
Applied Intelligence 12, 183–192 (2000)
c© 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

Predicting Aflatoxin Contamination in Peanuts:
A Genetic Algorithm/Neural Network Approach

C.E. HENDERSON AND W.D. POTTER
Artificial Intelligence Center, University of Georgia, USA

R.W. McCLENDON AND G. HOOGENBOOM
Biological and Agricultural Engineering, University of Georgia, USA

Abstract. Aflatoxin contamination in peanut crops is a problem of significant health and financial importance.
Predicting aflatoxin levels prior to crop harvest is useful for minimizing the impact of a contaminated crop and is
the goal of our research. Backpropagation neural networks have been used to model problems of this type, however
development of networks poses the complex problem of setting values for architectural features and backpropagation
parameters. Genetic algorithms have been used in other studies to determine parameters for backpropagation
neural networks. This paper describes the development of a genetic algorithm/backpropagation neural network
hybrid (GA/BPN) in which a genetic algorithm is used to find architectures and backpropagation parameter values
simultaneously for a backpropagation neural network that predicts aflatoxin contamination levels in peanuts based
on environmental data. Learning rate, momentum, and number of hidden nodes are the parameters that are set
by the genetic algorithm. A three-layer feed-forward network with logistic activation functions is used. Inputs to
the network are soil temperature, drought duration, crop age, and accumulated heat units. The project showed that
the GA/BPN approach automatically finds highly fit parameter sets for backpropagation neural networks for the
aflatoxin problem.

Keywords: genetic algorithm/neural network hybrid, genetic algorithms, neural networks, genetic learning,
aflatoxin prediction

Introduction

Aflatoxin contamination in peanuts is a well-known
agricultural problem of health concern [1]. This con-
cern produces financial pressures for growers, resulting
in efforts to develop methods to predict contamination
levels prior to harvest. A relationship between environ-
mental factors and aflatoxin levels has been identified
[2]. In particular, factors such as soil temperature and
drought are believed to have a strong effect on aflatoxin
levels in peanut [3]. Consequently, there is interest in
developing a tool that predicts aflatoxin levels based on
environmental data. Such a tool could be used to guide
crop management decisions and to select a harvest date
that minimizes contamination levels.

Artificial neural networks (ANNs) provide a metho-
dology for constructing predictive tools and have been
used in prior efforts for the aflatoxin prediction prob-
lem. However there are difficulties inherent in the
process of constructing ANN models. To make ac-
curate predictions, an ANN requires selecting an ap-
propriate architecture and searching for the connection
weights. The relationship between architecture and net-
work performance is poorly understood, and searching
for the best architecture is a heuristic task. This search
is often conducted by hand in a trial and error fash-
ion and can be tedious and error prone. Searching by
hand will be termed the traditional method in this paper.
The task of searching for connection weights, known as
learning or network training, is also challenging. The



184 Henderson et al.

backpropagation algorithm is an effective technique for
ANN training, but the algorithm itself requires setting
parameters such as momentum and learning rate. Thus
backpropagation creates a new problem while solving
another. A technique for algorithmically locating and
evaluating architectures and ANN parameters would
therefore be useful. Such a search will be termed an
automated method hereafter.

Genetic algorithms provide a way to search large,
poorly understood spaces, and have been used success-
fully to set ANN parameters. By linking the global
search capabilities of the genetic algorithm with the
modeling power of ANNs, a highly effective tool for
aflatoxin prediction can be constructed.

The goal of this research was to compare
the performance of an automated genetic algorithm/
backpropagation hybrid (GA/BPN) with a traditional
backpropagation ANN in predicting pre-harvest afla-
toxin contamination levels. The specific objectives
were as follows. The first objective was to develop a GA
representation to allow an automatic search for ANN
architecture and parameters using the mean squared er-
ror of the backpropagation ANN as the fitness function.
The second objective was to perform a comparison with
the simple BPN results of Henderson [4] which was a
traditional search for ANN architecture and parameters
using backpropagation.

The next section provides some background material
on genetic algorithm/neural network hybrids as well as
the aflatoxin prediction problem. The subsequent sec-
tion presents the materials and methods used in our
approach. Details on our implementation, the data col-
lection and preparation, and model development are
then presented. The results and conclusions section
contain the tables and graphs supporting our conclu-
sions, as well as a summary of the effectiveness of our
approach.

