were made using the GSD-4 program for n = 6, qi = 0.5, 
Dij = 0, with an inversion of potency of 2, introduced at an initial frequency of 
qr. A series of values of j3 and T were examined. The introduction of the inversion 
into the population disturbs the metastable equilibrium, if the inversion is intro- 
duced at any frequency other than a critical frequency (C). If 1.0 > 41 > C then 
the genetic structure of the population changes to a decreased frequency of the 
inversion, followed by an increase to the stable frequency of 0.5. The array of 
normal chromosomes, {g i } ,  reduces to {g,-I}. If 9, < C, the frequency of inversion 
decreases to its eventual loss from the population. These changes are illustrated 
in Figure 2, for runs made with ,8 = 0.2, r = 0.0156, (2-6). Recombination rates 
will be given on a scale of powers of 2, since this gives a better scale for demon- 

1 .o 

B = 0.2 

C= c 

IO 15 20 25 Y) 35 do 

GENERATIONS 

FIGURE 2.-Data obtained from runs of the GSD-4 deterministic computer program for a 
6-locus model, over a range of values of the initial frequency of the inversion, showing the mode 
of evaluation of C for a particular set of parameters. 
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strating the effects of reduced rates of recombination than the more usual scale of 
percentage recombination. 

The evaluation of C for particular values of ,8 and P was accomplished by run- 
ning the GSD-4 program for a range of values of qf, determining whether the 
change of qr between the 29th and 30th generations of selection was positive or 
negative. (This period was selected because it exceeds the interval of initial de- 
crease of q I )  . The results (Figure 3 )  show that increase of ,G changes the relation- 
ship of C to P through a family of curves. For p small (0.005,0.01), at which the 
intensity of selection approximates closely to the extreme intensity of symmetric 
double truncation, the value of C increases with decrease of P to a limit. These 
estimates of C can be compared to the values found by FRASER, BURNELL and 
MILLER (1967) for double truncation selection in a 6-locus model, with I =  

0.25 for N = 1024. They found a marked frequency dependence of the establish- 
ment of stable polymorphism, having a well defined inflexion at qr 1 0.12, for ,6 
small and r = 0.25. The equivalent value of C for P 0.25, p = 0.05-0.01 from 
Figure 3 is .136-.142. The comparison of N finite (1024) to N infinite does not 
indicate any marked change of C. 

Increase of ,8 from 0.01 to 0.1 results in the relationship of C to r showing a 
maximum at I = 2-4 (Figure 3 ) .  This can be interpreted as the lack of recombina- 
tion of the inversion conferring a maximum advantage when the recombination 
load of the genetic system is at a maximum, i.e. for P = 2-I. Such advantage de- 

RECOMBINATION BETWEEN ADJACENT LOCI (T) 

FIGURE 3.-The relationship of C to rate of recombination for a range of values of /3 (intensity 
of normalizing selection). The data are for a &locus model, with an 0412  type inversion. 
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creases, and C consequently increases as the recombination load decreases reach- 
ing a minimum when the rate of recombination is such that the normalizing se- 
lection can produce a maximum of gametic disequilibrium. Further reduction of 
recombination effectively transforms the genetic system into a multiple allelic 
system. Here, the inversion has no significant advantage from its lack of recombi- 
nation, and the value of C is determined almost solely by the potency of the in- 
version. 

The same increase of C to a maximum can be seen for greater values of p = 0.2, 
0.24. 0.25, but the maximum occurs for larger values of r as p increases (Figure 
3 ) .  An explanation in terms of the maximum gametic disequilibrium occurring 
at a particular rate of recombination needs to be modified in terms of the value 
of r at which the maximum gametic disequilibrium develops increasing with in- 
crease of ,8. The hypothesis would be that maximum gametic disequilibrium 
occurs at a higher rate of recombination as the intensity of selection is reduced. 
This hypothesis will be examined further below. 

The data obtained for p = 0.20 allow a further comparison between the de- 
terministic and simulation studies (Figure 3 ) .  FR.I\SER, BURNELL and MILLER 
(1967) examined the establishment of inversion polymorphism for q1 = 0.25, 
n = 6, N = 1024, r = 0.25, for a range of values of p. They found that the proba- 
bility of establishing stable polymorphism decreases markedly for p > 0.18. In- 
terpolation of C = 0.25 for r = 0.25 in Figure 3 gives a value of p = 0.2. Once 
again there is a reasonable agreement between the results obtained from finite 
and infinite sized populations. 

