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Introduction 
The thesis entitled "Genetic algorithms and their applications" having the aim of 

"Simulating the evolution with genetic algorithms in structure-activity relationships optimization 
problems" is an interdisciplinary approach to fundamental research. 

The subject is optimization of the quantitative relationships (between the structure of 
chemical compounds and their biological activity) hard problems (those with exponential 
complexity). 

The framework for the construction and application of a genetic algorithm to solve 
optimization problem were built. It was built within a defined genetic algorithm. The genetic 
algorithm was implemented in an evolutionary program, was applied on an experimental data set 
and the evolution was recorded. 

Experimental design was done in order to make the transition to the problem of simulation 
from the optimization problem - namely simulating evolution using different selection and survival 
strategies. A 3 by 3 contingency of selection and survival strategies (following proportional, 
tournament and deterministic algorithms) were created and evolution were recorded over 20,000 
generations repeated 46 times for each strategy pair. 

Statistical inferences were analyzed in qualitative and quantitative observables of the 
evolutionary process controlled by the different development strategies using different variables that 
evolutionary program was set to record the values. 

The results are mainly of fundamental research nature. Statistical analysis of evolution 
simulation results offered responses to questions like: What is the distribution law for evolution 
objective?, What is the distribution law for evolution moments?, What is the distribution law for 
number of evolutions?, How it is influenced the genotypic variability and diversity by the choice of 
evolution strategy?, How early developments occur in relation to the chosen evolution strategy?, 
How often evolution occur in relation with the chosen evolution strategy?, How spread are the 
evolution in relation with the chosen evolution strategy?, How predictable are the evolutions in 
relation to the evolution strategy chosen?, What are the similarities and differences between 
evolutions following different strategies?, etc. 

A series of results of applicative nature were obtained: implementation of the (classical) 
genetic algorithm in a evolutionary program able to solve a hard problem of structure-activity 
relationship optimization by using families of structure descriptors; implementation of software 
modules for automating the molecular geometry optimization; implementation of software modules 
for Anderson-Darling statistic usage for agreement between observation and a model; 
implementation of Grubbs procedure for identifying and removal of observations in error relative to 
a model. 

Thesis gives also solutions for technological transfer, covering answers to a series of 
problems like: I want to make an evolution to reach an objective; I am interested to know which 
strategy to apply in order to reach the objective. 

Problems of structure-activity relationships optimization 
Mathematical approach of SAR (structure-activity relationships) for BAC (biologically 

active compounds), started in nineteen century, were capitalized through the born of the quantitative 
structure-activity relationships (QSAR) concept (Hammett, 1935), a mathematical tool describing 
the quantitative link between chemical structure and biological activity of a given set of compounds. 
SAR records were communicated in scientific literature since 1868, when (first) Crum-Brown & 
Fraser were given the idea to seen the activity of compounds as a function of chemical structure and 
composition (Crum-Brown & Fraser, 1868), but only after almost forty years the QSAR paradigm 
were found practical useful in agro-chemistry, pharmaceutical chemistry, toxicology, etc (Hansch & 
Leo, 1979). Scientific literature contains numerous reports on usage of SQARs in the methodology 
of designing new BACs, and the monograph (Diudea & others, 2001) covers a good part of it.  

Simulating evolution with genetic algorithms 
Hard (Weismann, 1893) and soft (Lamarck, 1809) inheritance, selection and survival 

(Darwin, 1859), traits (Mendel, 1866) and genes (Morgan & others, 1915) crossover, a long and 
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contentious debate over the 19th century (Fisher, 1954) are all pieces from a puzzle building today 
the modern genetics (Ayala & others, 1994) and being the sources of inspiration for genetic 
algorithms (GAs). First simulating of evolution studies are of Nils Aall BARRICELLI (Barricelli, 
1954). Few times later, Alex FRASER (1923-2002) gives a series of studies about simulation of 
artificial selection of organisms having multiple loci controlling a measurable trait. Fraser's 
simulations (Fraser, 1957-1970) include all essential elements of modern GAs. 

The genetic algorithms intrinsic methodology 
The tool for developing genetic algorithms is informatics, and thus we should call for it 