Background

Genetic algorithms (GAs) are search methods based
on the mechanics of natural selection and natural ge-
netics [5]. They are effective global search techniques
that avoid many of the shortcomings of more tradi-
tional search techniques such as hill climbing. In par-
ticular, hill climbing is highly susceptible to getting
stuck in local minima. A genetic search explores many
points in the search space simultaneously, thus blan-
keting regions and providing a mechanism for avoiding

local minima. Genetic algorithms do not rely on gra-
dient information to guide the search, but require only
a function that can assign a rough measure of merit
to a candidate solution. They have proven effective
for locating high quality solutions among large, poorly
understood search spaces. These strengths match well
with the difficulties of configuring neural networks, so
the genetic algorithm was selected to locate network
parameter values for our experiment.

There are at least three major elements of a tradi-
tional genetic algorithm: representation, operators, and
the objective function. The representation provides a
specification for storing the information that is to be
evolved toward a solution. The genetic algorithm main-
tains a pool of potential solutions, which are built ac-
cording to the choice of representation. Each of these
candidate solutions is termed a chromosome. Exam-
ples of common representations include storing chro-
mosomes as bit strings, or, alternatively, as strings of
real numbers. The sum of the genetic makeup of a
chromosome is called its genotype. This genotype de-
codes to a phenotype, which is an element of the search
space, in this case, a set of ANN parameters.

The task of choosing an appropriate representation is
specific to the particular problem being solved. Some
general considerations may be specified for the prob-
lem of evolving neural networks using genetic algo-
rithms. According to Balakrishnan and Honavar [6],
there are at least nine key factors to consider when
choosing a genetic representation for neural networks.

1. Completeness: Is the representation capable of en-
coding all phenotypes in the search space?

2. Closure: Does the representation produce only
genotypes that decode to acceptable phenotypes?

3. Compactness: How efficiently, in terms of space,
does a genotype capture the phenotype?

4. Scalability: How much must the genotype grow in
order to represent a larger phenotype?

5. Multiplicity: Do multiple genotypes decode to the
same phenotype? Does one genotype conceivably
decode to multiple phenotypes?

6. Ontogenetic Plasticity: Is the decoding of a geno-
type to a phenotype also a function of the environ-
ment? In other words, does a given genotype always
decode to the same phenotype, regardless of envi-
ronmental factors?

7. Modularity: Does the genotype encode functionally
independent neural network sub-units in a modular
way?



Predicting Aflatoxin Contamination in Peanuts 185

8. Redundancy: When sub-units of a neural network
exist that are functionally equivalent, does the geno-
type encode separately for each instance of the sub-
unit, or does it encode the sub-unit once and make
copies?

9. Complexity: What sort of effects does the repre-
sentation have on the complexity of the GA as a
whole?

Operators provide the machinery by which pools
of chromosomes are manipulated. Common operators
for a genetic algorithm include a selection scheme,
a crossover operator, and a mutation operator. The
selection scheme is a method for choosing chromo-
somes from a pool to be used as parents for a new
pool. Crossover is a mechanism for combining parent
chromosomes to produce offspring. Mutation modifies
chromosomes at random in order to produce a continual
source of genetic diversity.

The objective function is of key importance to a GA
implementation because it is the sole source of infor-
mation about the value of candidate solutions. Given a
chromosome, the objective function returns a number
indicating merit. This measure of merit is used by the
selection scheme to determine which solutions survive
and which ones perish.

Our work employs a simple GA that uses selection,
crossover, and mutation. However, these operators play
roles that are not strictly traditional, as will be discussed
in the Model Development Section. Many efforts, be-
ginning in the late 1980’s, have employed genetic al-
gorithms to evolve parameters for ANNs. Representa-
tion is an important issue for such a system and may be
generally grouped into direct and indirect encodings.
Miller et al. [7] evolved inter-node connectivity for a
feed-forward ANN with a fixed number of layers and
hidden nodes. Connectivity was represented using a
binary string in which each bit corresponded to a pair
of nodes in the network, and all possible pairs were
represented. A 1 in the chromosome indicated that a
connection was present, while a 0 meant that the node
pair was not connected. This is a paradigmatic example
of what is termed a direct encoding, which means that
there is a discrete item (a bit) in the chromosome for
each item (a connection) represented in the network.
Miller et al. [7] used a specialized crossover operator
that ensured that bits were copied in blocks, each corre-
sponding to all of the outgoing links of a single node. It
was believed that such groups of links were functional
units and that preserving them would aid convergence.

The mutation operator consisted of flipping bits accord-
ing to a probability that was set to a low value. The
selection operator used a common fitness proportionate
scheme. The fitness function decoded a chromosome
to an architecture, trained the network using backprop-
agation for a preset number of epochs, then returned
the sum of the squares of the errors on the training data
set for the last epoch. The system was tested on the
XOR problem, a real valued four-quadrant problem,
and a pattern copier that contained fewer hidden nodes
than inputs. The approach was effective, but the three
problems were each quite simple and did not provide a
full test of the computational power of the method [8].