Increase of p from 0.25 to 0.30 changes the form of the relationship of C to r 
such that no intermediate maximum occurs; C decreases from a maximum at 
towards a limit reached in the range 2-* < r B (Figure 3). It is probable that 
a maximum does occur but for  a value of r > 2-l, which has no genetic meaning. 

The hypothesis that maximum gametic disequilibrium is reached at  a value of r 
that increases with increase of ,8 has been examined by making a series of runs 
of the GSD-4 program for qf = 0, for several values of p, over a range of values 
of r. The matrix of coefficients of gametic disequilibrium (corrected for gene fre- 
quency as devised by LEWONTIN (1965) was computed at the 20th generation 
of selection. FRASER (1967), LEWONTIN (1965) have discussed several features of 
the D’lj matrix. The complete data are given in Table 1. The gene frequen- 
cies are also given to show that the effect of round-off errors is restricted to the 6th 
decimal place, i.e. the metastable equilibrium is not affected to any significant 
degree. A feature of the D’%] matrix in the present model is its symmetry, e.g. 
D’,? = D’56 and it can be reduced to nine terms: D’,,, D’,,, D’,,, D‘,,, IT,,, D’,,, 
D’,,, D,,, DIG. These are plotted in Figure 4. 

The data of Figure 4 show that the relationship of D’?j to r forms a family of 
curves. The values of D’,?, D’34 become increasingly negative with decrease of r, 
reaching a maximum at about r = 2-4, and then decreasing to a limit value of ap- 
proximately - 0.2. The values of D‘,3 similarly increase to a maximum but at 
about r = 2+. The values of D’,,, D,, increase to the limit of approximately 0.2 
without passing through an intermediate maximum. The values of D’,,, D’25, D’,,, 
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TABLE 1 

Values of qi and DIij at the 20th generation of selection as specified in the tezt 

Recombination between adjacent loci 

2-1 2-2 2 - 3  2-4 2-5 2" 
r (0.05) (0.25) (0.125) (0.062) (0.031) (0.015) 

p = 0.20 
4i 

D'. . 

p = 0.24 

4i 

D'. . 
2 3  

r 

1 
2 
3 
4 
5 
6 

1.2 
2.3 
3.4 
1.3 
2.4 
1.4 
2.5 
1.5 
1.6 

p = 0.30 

r 

9i 1 
2 
3 
4 
5 
6 

1 
2 
3 
4 
5 
6 

1.2 
2.3 
3.4 

1.3 
2.4 

1.4 
2.5 
1 .5 
1.6 

.500000 .500000 .5ooOOO .500001 .500001 .500001 

.500000 .500000 .501H)OO .500001 ,500001 .500001 

.5OOOOO .500000 .500000 .500001 .500002 .500001 

.5OoooO .5ooOOO .500000 .500001 .500001 .500001 

.5OOOOO .500000 .500000 .500000 .500000 .499999 

.500000 .499997 .499996 .499995 .499995 .499996 

--.0699 -.I460 -.3046 -.3767 --.3184 -.2645 
--.0699 --.I241 -.I769 --.I957 -2028 --.2031 
--.0699 --.I255 --.2209 -.2521 -2.232 -2083 

-.0699 -.0811 -.lo84 --.I539 -.I855 -.I963 
-.0699 -.0732 --.0682 -.1248 -A591 -A789 

-.0699 --.0680 -.0825 -.1165 --.I517 --.I746 
-.0699 -.MI3 -.0552 -.0745 -.1203 -.1563 
-.0699 -.0626 -.0567 --.0731 -.1168 -.I533 
-.0699 --.0671 --.0649 -.0795 -.1175 -.I519 

2-1 
(0.05) 

2 - 2  
(0.25) 

2-3 
(0.125) 

2-4 
(.062) 

2-5 
(.031) 

2-6 
(.015) 

2-1 
(.0078) 

2-8 
(.0039) 

.500001 .500000 .500001 .500001 .500001 .500001 .500001 .5QO001 

.500001 .500000 .500001 .500001 .500001 .500001 .500001 .500001 

.500001 .500001 .500000 .500001 ,500002 .500001 ,500001 .500001 

.5OoooO .500001 .500001 .500001 .500001 .500001 .500000 .500000 
,499998 ,500000 ,500000 .500000 .500000 .499999 .499999 .499999 
,499997 .499997 .499996 .499995 ,499996 .499997 .499997 .4@9998 