here. Usually, in day by day life issues as in scientific research we operate with problems. In 
informatics and its relatives (as chemo-informatics and bioinformatics) a problem has a precise 
meaning, close to the meaning of the algorithm. An algorithm is essentially a recipe specifying what 
to do in certain circumstances to reach an objective. An algorithm requires two resources to solve a 
problem: time (in the sense of execution time, correlated with the number of elementary 
instructions) and space (to store entry data and its variables). Not all problems are of same 
complexity and the same for solving algorithms. Some problems have exponential complexity (the 
best possible algorithm solves the problem - giving the exact solution(s) - in an execution time 
growing exponential with the size of the entry data), being called hard, because even the best 
available (or possible) algorithm will be probably un-useful when are feed with entry data from 
practice (Falkenauer, 1998). If a problem is hard, then the search for the optimum often goes out of 
available time for real applications. But fortunately, a series of hard problems does not call for the 
optimum, a good solution being enough. For a variety of hard problems, one or more heuristics 
were designed. Heuristics and sets of rules designed to solve a given problem usually based on 
common sense (relative to the expected solution) by avoiding gross errors; they are not designed to 
give always a exact solution and to give a solution for any entry data. Even if the most of the 
heuristics are ad-hoc and dependent on the given problem, together with developing of the 
informatics, the researches were succeeded to formulate three heuristics being very general (able to 
be applied to a large variety of hard problems), called (because of their generality) meta-heuristics, 
all three being stochastic in their nature (implies one or more random variables; implies the chance 
or the probability), two of them being inspired from natural processes having place around us from 
all times, one of them being genetic algorithms. Even if first studies are in year 1954, systematic 
researches started after 1970 (Bosworth & others, 1972; Holland, 1975) and were reinvented after 
1990 (Davis, 1991; Holland, 1992), together with the progress of computation tools. An important 
issue about heuristics is the NFLT (No Free Lunch Theorem) on algorithmic complexity (Wolpert 
& Macready, 1995&1997; English, 1996), theorem stating that using three evaluation criteria 
(speed, precision and scope) all algorithms are equivalent (for algorithms A and B, for every set of 
data for which A is performs better than B it exists a set of data for which B performs better than A). 
Genetic algorithms serves in phylogenetic (Jäntschi & others, 2008-PTA) and gene sequence 
(Jäntschi & others, 2009-GSA) analysis, hard problems of dynamics of processes (Jäntschi & 
others, 2009-DPA) and in any other category of decision, classification, optimization or simulation 
(Falkenauer, 1998) hard problems. 

Research frame 
Continuing growth of knowledge banks like the ones administered by the NIH, such as 

PubMed, PubChem and Genome underlines the necessity to posses efficient tools to relate this 
knowledge; the SARs are one of such kind of tools. 

The research question "How the evolution can be observed and characterized via different 
parameters characterizing the sample simulated to evolutes?" are not enough explored in the 
specialty literature on genetic algorithms subject. Studies of different operators essential for 
evolution are focused mainly on algorithmic efficiency - and representative for this approach is the 
collection from (Martin & Spears, 2001). 

Very few studies are about the influence of the evolution strategy on evolution objective, 
and almost nothing about the influence of different parameters characterizing the evolving sample 
on evolution objective. 
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The GAs passed out long time ago the border of the informatics field, because of its 
potential of results capitalization. PhD theses having objectives of projecting, implementation and 
use of genetic algorithms are found practically in all fields of research. Thus, in agriculture GAs 
were found useful to crop planning (Matthews & Kraw, 2001), in constructions to assess the risk of 
soil damage (Osman & McManus, 2007), in bioengineering to efficient control of pollution at a 
hydrographic basin level (Veith & Wolfe, 2002), in chemistry at design of sensor-based controlled 
processes (Dai & Lodder, 2007), in economics at optimization of problems with multiple options 
(Aickelin & Dowsland, 1999), in management at multi-scale processes modeling (Sastry & others, 
2007), in mechanics at optimization of composite structures (Gantovnik & Gürdal, 2005), in 
environment at strategy chousing for water quality control (Tufail & Ormsbee, 2006), in biology in 
phylogenetic analysis (Zwickl & Hills, 2006) and evolution studies (Suzuki & Iwasa, 1998). Only 
uses of GAs embedded in evolutionary programs are reported in (Venard & Vaillancourt, 2006) for 
studies of vegetables growing, in (Sarmiento-Monroy & Sharkey, 2006) for taxonomic 
classifications and in (Zhang & Ghabrial, 2006) for genetic diversity analysis. 

Research aim and objectives 
The research aim covered projecting of a GA, implementation of an evolutionary program 

based on it, and then the analysis of the influence of different selection and survival strategies on 
evolution controlled by the genetic algorithm feed with data for structure-activity relationships 
optimization in a series of biologically active compounds. Three objectives were followed: 
1. (method) design of the GA (including defining of the hard problem); formulation of the problem 

in genetic terms; projecting of the GA; implementation and documentation of the evolutionary 
program embedding the GA; 

2. (results) simulation of the evolution (defining of the observables; defining of the contingency 
between selection and survival strategy; projecting of the statistical experiment; run of the 
experiment; 

3. (analysis) analysis and interpretation of the runs results about qualitative observables and about 
evolution objective (was set to r2 - determination coefficient) - quantitative observable during 
evolution. 