Marti [9] used direct encoding in a novel way that
included two genetic systems. The first system, called
the inner system, was used to generate neural network
connectivity based on a representation while the outer
system evolved the representation itself. Indirect en-
codings were developed to overcome some of the short-
comings of direct encodings. Because direct encoded
chromosomes map directly to a phenotype, they grow
in size at a rate equal to that of the phenotype. This
may make direct encodings computationally imprac-
tical for large problems. Indirect encodings, on the
other hand, include small chromosomes that decode to
larger networks via sets of generative rules. Kitano
[10] provided an elegant example of an indirect repre-
sentation known as a grammatical encoding. By this
scheme, chromosomes encoded a set of grammar ex-
pansion rules. Such chromosomes were decoded by
repeatedly applying the rules until a network was pro-
duced. Fitness was deduced by decoding and training
via backpropagation, similar to Miller et al. [7], de-
scribed above. It was found that this encoding was
effective for a number of low complexity problems [8].

A recent comparison between direct and indirect en-
coding schemes may be found in Gruau et al. [11]. In
this work, a direct encoding of weights for a fixed archi-
tecture neural network was compared with an indirect
one, termed a cellular encoding, which described both
architecture and weights. An interesting facet of this
work is that networks were evolved for a fairly complex
set of engineering problems requiring that a simulated
cart, termed a pole cart system, be directed in order to
keep movable poles upright. Also, the cellular encod-
ing allowed the use of real valued weights, an ability
lacking in many prior efforts. It was found that the
cellular encoding learned more slowly, but saved a
great deal of human design effort by automatically
configuring network architectures. Dasgupta [12] used



186 Henderson et al.

genetic algorithms to evolve network architectures and
weights for a similar pole cart problem. Examinations
of strengths and weaknesses of a number of encoding
schemes may be found in Roberts and Turega [13] and
Balakrishnan and Honavar [6].

A number of efforts have evolved values for back-
propagation parameters for neural networks. Harp et al.
[14] used a genetic algorithm to set the topology and
learning rate for a backpropagation neural network. An
innovation of the approach was the inclusion of a mech-
anism by which the learning rate varied over time and
among groups of nodes. The design was found to be
effective on several simple problems, including XOR.
The primary criterion by which networks were eva-
luated was speed of convergence to an acceptable
solution.

Schaffer et al. [15] also used a genetic algorithm to
set the topology and learning parameter for a back-
propagation neural network. The search included the
momentum parameter and the range of initial weights.
Networks were trained on a 4-bit coding problem for
a maximum of 200 training epochs. It was found that
low learning rates (0.25 and 0.5) and low initial weights
ranges (−0.125 to 0.125 and 0.25 to 0.25) were most
effective.

Belew et al. [16] used genetic algorithms to choose
values for the learning rate and momentum parame-
ters of a backpropagation neural network. Successful
networks were trained using unexpectedly high learn-
ing rates, but it was concluded that this was a re-
sult of limiting training sessions to a low number of
epochs.

Chalmers [17] explored the interesting possibility of
using genetic algorithms to evolve the learning algo-
rithm. Chromosomes were decoded to produce pro-
cedures that used information such as node activation
and connection strength to modify connection weights.
A number of effective learning rules were discovered.
Chalmers [17] found that more complex rules (i.e.
those encompassing more tasks) tended to be effective
for a broader range of learning problems. It was sug-
gested that the approach might be most useful for
unusual network architectures for which effective
learning rules were not known.

There have been several efforts at the University of
Georgia that use ANNs to model the aflatoxin pre-
diction problem. Parmar et al. [18] trained three-layer
feed-forward ANNs using backpropagation. Data were
obtained and allocated to a training and test set, and re-
sults were compiled using a range of values for the

number of nodes in the hidden layer using the tradi-
tional method to determine architecture and parame-
ters. Pinto [19] used the peanut field data compiled by
Parmar et al. [18] as well as additional data from subse-
quent years. He created a validation data set in addition
to training and test sets. He also partitioned the data
into categories of damaged and undamaged samples.
At peanut processing plants the kernels are identified
and separated into quality categories. Damaged refers
to those which have received some mechanical dam-
age during harvesting and transporting. Results were
generated for both models across training, test, and val-
idation data sets. In each case, the network design used
was the three-layer, feed-forward neural network with
backpropagation as the learning algorithm. Similar to
Parmar et al., Pinto performed a search for architecture
and parameters with the traditional method although
he added an evaluation on the validation data set.