--.@I 68 
--.0168 
-.0168 
-.0168 
-.0168 
-.0168 
--.016a 
-.0168 
-.016a 

-.1377 
-.I188 
-.I 194 
-.0778 
--.0707 
--.0652 
-.0594 
-.0603 
--.OM1 

-.2787 
-.I737 
-.2045 
-.IO57 
--.0865 
-.0794 
--.0562 
--.0571 
--.0643 

-.3629 --.3143 
-.I 959 --.2027 
-.2444 --.2214 
-.I515 -.1841 
-.I231 --.I581 
-.1138 --.I501 
-.a747 --.I198 
-.0731 -,I159 
--.0794 -. 1 166 

-2631 
-.2030 
-.2077 
-.1956 
-. 1784 
-. 1738 
-. 1559 
-. 1 526 
-.I511 

-2327 
-.2Q19 
-9028 
-.1989 
-.I891 
-.1867 

--.I751 
-.1771 

-.1736 

--.2165 
-.2011 
--.2011 
-.I997 
-. 1 94.5 

--.I883 
-.1933 

-.1872 
-.1863 

2-1 2-2 2 - 3  2-4 2-5 2" 2-7 2-8 
(0.05) (0.25) (0.125) (.ffi2) (.031) (.015) (.0078) (.0039) 

.500000 .500000 .5oooO1 .5oooO1 .500001 .500001 .500001 .5OOO01 

.5OoooO .500000 .5oooO1 .5oooO1 .500001 .500001 ,500001 .500001 

.5OoooO .5ooOOO .500001 .500001 .500001 .500001 .500001 .500001 

.5OoooO .5ooOOO .500001 .500001 .500001 .500001 .500000 .500000 
500000 .500000 .500000 .500000 .500000 .499999 .499999 .4-99999 
A99997 .499998 .499996 .499995 .499995 .499996 .4Q9997 .499998 
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DILj 1.2 
2.3 
3.4 
1.3 
2.4 
1.4 
2.5 
1.5 
1.6 

--.0626 --.1274 
-.0626 -. 1 1 19 
-.0626 -.111T 
-.0626 -.0734 
-.0626 --.0672 
-.0626 -.0616 
--.0626 -.0567 
-.0626 -.0572 
-.0626 -.MO3 

--.2472 
--.I675 
-.1850 
-.1010 
-.0838 
-.0749 
-.0566 
-.0567 
--.0623 

--.3410 
--.I955 
-.2325 
-.I474 
-.I203 
-.lo95 
-.0750 
-.0728 
--.0787 

--.3077 
-.2024 
-.2183 
-.I817 
-. 1564 
-.I474 
-.I189 
-.I145 
--.I152 

-.2608 --.2317 -.2161 
-.2027 -.2018 -.2010 
--.2067 -2024 --.2010 
--.194.5 -.I983 -.I995 
-.I776 -.I887 -.I943 
-.1724 -.I860 --.I930 
-.I552 -.I767 --.1881 
-.I515 -.1744 --.I869 
-.I500 -.I728 -.I858 

D’,(, become decreasingly negative with decrease of r towards a minimum at 
F3 < r < 2-?, become increasingly negative with further decrease of I, towards 
the limit value. FRASER (1967) has shown, following LEWONTIN (1965), that the 
changes of RI with decrease of r, can be considered in terms of three types of 
systems of many loci. These are (a) “multiple allelic” which holds for r suffi- 
ciently small to reduce the system to the equivalent of a set of multiple alleles. 
The maximum negative value of [D’$,] will be reached when the frequency dis- 
tribution of gametic potencies is reduced to the central class: [000111], setting a 
limit value of 0.2 to [D’%j]; (b) “polygenic” following MATHER’S (1939, 1941) 
use of the term, describing a system of many loci whose characteristics are mark- 
edly affected by linkage. Normalizing selection of such a system will generate 
linkage disequilibrium, acting against the recombination load; (c) “multigenic” 
which term is introduced as descriptive of a system in which linkage has little 
if any role in determining the gametic disequilibrium. The data of Figure 4 can 
be interpreted as the system of six loci being multigenic for P3 < r < 2-l, poly- 
genic for 2-5 < r < 2-4 and multiple allelic for r < 2-5. We suggest that in the ab- 
sence of information about linkage it would be better to use the term “multigenic” 
rather than “polygenic” with its connotations of a linkage component. 

The data of Figure 4 demonstrate that there is no marked shift of the value of r 
at which maximum gametic disequilibrium is generated. This disproves the sug- 
gestion made above that the maximum of C occurring at larger values of r with 
increase of ,8 is due to a similar relation of the maximum of [Dt3]  to r and C. 