Definition of the QSAR optimization problem taken 
The chosen set of molecules for the study is the PCBs data set (with 209 compounds in the 

series). For this set of data log(Kow) were available measurements in same conditions of experiment 
for 206 compounds (Eisler & Belisle, 1996; Mullins & others, 1984); (Jäntschi & others, 2007-
Chromatogr). Kolmogorov-Smirnov (Kolmogorov, 1941; Smirnov, 1948), Anderson-Darling 
(Anderson & Darling, 1952; Scholz & Stephens, 1986 & 1987), and Pearson-Fisher Chi-Square 
(Pearson, 1900; Fisher, 1922-X2; Fisher, 1924; Fisher, 1935) statistics were used to measure the 
agreement between observed data and normal distribution model. Grubbs test (Grubbs, 1969) was 
used to identify an outlier. HyperChem (licence v. 8.0/2007) was used (using AMBER molecular 
mechanics model, POLAK-RIBIERE optimization algorithm, and AM1 method for semiempirical 
energy calculations). Molecular Descriptors Family (Jäntschi, 2004; Jäntschi, 2005; Jäntschi & 
Bolboacă, 2007-Results) were used to create the population of structure descriptors from which to 
feed the genetic algorithm. The search was started for multiple linear regressions with four 
descriptors members of MDF relating the observed log(Kow) of 206 PCBs. 

Definition of the genetic problem created 
Evergy gene codifies an operator used in construction of the chromosome of a molecular 

descriptor. Every descriptor (of a family of descriptors, such as MDF) is a genotype and all together 
is the genetic material of the family. Folowing table gives the search space created by MDF: 

Family Gene Genome 
DM t g                            
AP C H M E G Q                        
ID D d O o P p Q q J j K k L l V E W w F f S s T t      
IM r R m M d D                        
FC m M D P                          
SM m M n N S A a B b P G g F f s H h I i           

MDF 
 
 
 
 
 

LO I i A a L l                        
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The working methodology af genetic algorithms suppose a initial prelevation (at random or 
using a strategy) of a sample of chromosomes from the genetic material - in this case a array of 
MDF members - from X1 to Xp which enters in cultivar for conducting the evolution process. The 
genetic algorithm operates on the sample which is changed (in part) in every generation. Every set 
of `n` descriptors (where n is the multiplicity order for MLR) is a point in the search space and a 
possible solution. The operators which change the genetic code are crossover and mutation. 
Crossover of two genotypes suppose chousing of a part from the stream of genes to be cross over (at 
random or using a strategy) and the values of the parts are swithched one in the place of the other, 
and two descendents are produced. Mutation of a genotype supposes the changing of the value of a 
(or more) gene with other allowed value from the list of possible values for the given gene. Both 
crossover and mutation produces descendents. The selection of the genotypes is the operation 
which mutation and crossover calls for, are based on a strategy and uses a score function (selection 
score). At least a part of the descendents is viable (descriptors), being able to be part of a viable 
solution (MLR) in the next generation(s). Viable descriptors replace a part from the sample through 
a survival process. As selection process, survival process uses a score function (survival score) and 
uses a strategy. The evolution objective are recorded during evolution using a score function 
(objective score). Once in every generation the individuals which gives the best objective score 
(enters in the best MLR) are marked. An option is to automatically qualify for the next genetation 
the marked individuals (no survival strategy applies on it). Not all individuals of a generation 
(including parents and descendants) survive and will be present in the next generation. The 
reasoning to do this is for keeping constant the sample size (thus the number of replaced individuals 
is equal to the number of viable descendants). 

Selection and survival based on selection and survival scores are applied through a selection 
and survival strategies, using an algorithm for every different strategy. PS algorithm constructs a 
proportional strategy using an array of scores and gives to an individual a chance (to be selected in 
selection process or to be killed in survival process) proportional with the score, and returns a given 
number N_Sel of individuals using their chances. DS algorithm constructs a deterministic strategy 
returning the N_Sel individuals with the first N_Sel highest scores (if is necessary applies a random 
qualification at equal scores). TS algorithm constructs a tournament strategy using the array of 
scores and qualifies N_Sel individuals through a repeated N_Sel times tournament of two 
individuals. 

The genetic algorithm acts as follows: 
÷ the sample of the given size (N_Gen) is created (containing predefined or random individuals); 
÷ repeat steps 1..6 until objective score is satisfactory or a number of generations are eshausted; 
÷ Step_1: Computes selection scores, survival scores and ojective scores (and eventually include in 

the next generation the marked individuals); 
÷ Step_2: Select (using selection strategy) N_Cro pairs of individuals; 
÷ Step_3: For every one from 2×N_Cro, using p_Par (low) probability and a discrete uniform 

distribution pick a number of N_Mut genes and make a mutation on it (parents); save the result 
(whatever mutated or not, 2×N_Cro individuals); 

÷ Step 4: For every one from N_Cro, using a discrete uniform distribution pick the sequence of 
genes to be crossover, do crossover; save the result (replace the previous one, 2×N_Cro 
individuals); 

÷ Step_5: For every one from 2×N_Cro, using p_Chi (low) probability and a discrete uniform 
distribution pick a number of N_Mut genes and make a mutation on it (childs); save the result 
(whatever mutated or not; replace the previous one, 2×N_Cro individuals); 

÷ Step_6: Replace (sing survival strategy) a part of N_Gen with a part of 2×N_Cro; 
 

Definition of the simulating evolution obtained 
The parsimony principle is the essence staying at the basis of the link Optimization(SAR) 

→ Evolution (Observables). The principle were applied in the simulating of the controlled (under 
given parameters) evolution of the sample toward the evolution objective under the different 
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selection and survival strategies given above. The principle was applied in order to compare the 
evolutions under different selection and survival strategies. 