Both Parmar et al. [18] and Pinto [19] used the soft-
ware package NeuroShell 2 (Ward Systems Group,
Inc., Executive Park West, 5 Hillcrest Drive, Frederick,
Maryland) to train networks. NeuroShell 2 includes an
enhanced version of the backpropagation algorithm.
Because the code is proprietary, the exact nature of
the enhancements is unknown. In order to study the
effects of automated parameter setting methods on a
backpropagation network, it was necessary to have re-
sults from a common implementation of backpropaga-
tion. In this case, common is used to mean a simple,
publicly available algorithm such as that of Rumelhart
et al. [20]. The accuracy could be used as a baseline
performance measure by which automated method en-
hancements could be evaluated. Henderson [4] used
a common backpropagation implementation to repro-
duce the work of Pinto [19] using identical data sets. It
was concluded in Henderson [4] that the common al-
gorithm produced results that appeared to be generally
representative of the performance of backpropagation
when parameters are set by hand and would therefore
be useful for a performance comparison study.

Materials and Methods

Model development is usually started by gathering sets
of patterns that are generally representative of the prob-
lem to be modeled. These data are allocated to a train-
ing set, testing set, and validation set. The training set
can be used by the backpropagation algorithm to ad-
just the weights of the network to minimize the sum



Predicting Aflatoxin Contamination in Peanuts 187

of the square error between the observed and predicted
output. Periodically during training, the testing data set
is applied to the current model in feed-forward mode
only to calculate the error. The set of weights which
produces the minimum error on the testing data set is
saved. In this manner over-training is avoided and the
ability of the ANN to generalize is maintained. The
validation set serves to evaluate the performance of
the network on data not used on training or testing after
training is complete. We followed this same approach
in data partitioning by using the data sets originally de-
veloped by Pinto [19]. For our study we chose to use
only the undamaged peanut samples. Since the sam-
ples can be categorized and separated, the primary eco-
nomic value of a harvest is due to undamaged peanut
kernels.

Implementation

Both custom written code and modified versions of
publicly available code were used for implementation
of this project. Tools for the ANN portion were coded
using C++. Features include the ability to allocate and
de-allocate memory resources for networks dynami-
cally and to set parameters such as number of hidden
nodes, number of hidden layers, momentum, and learn-
ing rate at run time.

The implemented procedure for training via simple
backpropagation proceeds as follows:

1. The network is trained on the training data for a
specified number epochs using backpropagation.

2. Mean absolute error is calculated for the network
across all test set patterns.

3. If test set mean absolute error is the lowest encoun-
tered then the network weights are saved.

4. If test set mean absolute error has not improved for a
specified number of epochs, training is stopped and
the weights that produced the best network through-
out the training procedure are restored. Otherwise,
go to step 1.

Genetic algorithm functions were obtained by con-
verting and modifying GAlib a set of publicly available
classes from the Massachusetts Institute of Technology.
GAlib is available at http://lancet.mit.edu/ga/. Versions
of our search algorithm were developed to run under
Windows and UNIX.

Data Collection and Preparation

The data used by Pinto [19] were obtained from the
United States Department of Agriculture Agricultural
Research Service (USDA ARS) National Peanut Re-
search Laboratory (NPRL) at Dawson, Georgia. Mea-
surements were taken from florunner peanuts that were
grown in environmentally controlled stands. Follow-
ing harvest, all peanuts were analyzed for aflatoxin
contamination. Aflatoxin levels for entire stands were
determined using the weighted average of the grade
values.

Data sets were available for the years 1985 through
1995 for several drought condition treatments. Each
observation consisted of the aflatoxin level and associ-
ated environmental values for a specific plot and sea-
son. Environmental values included length of drought
stress period (days), mean soil temperature (degrees
Celsius), crop age (days), and accumulated heat units
(degrees Celsius days). Drought stress was the number
of consecutive days of drought conditions, while mean
soil temperature was the mean temperature of the soil
during this period. Crop age was the number of days
from planting to harvesting. Accumulated heat units
(AHU) was the daily accumulation of heat above 25
degrees Celsius during the drought period. This value
was calculated by the following equation from Parmar
et al. [18]:

AHU = (mean soil temperature− 25)

∗ length of drought stress period

These four environmental factors were used as inputs
for the ANNs developed in this project.

Because the inclusion of damaged peanuts in the
data introduced a great deal of noise, Pinto [19] de-
veloped two neural network models. The first (model
A) included data for both damaged and undamaged
peanuts, while the second (model B) included only
measurements for undamaged peanuts. The available
data were used to produce two pools, one for model A
and one for model B. For each of these pools, the data
were partitioned into training, testing, and validation
sets. The Pinto [19] data were used later in Henderson
[4] with a focus on results of a common backpropaga-
tion ANN model. The purpose of our current project
was to compare the effectiveness of a genetic search
for network parameters to the traditional method for
this search using backpropagation. To get meaningful
comparisons between results, our current project used



188 Henderson et al.

the same data sets used by Henderson [4]. For our re-
search, we limited the study to data sets consisting of
undamaged peanut samples.