The results obtained from the above analysis of the 6-locus model in infinite 
populations are in fairly close agreement with the results obtained by FRASER, 
BURNELL and MILLER (1967) obtained by computer simulation of the same 
model in finite populations. The same general conclusions from their studies are 
valid for the present results; this model of inversion polymorphism cannot be 
accepted as an adequate explanation except for populations exhibiting a high de- 
gree of random genetic dispersion with a high degree of maintenance of genetic 
variability, favoring a strong genetic drift. 

FRASER and BURNELL (1967) have extended the above model of inversion poly- 
morphism to 30 loci finding that it is a valid explanation fo r  inversion poly- 
morphism in such systems. Their results were obtained with the GSD-2 simula- 
tion program with N 256. It is not practical to use a deterministic approach for 
models involving so many loci, but the agreement between the finite and de- 
terministic approaches for the six-locus model can be taken as strong support for 
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RECOYBlNATlON BETWEEN ADJACENT LOCI 

FIGURE 4.-The values of D i j  for a 6-locus model at the metastable equilibrium of q i  = 0.5, 
are shown for three intensities of normalizing selection, at the 20th generation of selection. 

the generality of results obtained by the simulation of finite populations where 
n > 6. Although, our results have shown the validity of this model if n is large, 
WRIGHT’S objection that the intensities of normalizing selection which were used 
are improbable in nature, needs to be considered. Runs have, therefore, been 
made with the GSD-2 simulation program to examine a wide range of intensities 



MODELS O F  INVERSION P O L Y M O R P H I S M  277 

of normalizing selection. The runs were made for N = 256, n = 30, r = 0.025, 
D’(] = 0 with qi = 0.5, for an inversion with a potency of 14, introduced at an 
initial frequency of 0.25. The runs were continued to the 100th generation of 
selection. Initially, 16 replicates were run for each value of p. Further sets of 16 
replicates were then made to extend the data for a wider range of values of p. 
The results from the first set of replicates are shown in Figure 5 as qr plotted 
against generation of selection. 

The results of Figure 5 show an increasing variability of q, with increase of p, 
with a strong indication that this increase reachcs a maximum at about p = 2.0. 
Runs were made to check this feature of the data, both for the values of p in Figure 
5, and for other values of p. The results are shown in Figure 6 as frequency his- 
tograms of inversion frequency at the 100th generation of selection. 

The results shown in Figure 6 are presented in full to illustrate the type of 
variability of q, found in this model. A simplified representation is given in 
Figure 7 in which the standard deviation of q1 over replicates is shown for genera- 

$=l.O 

FIGURE 5.-Inversion frequency plotted against generation of normalizing selection for the 
inversion. Sixteen replicate runs are shown for each intensity of normalizing selection. OI61 

The diagram was computer-controlled. 
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FIGURE 7.-The standard deviation over replicate runs of qr from the data of Figure 5, for the 
loth, 25th and 100th generations of selection, showing that uql tends to a maximum in the range 
of p N 1.0. 

tions 10,25 and 100. It would appear that the variability of qr increases, with in- 
crease of p, to a maximum at about p = 1.0. This is most evident at generation 
100. The results shown in Figures 6 and 7 confirm the occurrence of a maximal 
variability in the runs made with p in the range 1.0. An interpretation of this 
phenomenon can be based on genetic drift (WRIGHT 1948). With p small the 
intensity of selection is high and the change of 41 is essentially deterministic-if 
q, > C then Aqr is positive and if qr < C then Aq1 is negative. In  this model, for 
small values of p, qr is greatly in excess of C, with the result that qr increases 
rapidly towards the limit of 41 r= 0.5. For larger values of p, the situation is still 
essentially deterministic but Aqr is smaller. Further increase of p results in a 
greater reduction of the deterministic component, and also results in an increase 
of C; the situation is one of genetic drift in which the deterministic component 

FIGURE 6.-Frequency histograms of inversion frequency at the 100th generation of selection 
of a 30-locus model in which the 016114 inversion was introduced at an initial frequency of 0.25. 
Intensities of normalizing selection are given to the left. Numbers of replicate runs are given 
to the right. 
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(INTENSITY OF NORMALISING SELECTION) 

FIGURE 8.-Frequency of inversion, averaged over replicate runs, plotted against generation 
of selection, and intensity of normalizing selection. 

and the random genetic component interact, increasing uqr. Further increase of 
p reduces the deterministic component to negligible values and the situation in- 
creasingly approximates to that of no selection. The data are presented in a dif- 
ferent form in Figure 8, in which the mean iI over replicates is plotted against 
generation of selection for different values of p. 