The parameters kept constant during the (parsimony) experiments are given in the following 
table. 

Class Parameter Value 
Genes mp/fc/oi/id/ap/dm 
Addre fc/ap/id/oi/dm/mp 

mp mMnNSPsAaBbGgFfHhIi 
fc mMDP 
oi RrMmDd 
id DdOoPpQqJjKkLlVEWwFfSsTt 
ap CHMEGQ 

Topology of the 
family of 
molecular 
descriptors 

dm gt 
Mydb MDFSARs 
TabE PCB_lkow_data 

Topology of the 
informational 
infrastructure TabM PCB_lkow_tmpx 

sn0_SAMPLE_Size 12 
a_v_ADAPT_Variance 0.1 

ajb_ADAPT_JarqueBera 0.1 
a_c_ADAPT_Correlation 0.1 

g_r_GENERATIONS_first_rich Yes 
b_k_RUNS_kepp_best_in_sample Yes 

Topology of the 
sample 

b_f_RUNS_get_best_from_file No 
cn0_CROSSOVER_Pairs 2 

m_m_MUTATION_Genes 2 
mpp_MUTATION_Parent_probability 5% 

Crossover 

mcp_MUTATION_Child_probability 5% 
rn0_REGRESSION_Multiple 4 
b_p_SELECTION_parameter r2 

Evolution 
objective 

b_o_SELECTION_objective max 
e1n_GENERATIONS_max 20000 Experiment 

e0n_RUNS_number 46 
sfn_FITNESS_normalized No 

sfr_FITNESS_ranks No 
sfa_FITNESS_accuracy 10000 
sff_FITTEST_function r2_min 

sfo_FITTEST_objective max 
fr2_FITTEST_r2_p 1.0 
fse_FITTEST_se_p 1.0 

fMt_FITTEST_Mt_p 1.0 

Selection 

fHr_FITTEST_Hr_p 1.0 
v_p_SURVIVAL_phenotyping_p 1.0 
v_g_SURVIVAL__genotyping_p 1.0 

Survival 

vfr_SURVIVAL_ranks No 

Two parameters (sfs_FITNESS_strategy and vfs_SURVIVAL_strategy) were taken different 
values once at the time for the parameters kept constant (the above table), nine executions of the 
program being independently started, and the results were recorded in separate files (two files per 
execution, table above). 

Selection Survival Configuration Evolution 
Proportional Proportional PCB_4044_cfg.txt PCB_4044_evo.txt  

Proportional Deterministic PCB_2441_cfg.txt PCB_2441_evo.txt  

Proportional Tournament PCB_9878_cfg.txt PCB_9878_cfg.txt  

Deterministic Proportional PCB_5108_cfg.txt PCB_5108_evo.txt  

Deterministic Deterministic PCB_6369_cfg.txt PCB_6369_evo.txt  

Deterministic Tournament PCB_6690_cfg.txt PCB_6690_evo.txt  

Tournament Proportional PCB_5828_cfg.txt PCB_5828_evo.txt  

Tournament Deterministic PCB_4872_cfg.txt PCB_4872_evo.txt  

Tournament Tournament PCB_1758_cfg.txt PCB_1758_evo.txt  

 

Benford test checking the output data 
Frequencies for number of distinct & viable genotypes (num_obs) and for total number of 

viable genotypes (sum_obs) in the generations producing evolution for every strategy of selection 
(Sel) and survival (Srv) from the list {P(Proportional), T(Tournament), D(Deterministic)} for 
frames of thousands of generations were extracted from the observed execution results and place 
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together -2(observables)×9(strategies)×20(milenia) = 360 frequencies. Kolmogorov-Smirnov (K-S) 
and Pearson-Fisher Chi-Square (C-S) statistics were used to measure the agreement between 
observed data and Benford Law for first three digits of the frequencies. With 5% risk being in error 
C-S did not rejected the hypothesis of Benford law distribution for first thee digits: X2(d0, df=9-1-1) 
= 11 < 14.7 = χ2(df=7, p=5%); X2(d1, df=10-1-1) = 6.6 < 15.5 = χ2(df=8, p=5%); X2(d2, df=10-1-1) 
= 7 < 15.5 = χ2(df=8, p=5%). With 5% risk being in error K-S did not rejected the hypothesis of 
Benford law distribution for first thee digits: D√n(d0) = 14/80 < 31/80 = K(df=9, p=5%); D√n(d1) = 
17/152 < 56/152 = K(df=10, p=5%); D√n(d2) = 31/255 < 94/255 = K(df=10, p=5%). 