ANNs were evaluated by comparing predictions
against observed or target values for the patterns in
the data sets. TheR2 values, the square root of mean
squared error (RMSE), and the mean absolute error
(MAE) were used as metrics.

Model Development

There are a number of parameters that must be assigned
values in order to develop an accurate backpropagation
ANN model. Such parameters include number of lay-
ers, connectedness of layers, number of hidden nodes,
learning rate, and momentum. There is no clear-cut
procedure for choosing values for these parameters that
will produce the best network model, hence neural net-
work development is often more art than science. The
focus of this project was to employ the search power
of the genetic algorithm to choose ANN parameters,
however problem complexity precluded evolving val-
ues for all of these parameters. The number of hidden
nodes, learning rate, and momentum were chosen to be
evolved, because it was observed in Pinto [19] and in
Henderson [4] that these three parameters have a strong
impact on the quality of the backpropagation networks
that are produced for aflatoxin prediction. An archi-
tecture that includes three fully connected layers was
effective in Pinto [19] and in Henderson [4], so a similar
one is used here.

To employ the genetic algorithm to search for neu-
ral network parameters, there are a number of design
issues that must be addressed. These issues are re-
lated to the representation, selection scheme, crossover
scheme, mutation operator and the objective function.
Choice of representation dictates many design deci-
sions and should be examined first. The items to be
represented are learning rate, momentum, and number
of hidden nodes, which may be easily represented as
real numbers. The network parameters to be evolved
were therefore represented as strings of real values.
There are a number of reasons to choose this represen-
tation over the traditional bit string for this problem
including the following:

1. The real valued representation has been used effec-
tively for many similar problems.

2. Because the search space consists of sets of nu-
meric values, each of which corresponds to a gene,

decoding the chromosomes for evaluation is a
simple task.

3. Crossover occurs only at real value boundaries,
avoiding unwanted large leaps in value as described
below.

4. Genotypes are represented succinctly, consisting of
three floating-point numbers.

5. Because CPUs have built in floating point proces-
sors, manipulation of chromosomes is very efficient.

A chromosome consisted of three real numbers con-
strained to lie between 0.0 and 1.0. Decoding pro-
ceeded as follows: the first and second numbers are
used to produce the learning rate and the momentum
rate, while the third number is scaled by a preset maxi-
mum allowable number of hidden nodes, converted to
an integer, and used to set the number of hidden layer
nodes. To reduce computational demands, an upper
limit of 21 was placed on the number of hidden nodes
for the networks examined in this experiment. The
most effective networks in Pinto [19] and Henderson
[4] contained no more than 14 hidden nodes, so the
limit of 21 was expected to be sufficiently high.

Our representation led to some interesting results.
Typically, crossover produces a large portion of ge-
netic diversity during a search. However, with a real
valued representation scheme, crossover occurred only
at real number boundaries. Hence, crossover played a
more limited role than usual in producing new geno-
types. Mutation was the only mechanism that could
modify a real value within a chromosome. For this rea-
son, mutation played an unusually large role in seeking
new genetic material for this experiment. A crossover
scheme was selected based on preliminary results. Sev-
eral tests were conducted using uniform, two-point, and
one-point crossover schemes. Single point crossover
consistently produced better convergence and better fi-
nal solutions as expected.

Because mutation played an unusually important
role for this implementation, great care was taken in
its development. Consider a hypothetical, highly fit
chromosome that has just been produced by crossover.
Because fitness is high, presumably the real values
in the string are close to optimal. This may not al-
ways be the case, but it is the assumption that this
will oftenbe the case that underpins the power of the
GA. A traditional mutator might traverse the bits in
the chromosome, flipping an occasional bit based on a
biased coin toss. However, with real values this is not
desirable. Flipping a bit in a floating-point number will



Predicting Aflatoxin Contamination in Peanuts 189

frequently result in new values that are much greater
or smaller than the original. Because the real num-
bers are assumed to already be close to optimal val-
ues, large jumps are undesirable. For this reason, a
customized mutator was implemented for use with the
real valued strings. The mutator picked a new value
based on a distribution around the value being mu-
tated. In effect, it added or subtracted a small number
from the allele. Hence, the mutator should provide sig-
nificant new genetic diversity, but not destroy valuable
alleles by changing them drastically. Because our im-
plementation relied heavily on the mutator to produce
diversity, a relatively high mutation rate of 0.08 was
chosen.