The results in Figure 8 show that cjr increases for all values of p. It would ap- 
pear that this model of inversion polymorphism is valid for a wide range of 
values of p. An extremely interesting feature of the data is that the increase of 
qr towards the limit of 0.5 decreases with increase of p, to a minimum at about 
p = 0.6, then increases with further increase of p to a secondary maximum at 
about /3 = 0.75, thereafter decreasing with increase of p. The maximum at p = 
0.75 can be considered as due to genetic drift reaching a maximum at about this 
intensity of selection. A check of this hypothesis could be made by repeating the 
runs for a different size of population. These runs were made for qI = 0.25 and it 
will be necessary to make other runs for qr N 1/(2N) i.e. at mutational frequen- 
cies. Our data should be regarded as indicative rather than definitive. 

DISCUSSION 

There are aspects of the model which we have used that require further exami- 
nation. A major feature is the postulate of an initial state of maximum genetic 
variability i.e. qi = 0.5, Dij = 0. WRIGHT (1935), ROBERTSON (1956). FRASER 
(1960), LEWONTIN (1965) and Ross ALLAN (personal communication) have 
shown that the effect of normalizing selection on such a genetic system is to cause 
eventual fixation for a balanced homozygote ifn is even, or fixation of all but one 
locus if n is odd. The rate of decrease of genetic variability is reduced by decrease 
of I, and increase of n, but normalizing selection, as noted by ROBERTSON (1956) 
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will not increase the genetic variability. It is necessary to consider modes of se- 
lection and gene action that will result in the maintenance of genetic variability. 
There are three possible modes of selection that could be expected to maintain 
genetic variability. These are (1 ) disruptive selection with two or more norms, 
(2) cyclic or seasonal variation of the norm, and (3) random fluctuation of the 
norm. ALLAN (personal communication) has examined the effects of cyclic and 
fluctuating systems of selection, finding in finite populations ( N  = 256) that 
there is a loss of genetic variability. We have examined the effects of disruptive 
selection for two norms in the same size of population, finding that, eventually, 
the population centers on a single norm, i.e. if the two norms are considered as 
ecological niches then, eventually, the population becomes restricted to a single 
niche. It can, however, be argued that these results were obtained for single popu- 
lations, and that the separation into a number of semi-isolated populations would 
considerably change the effectiveness of such modes of selection in maintaining 
genetic variability. The maintenance of inversion polymorphism over long pe- 
riods in small, isolated laboratory cultures, and the general occurrence of genetic 
variability in such stocks is some argument for other factors than mode of selec- 
tion being predominant in the maintenance of genetic variability. LERNER (1954) 
has argued that such a factor is the occurrence of overdominance; the intrinsic 
advantage of heterozygosity. This can be introduced into the “optimum” model. 

A IP n’ Fitness= ( l -x) ( l  - 1 1--1 ) +x- 
n n 

where n‘ is the number of heterozygous loci, and x specifies the relative import- 
ance of normalizing selection and overdominance of fitness. 

WRIGHT and DOBZHANSKY (1946) showed that inversion polymorphism could 
be maintained by frequency dependent mating. EHRMAN (1966), SPIESS, LANGER 
and SPIES (1966) and KAUL and PARSONS (1965) have shown that such fre- 
quency dependent mating does occur in Drosophila pseudoobscura for  the inver- 
sion genotypes, with the low frequency genotypes being favored. It is pertinent 
to question whether such a genetic control of mating behavior is a primary or a 
secondary feature of inversion polymorphism. Our results indicate that the peri- 
odic reduction of population size, as occurs in Drosophila, would result in the loss 
of inversion polymorphism, unless normalizing selection was extremely intense. 
Consequently, it is not unreasonable to suggest that frequency dependent mating 
could evolve as a means of stabilizing inversion polymorphism. ensuring its main- 
tenance in small populations. The inclusion of terms for  overdominance, and for 
the evolution of frequency dependent mating are clearly necessary for a full con- 
sideration of the optimum model, as it applies to inversion polymorphism. 

SUMMARY 

The establishment of inversion polymorphism is considered in reference to an 
optimum model of the relationship of gene action to fitness. Previous results, 
showing by computer simulation that this model is npt sufficient for genetic sys- 
tems of six loci, have been confirmed and extended by a computer analysis using 
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a deterministic approach. The frequency dependence of establishment of poly- 
morphism has been examined for a range of intensities of selection and degrees of 
recombination. It is shown that some complexities of this frequency dependence 
are not consequent from differences in the establishment of gametic disequili- 
brium. The method of computer simulation has been extended to a 30-locus 
model, for a wide range of intensities of selection, indicating that this model is 
sufficient for inversions extending over many loci. 
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