 

Analysis of variability 
Fequency of the genotypes in the sample during evolutions allow making of remarks 

regarding the capacity of adaptation, and serves to characterize the variability of the genetic material 
of the sample in relation with the selection and survival strategy used. 
A contingency of observables were created {Top23, Total}×{Dist, Sum, Part} where Top23 - all 
over 23 occurences, Total - no lower limit of occurrences, Dist - number of distinct genotypes, Sum 
- number of genotypes, Part - number of genotypes having at least a phenotype with which a MLR 
was created. Six times the contingency Selection = (P, T, D) × Survival = (P, T, D) were used (for 
every observable defined), and in every case the Pearson-Fisher Chi-Square (C-S) statistic were 
used to measure the independence of the observable on selection and survival strategy. 

According to (Fisher & Mackenzie, 1923-Treatment) the product formula for calculating 
expectations in contingency table under assumption of independence is an approximation for the 
solution of a polynomial equation minimizing the disagreement with the assumption that the 
observation has a probability given by the product of two probabilities given by the two implied 
events applied on the observable. Thus the formulation of the statistical hypotheses and their answer 
(after analysis with C-S statistic) are: 
÷ Selection and survival strategy are independent events when the number of distinct viable 

genotypes are observed in the generations which produces evolution? - Answer: NO (with X2(df 
= 4) = 70); 

÷ Selection and survival strategy are independent events when the total number of viable genotypes 
are observed in the generations which produces evolution? - Answer: NO (with X2(df = 4) = 
135); 

÷ Selection and survival strategy are independent events when the number of viable genotypes 
having phenotypes in regression equations are observed in the generations which produces 
evolution? - Answer: NO (with X2(df = 4) = 187); 

÷ Selection and survival strategy are independent events when the number of distinct viable 
genotypes with over 23 occurences in 46 runs (Top23) are observed in the generations which 
produces evolution? - Answer: NO (with X2(df = 4) = 14.6); 

÷ Selection and survival strategy are independent events when the total number of viable genotypes 
with over 23 occurences in 46 runs (Top23) are observed in the generations which produces 
evolution? - Answer: NO (with X2(df = 4) = 420); 

÷ Selection and survival strategy are independent events when the number of viable genotypes with 
over 23 occurences in 46 runs (Top23) having phenotypes in regression equations are observed in 
the generations which produces evolution? - Answer: NO (with X2(df = 4) = 440); 

A linear relationship between the numbers implied in the statistics from above was found; 
thus for the numbers cumulating the total frequencies of {Dist, Sum, Part} determination 
coefficients are: r2(N_Dist, N_Sum) = 0.982; r2(N_Dist, N_Part) = 0.982; r2(N_Sum, N_Part) = 
0.999. 

The contingency of observables {Top23, Total}×{Dist, Sum, Part} were applied for every 
run (from run 1 to run 46) recording the numbers; on the obtained data, mean and standard deviation 
together with their 95% confidence intervals were used to compare selection and survival strategies. 
A series of important remarks was extracted from the analysis, such as: 
÷ Independent of survival strategy the deterministic selection has as effect the decreasing 
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(statistically significant) of the number of disctict genotypes; 
÷ When survival is deterministic, excepting the deterministic selection all other increases 

(statistically significant) at the Total all observables (Dist, Sum, Part); 
Two measures were defined and used for the records in the given interval of generations 

(0..20000) for which the observation were made: the number of the evolutions n(·,·) - as a measure 
of adaptation capacity, and the mean of the evolution observed moments m(·,·) - as a measure of 
adaptation speed (where the dots are places for selection and survival strategies). Means and 
standard deviations were calculated with 95% confidence intervals. Following plots rescaled these 
values from min to max, keeping proportions, and served for comparison between different 
strategies. 

 (Deterministic, Deterministic) 
(Deterministic, Tournament) 

(Deterministic, Proportional) 
(Proportional, Deterministic) 

(Turnir, Deterministic) 
(Proportional, Tournament) 
(Proportional, Proportional) 

(Tournament, Tournament) 
(Tournament, Proportional) 

Premature Late  
(Selection, Survival): [CI(95%,Meann=46(evolution moments mean))] - How fast the evolutions occurs? 

 (P, D) 
(P, T) 

(T, D) 
(T, T) 

(P, P) 
(T, P) 

(D, D) 
(D, T) 

(D, P) 
Rarely Often  

(Selection, Survival): [CI(95%,Meann=46(evolution number))] - How often the evolution occurs? 
 (P, D) 

(P, T) 
(D, P) 

(D, D) 
(T, P) 

(D, T) 
(T, D) 

(T, T) 
(P, P) 

Compact Dispersed  
(Selection, Survival): [CI(95%,StDn=46(evolution moments mean))] - How much dispersed the evolutions are?