For a given genotype, the fitness of its phenotype is
not unique for this problem. This is because the objec-
tive function employs backpropagation, which relies
on an initial random seeding of the weight space to
provide a search starting point. Hence, a genotype that
can lead to an excellent network may receive a poor
fitness rating due to poor initial weight assignments.
The initial weights may be such that backpropagation
gets stuck in a local minimum. To avoid this problem
it is essential to evaluate promising genotypes multiple
times. Luckily, the GA provides just such a mecha-
nism in selection. Many times selection is merely a
way for a GA to choose the most promising genotypes
to use as parents, but in this case there is an added
bonus. If selection has no bias against selecting identi-
cal chromosomes from a pool, then the genotypes will
get evaluated more than once. After a few generations,
there will be many copies of the same fit chromosome
in a population. Typically, this leads to premature con-
vergence and is to be avoided. However, with our spe-
cialized mutator and high mutation rate there is still
strong pressure toward diversity. For this reason, se-
lection is of unusual importance to this implementation,
as it provides a mechanism by which potentially strong
genotypes may be evaluated more than once. Standard
roulette wheel selection provides all of the features that
are desirable and was chosen.

The objective function provides all of the evolution-
ary pressure for a genetic search, so its design is a
key concern. For aflatoxin prediction, the problem is
to develop a genetic algorithm that will evolve pa-
rameters that, when used with backpropagation, will
lead to accurate ANNs. So the measure of fitness for a
chromosome was chosen to be a function of its accu-
racy with backpropagation. For a given chromosome to
be evaluated, the chosen objective function proceeded

as follows:

1. The chromosome was decoded to produce values
for learning rate, momentum, and number of hidden
nodes, as described previously.

2. A three-layer feed-forward network with the indica-
ted number of hidden nodes was allocated dynami-
cally and seeded with random weight assignments.

3. The network was trained via simple backpropaga-
tion using the method described previously.

4. The square of the training set mean absolute error
(the difference between observed and predicted afla-
toxin level) for the final network was returned as the
fitness value.

In summary, our GA used mate selection, crossover,
and mutation in a fixed generation processing envi-
ronment. We used roulette wheel selection, one-point
crossover, and an increment/decrement mutation oper-
ation. Our mutation probability was 0.08. We made
numerous runs with crossover probabilities ranging
from 0.5 to 0.8, population sizes ranging from 500 to
5000, and maximum generations ranging from 1000
to 20000. Our fitness value included the error value
plus the selection mechanism with a 15-unit tolerance
(discussed shortly).

The GA in this case minimized the objective func-
tion. The implemented scheme was an attempt to be
true to the underlying goals of backpropagation train-
ing. Termination of training was determined by the
test set, and all evolutionary impetus is provided by the
training set. The training set mean absolute error is
squared in step 4 of the objective function procedure as
a way to penalize poor networks more, thus speeding
convergence.

There were some marked differences between train-
ing a neural network using simple backpropagation and
training one via the GA/BPN. An important consid-
eration regarded deciding how to evaluate and com-
pare results. Note, however, that the genetic algorithm
and simple backpropagation network produce solutions
in different ways. Backpropagation incrementally im-
proves the network on the training set, using the most
recent weight assignments as a starting point for each
training event. It is expected that the network will
show concomitant improvement on the test set as small
training set improvements are made. Hence, back-
propagation moves the network along a performance
continuum, exploiting local information along the way,
until a minimum is encountered. The genetic algorithm,



190 Henderson et al.

however, does not exploit this type of information, re-
lying entirely upon one number (training set mean ab-
solute error) to provide training pressure. The result is
the GA may not proceed smoothly along a continuum
toward a solution as with backpropagation. Instead,
it will produce pools of networks that are increasingly
good fits for the training data, but it is difficult to deter-
mine which of these networks provides the best overall
solution. Therefore a solution selection scheme was
necessary to keep the best networks as they were en-
countered. Because any given network in a pool has
a chance of being the best ever, it is necessary to con-
sider each chromosome of every generation. For this
reason, the solution selection mechanism is included
as an addition to the objective function, which ac-
cesses all chromosomes. The mechanism proceeded as
follows:

1. After a network was decoded and trained via back-
propagation, its mean absolute errors were calcu-
lated for the training and test data sets.

2. If the sum of the two error values was the low-
est ever and the two errors were sufficiently close
in value, then the network becomes the new best
one.

The selection scheme is based on the assumption that
the network performing best overall on the training and
test data sets will provide the best predictions for new
patterns. However, this requires a procedure for deter-
mining what best means. Clearly, it is desirable to have
a network that has a low total for the two error values.
However, it is undesirable to keep a network that has
an extremely low value for one set, but not the other.
Such a net constitutes over-fitting the one data set, and
may not be robust. For this reason, the second criterion
of step 2 was included, namely that the errors must be
close in value. Step 2 requires a hard coded tolerance
value that specifies how close the two error values must
be to each other. This tolerance is based on the differ-
ence observed in high quality networks from previous

Table 1. Comparison of GA/BPN network performance to Simple BPN.

Training Test Validation

Description R2 RMSE MAE R2 RMSE MAE R2 RMSE MAE

Simple BPNa 0.69 92 60 0.57 76 56 0.39 98 81

GA/BPN 0.77 80 48 0.70 63 45 0.51 87 68

aThe name for the traditional search method, by Henderson [4].

studies and is set to an absolute value of 15.0 units.
The genetic search was set to terminate after a prede-
termined number of generations, and the stored best
network was returned as the solution. The networks
were then evaluated in terms of mean absolute error,
root mean squared error, andR2 value for each of the
training, test, and validation data sets. These values
were compiled as final results for the experiment.

Results and Discussion

These results were developed using a GA/BPN and
compared to those of Henderson [4] as shown in
Table 1. Henderson’s traditional method of searching
for ANN parameters is labeled. Simple BPN. The
Simple BPN produced a baseline performance measure
for standard backpropagation for the aflatoxin prob-
lem. The network chosen for Simple BPN was the one
with the least sum of mean absolute error values for
training and test data sets. The table gives performance
measures for the training, test, and validation data sets.
The performance measures listed areR2, square root of
mean squared error (RMSE), and mean absolute error
(MAE).

GA/BPN produced a network that was more accurate
than the Simple BPN for all three data sets. Moreover,
the GA/BPN did not require intervention by the user
in terms of the heuristic search for ANN parameters.
Hence, the GA/BPN approach is probably the more
effective of the two techniques for our aflatoxin prob-
lem. Because aflatoxin prediction is similar to many
other predictive problems, it is likely that the superi-
ority of the GA/BPN will apply to other problems as
well. Figure 1 shows a scatter plot for the training set
performance of the network. The horizontal axis repre-
sents the observed aflatoxin contamination value, and
the vertical axis corresponds to the predicted value for
the model. The diagonal line represents the one to one
fit of ideal accuracy. The points on this figure show
a fairly even distribution around the ideal, indicating
a good fit with one apparent outlier. Figure 2 depicts



Predicting Aflatoxin Contamination in Peanuts 191

Figure 1. Plot of GA/BPN network predicted aflatoxin values
versus observed values for the training data set.

Figure 2. Plot of GA/BPN network predicted aflatoxin values
versus observed values for the test data set.

a similar plot for the test data set. The data spread in
this case is similar to that of Fig. 1 and demonstrates
a reasonably good fit to the data. Figure 3 shows a
plot for the validation data with a less accurate fit to
the observed values. From Table 1, it can be seen that
the GA/BPN model produced less accurate predictions

Figure 3. Plot of GA/BPN network predicted aflatoxin values
versus observed values for the validation data set.

Figure 4. Plot of GA/BPN network predicted aflatoxin values
versus observed values for combined data sets.

on the validation data set than on the training or testing
data sets. Figure 4 includes the results for all three data
sets from the prior three figures.

Figure 3 shows that GA/BPN made reasonably ac-
curate predictions for the validation data set observa-
tions except for a few marked exceptions. A possible



192 Henderson et al.

explanation for the lower accuracy on the validation
set is that the data sets are noisy. Predictions for the
few outlying patterns, are often inaccurate. This is an
indicator that these errors are the result of noisy data.
Because there are a relatively small number of valida-
tion data points, these few highly inaccurate predictions
have a marked effect on the accuracy metrics for the
set. Future efforts will focus on obtaining additional
aflatoxin observations.

Possibly the greatest value of the GA/BPN approach
lies in the ease with which it may be used to find good
networks. The only GA parameters that need to be
set are crossover rate, mutation rate, and pool size.
This may not sound better than standard backpropaga-
tion, which our study also require three parameter val-
ues (learning rate, momentum, and number of hidden
nodes). However, genetic search was fairly insensitive
to these settings, finding good networks for every set
of GA parameter values that was tried. Simple BPN,
on the other hand, was highly sensitive to parameter
settings and would find extremely poor networks for
the majority of values.

GA/BPN proved to be more accurate than Simple
BPN for training networks to predict pre-harvest afla-
toxin contamination levels in peanuts. It also required
considerably less skilled human interaction by the user.
It is expected that these advantages will apply to other
problems as well.