 (T, P) 
(P, P) 
(P, D) 

(P, T) 
(T, T) 
(T, D) 
(D, D) 

(D, T) 
(D, P) 

Impredictable Predictable  
(Selection, Survival): [CI(95%,StDn=46(evolution number))] - How much predictable the evolutions are? 

 
Analysis of diversity 

The diversity of the genotypes can be quantified by the 
informational entropy. A family of entropic measures - given by 
the expression of the generalized (or Rényi) entropy Hα (Rényi, 
1961) - are available. H0, H1, and H2 were used to measure the 
genotipic diversity during evolution (see figure). 

If the observations are put together by selection and 
again by survival strategies, computing again the average 
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(from 46 experiments) and its confidence interval, the results are like in following table (for 
H1). 

Strategy of Means and confidence intervals at 5% risk being in error 
Selection 

Survival 

D: deterministic; T: tournament; P: proportional 
 

Measuring agreement between observed distributions 
The average number of viable genotypes, number of phenotypes (from a genotype may descent 

no more than six phenotypes given by the linearization operator LO, not all viable - last entry in first 
table) and number of presences of a genotype in a MLR were calculated by thousands of 
generations (average from 46 experiments) for every pair of survival and selection strategy in order 
to find answer to the following questions: 
÷ In which degree the average number of viable genotypes are (in)dependent of selection and 

survival strategy? 
÷ In which degree the average number of phenotypes are (in)dependent of selection and survival 

strategy? 
÷ In which degree the average number of presences of a genotype in a MLR are (in)dependent of 

selection and survival strategy? 
The k-Sample Anderson-Darling test were used to measure the agreement between 

observations (502 statistical inferences for a research question). Following three figures gives the 
Monte-Carlo experiments based on the results and evidencing the observed agreements. 
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Associations 

 

D(6.73±0.12) 
T(6.96±0.08) 

P(6.61±0.10) 

T(7.00±0.07) 
P(7.04±0.07) 

D(6.26±0.10) 
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Distribution of evolution objective's 
The recorded data were used to reconstruct the value of determination coefficient in all 

generations (because between evolutions determination coefficient in a generation is equal with the 
determination coefficient from previous generation). 

First analysis was conducted using a random sample of generations (on which the 
hypothesis of discrete uniformity was verified) and DataPlot software for likelihood estimation of 
parameters and statistical agreement between observed data and a pool of 7 probabilitity density 
functions (PDF). 

The sample of 9 generations from discrete uniform distribution 0..20000 was: {9221, 4182, 
14283, 15329, 8875, 4599, 994, 8620, 7404}. The pool of PDF was: DE - double exponential, LG - 
logistic, LN - log-normal, NO - normal, UN - uniform(0,1), EX - exponenţial, GU - extreme values 
of type I (Gumbel), from which UN and EX were easily rejected. Following table gives the statistic 
of PDFs not rejected at 1% risk being in error by the series of data from the sample of generations. 

1-5-10 % PP PT PD TP TT TD DP DT DD 
DE 9-5-3 9-4-1 9-8-5 8-6-3 7-7-1 9-4-1 6-4-3 5-0-0 3-0-0 
LG 9-8-6 9-2-1 9-6-6 9-8-5 9-9-6 8-1-0 6-0-0 6-0-0 1-0-0 
LN 9-9-7 7-2-0 9-6-3 9-5-2 9-9-9 7-1-0 0-0-0 4-0-0 2-0-0 
NO 9-8-7 7-2-0 9-6-3 9-5-2 9-9-9 7-1-0 0-0-0 4-0-0 2-0-0 
GU 9-9-7 3-1-0 9-9-5 9-9-9 9-7-7 9-9-6 9-7-7 9-5-2 2-0-0 

At 1% first is GU with 68 (from max 81) and second is LG with 66; at 5% GU with 56, DE 
with 38; at 10% GU with 43, LG with 24. Taking by strategy, for PP most likely are LN & GU (9-
9-7), for PT most likely is DE (9-4-1), for PD most likely is GU (9-9-5), for TT most likely is NO & 
LN (9-9-9), for TD most likely is DP (9-7-7), for DT most likely is GU (9-5-2) and for DD most 
likely is DE (3-0-0). Since the distributions were not accepted at a reasonable risk being in error, we 
must draw the conclusion that the determination coefficient during evolution is not distributed by 
the models given by the list of seven. Further investigations were made on GU (which is accepted at 
a reasonable risk being in error by PP, PD, TP, TT, TD, DP and DT - 7 out of 9). An important 
result derived from the study till this point: the mean is not a sufficiency statistic, since normal 
distribution was rejected to be the population distribution. Another important result were obtained 
from the study of the GU alternative of distribution: GU (extreme values of type I) is not general 
enough to agree with observed data. 

Second analysis was conducted using whole avaliable data (20000 samples - of generations 
- every which 46 observed values of r2), a pool of over 50 PDFs as alternatives of distribution, and 
three statistics (C-S, A-D & K-S) for measuring the agreement with observed data. The pool of 
distributions were easily shortened at Beta, Johnson, Kumaraswamy, Pert, Power, Reciprocal, 
Triangular and Uniform (bounded) and Fisher-Tippett, Pareto and Log-Pearson type III 
(generalized). The study (conducted using EasyFit) shown that the Fisher-Tippett distribution 
(generalized extreme value) is general enough to agree with observed data in 98.8% of the cases at 
1% risk being in error. 
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The shape (k), scale (β) and location (λ) parameters of FT distribution were estimated (using 
MLE) with EasyFitXL for every generation (0..2000) and strategy (PP, PT, PD, TP, TT, TD, DP, 
DT, DD). Statistica were used for exponential smoothing. Following three figures gives the 
estimation results (no smooting here); on the abscissa are the generation and on the ordinate are the 
arameters values. p  

 S-10

http://itl.nist.gov/div898/software/dataplot/ftp/homepage.htm
http://www.mathwave.com/
http://www.mathwave.com/easyfitxl-distribution-fitting-excel.html
http://www.statsoft.com/


 
Shape k=k(G) 

 

 
Scale β = β(G) 

 

 
Location λ = λ(G) 

 

FT(r2; k,β,λ):Fisher-Tippett distribution of evolution's objective 
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In the obtained results (for k, β, and λ) a search for trend were conducted. Following table 
gives the obtained results. 

SS k(G) = a0 + a1·G β(G) = a0 + a1·G Trend λ(G) a0 a1 a2 
PP -0.1912 -1.47·10-6 3.541E-3 5.5E-9 0.89357 1.82·10-4 0.867
PD -0.0961 3.12·10-7 2.983E-3 1.9E-9 0.89422 1.55·10-4 -0.344
TP -0.0833 1.24·10-7 3.192E-3 8.9E-10 0.89333 1.54·10-4 -0.213
TT -0.1476 5.58·10-7 3.072E-3 2.9E-9 

λ(G) = a0 + a1·ln(G+a2) 
 

0.89286 1.40·10-4 -0.348
PT -0.2108 1.08·10-6 2.996E-3 8.2E-10 λ(G) = a0 + a1·ln(G) 0.89309 1.69·10-4  
TD -0.1352 -1.47·10-6 3.419E-3 7.9E-9 0.89465 6.84·10-4 0.117
DP -0.0193 -1.32·10-6 2.730E-3 7.1E-9 0.88916 2.02·10-4 0.171
DT -0.0797 -1.35·10-7 2.296E-3 6.1E-10 0.89016 3.19·10-4 0.151
DD -0.0207 -9.52·10-7 2.745E-3 5.6E-9 

λ(G) = a0 + a1·pow(G,a2)

0.89173 2.93·10-4 0.172
The trend equations for shape, scale and location were used to plot the trend of PDFs. 

Following figures depicts the PDFs for three strategies (out of nine) where from right to left axis is 
evolution objective (r2) and in perspective axis - from 0 to 5 - is log10(G). 

0.8 8 70.8 9 20.8 9 70.9 020.9 07

1

2

3

4

5

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 00
1 1 0
1 2 0
1 3 0
1 4 0

1 5 0

1 6 0

 
FT-PPPDF 

0.8 8 70.8 9 20.8 9 70.9 020.9 07

1

2

3

4

5

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 00
1 1 0
1 2 0
1 3 0
1 4 0

1 5 0

1 6 0

FT-TTPDF 

0.8 8 70.8 9 20.8 9 70.9 020.9 07

1

2

3

4

5

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 00
1 1 0
1 2 0
1 3 0
1 4 0

1 5 0

1 6 0

FT-DTPDF 
Using again the trend equations for shape, scale and location the 95% and 5% probability borders 
(from CDF) were obtained. Note that the chance to be upper to 95% border are reserved only for 
5% of the observed cases (lucky lottery) and the chance to be below 5% border are reserved for 
95% of the observed cases (unlucky lottery). Next two figures depict these borders. 
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Using estimations for shape, a statistic regarding the type of the extreme modeled by the 

Fisher-Tippett distribution were constructed (next table - observed cases and percents).  
Type of the extreme PP PT PD TP TT TD DP DT DD 

I (|k|<10-2) ≈ Gumbel 
778 
(3.9%) 

0 
(0%) 

317 
(1.6%) 

63 
(0.3%) 

23 
(0.1%) 

992 
(5%) 

3237 
(16.2%) 

1091 
(5.5%) 

292 
(1.5%) 