References

1. U.S. Food and Drug Administration Center for Food Safety
and Applied Nutrition, Foodborne Pathogenic Microorgan-
isms and Natural Toxins,U.S. Food and Drug Administration:
Washington, DC, 1992.

2. C.N. Thai, P.D. Blankenship, R.J. Cole, T.H. Sanders, and
J.W. Dorner, “Relationship between aflatoxin production and
soil temperature for peanuts under drought stress,”Transactions
of the ASAE, vol. 33, no. 1, pp. 324–329, 1990.

3. R.J. Cole, T.H. Sanders, R.A. Hill, and P.D. Blankenship, “Mean
geocarposphere temperatures that induce preharvest aflatoxin
contamination of peanuts under drought stress,”Mycopatholo-
gia, vol. 91, no. 1, pp. 41–46, 1985.

4. C.E. Henderson, “Using genetic algorithms to evolve neural net-
works,” Master’s Thesis, Artificial Intelligence Center, The Uni-
versity of Georgia, 1997.

5. D.E. Goldberg,Genetic Algorithms in Search, Optimization and
Machine Learning, Addison Wesley: Reading, MA, 1989.

6. K. Balakrishnan and V. Honavar, “Properties of genetic

representations of neural architectures,” inProceedings of the
World Congress on Neural Networks, 1995, pp. 807–813.

7. G.F. Miller, P.M. Todd, and S.U. Hegde, “Designing neural net-
works using genetic algorithms,” inProceedings of the Third
International Conference on Genetic Algorithms, 1989, pp. 379–
384.

8. M. Mitchell, An Introduction to Genetic Algorithms, The MIT
Press: Cambridge, MA, 1996.

9. L. Marti, “Genetically generated neural networks II: Searching
for an optimal representation,” inProceedings of the 1992 IEEE
International Conference on Neural Networks, 1992, pp. 221–
226.

10. H. Kitano, “Designing neural networks using genetic algorithms
with graph generation system,”Complex Systems, vol. 4, pp.
461–476, 1990.

11. F. Gruau, D. Whitley, and L. Pyeatt, “A comparison between cel-
lular encoding and direct encoding for genetic neural networks,”
in Genetic Programming 1996: Proceedings of the First Annual
Conference, 1996, pp. 81–89.

12. D. Dasgupta, “Evolving neuro controllers for a dynamic system
using structured genetic algorithms,” inProceedings of the Tenth
International Conference on Industrial and Engineering Appli-
cations of Expert Systems and Artificial Intelligence, Gordon
and Breach Science Publishers, 1990.

13. S.G. Roberts and M. Turega, “Evolving neural network struc-
tures: An evaluation of encoding techniques,” inArtificial Neu-
ral Nets and Genetic Algorithms: Proceedings of the Interna-
tional Conference in Ales, France, 1995, pp. 96–99.

14. S.A. Harp, T. Samad, and A. Guhu, “Towards the genetic synthe-
sis of neural networks,” inProceedings of the Third International
Conference on Genetic Algorithms, 1989, pp. 360–369.

15. D. Schaffer, R.A. Caruana, and L.J. Eshelman, “Using genetic
search to exploit the emergent behavior of neural networks,”
Emergent Computation, S. Forrest, ed. MIT press, pp. 244–248,
1990.

16. R.K. Belew, J. McInerney, and N.N. Schraudolph, “Evolving
networks: Using genetic algorithms with connectionist learn-
ing,” CSE Technical Report CS90-174, La Jolla, CA, University
of California at San Diego, 1990.

17. D.J. Chalmers, “The evolution of learning: An experiment in ge-
netic connectionism,” inProceedings of the 1990 Connectionist
Models Summer School, Morgan Kaufmann: San Mateo, CA,
1990, pp. 81–90.

18. R.S. Parmar, R.W. McClendon, G. Hoogenboom, P.D.
Blankenship, R.J. Cole, and J.W. Dorner, “Estimation of afla-
toxin contamination in preharvest peanuts using neural net-
works,” Transactions of the ASAE, vol. 40, no. 3, pp. 809–813,
1997.

19. C.S. Pinto, “Prediction of aflatoxin contamination in peanuts us-
ing artificial neural networks,” Master’s Thesis, The University
of Georgia, 1996.

20. D.E. Rumelhart, G.E. Hinton, and J.L. McClelland, “A gen-
eral framework for parallel distributed processing,”Parallel Dis-
tributed Processing: Explorations in the Microstructure of Cog-
nition, Vol. 1: Foundations, MIT Press: Cambridge, Mass.,
1987.