II (k>10-2) = Fréchet 
324 
(1.6%) 

0 
(0%) 

299 
(1.5%) 

0 
(0%) 

36 
(0.2%) 

2158 
(10.8%)

9012 
(45.1%) 

1619 
(8.1%) 

0 
(0%) 

III (k<-10-2) = Weibull
18899 
(94.5%) 

20001 
(100%)

19385 
(96.9%)

19938 
(99.7%)

19942 
(99.7%)

16851 
(84.3%)

7752 
(38.8%) 

17291 
(86.5%)

19709 
(98.5%)

We can note that (in average) in the best case Gumbel is observed below 4%, Fréchet in 
about 7.5%, and Weibull in over 88% of the cases. Also, the table shows that the DP strategy is the 
only one with dominance of extreme type II values (Fréchet). 
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The distribution law for relative moments of evolution 
Using generations in which evolution occurs, a transformation like in following table were 

applied. 
Generation number 0 15 136 188 246 528 5423 11887 
Evolution moment 1 16 137 189 247 529 5424 11888 
Time till the next evolution 15 121 52 58 282 4895 6464 ? 
Relative time frame 15.00 7.56 0.38 0.31 1.14 9.25 1.19 - 

Data from run 1 (of 46) using DP strategy (PCB_5108_evo.txt data file) 
First, an answer for "Which distribution follows the relative moments of evolution 

independent on evolution strategy?" were given. 11347 relative moments of evolution were 
obtained joining together all 46 runs and 9 strategies. EasyFit software were used having over 65 
alternatives for distribution and three statistics (C-S, A-D, K-S) for measuring the agreement with 
observed data. Following table contain first three distributions sorted by rank of agreement by C-S 
statistic. 

The most probable distribution laws for relative moments of evolution (all data) 
Dist\Stat  K-S pK-S Rank A-D pA-D Rank C-S(df) pC-S Rank
Log-P-3 0.01197 0.07683 1 2.4264 0.05617 1 41.731(13) 7.3E-05 1
Burr 0.01635 4.57E-03 3 6.7901 3.23E-04 3 46.345(13) 1.25E-05 2
Burr-4P 0.01592 6.27E-03 2 6.0813 7.48E-04 2 51.408(13) 1.71E-06 3
Dist: Distribution law; Stat: Statistic; Rank: Rank of the statistic in the list of 65 alternatives
Log-P-3: log-Pearson of type III 

The results from the above table strongly suggest that if there is a distribution law out of the 
65 alternatives, then it is LP3 (only C-S rejects the agreement with Log-P-3 at 5% risk being in 
error; all other distributions are rejected at 5% risk being in error by all three statistics). 

Same experiment was conducted for observations coming from a given strategy (nine 
samples). Agreement with Log-P-3 was measured (table below). 

SS nr.Obs K-S pK-S A-D pA-D C-S/df pC-S 
TT 1379 0.02284 0.46 0.63251 0.47 12.3/10 0.27 
TD 1429 0.01224 0.98 0.23477 0.75 3.3064/10 0.97 
TP 1318 0.02691 0.29 1.2118 0.24 14.35/10 0.16 
DT 996 0.02845 0.39 0.73496 0.41 10.628/9 0.30 
DD 1084 0.01919 0.81 0.34184 0.66 8.1401/10 0.62 
DP 851 0.02416 0.69 0.6234 0.47 6.8598/9 0.65 
PT 1463 0.0203 0.58 0.70531 0.43 12.512/10 0.25 
PD 1474 0.03055 0.13 0.93998 0.33 8.6564/10 0.56 
PP 1353 0.01212 0.99 0.23201 0.75 3.5574/10 0.97 

SS (DD, DP, DT, PD, PP, PT, TD, TP, TT): strategy 
Stat (nr.Obs, K-S, pK-S, A-D, pA-D, C-S(df), pC-S): statistic 

The agreement from table above is excellent - no rejection at 1%, 5% and 10% risk 
being in error; two rejections at 20% risk being in error (pK-S for PD & pC-S for TP) from 27 
cases. Thus, there is no statistical evidence to reject the hypothesis that the relative moments 
of evolution follow the log-Pearson of type III distribution. More, the agreements from table 
above correlated with C-S disagreement for all data joined together suggests that log-Pearson 
of type III is the distribution law for relative moments of evolution, and its parameters 
depends on selection and survival strategy. 
Degeneration of log-Pearson type III to uniparametrical for describing relative moments of evolution 

The values of shape (α), scale (β) and location (γ) from MLE for all 9 strategies were related 
one to each other in the series. Following relations were found statistically significant: 
÷ α = 8.77·γ - 68.3 (r = 0.994); 
÷ β = -0.14 - 144·γ-2.57 (r > 0.999); 

New values for location were obtained from maximization of MLE for LP3(x; 8.77·γ - 68.3, 
-0.14 - 144·γ-2.57, γ). Agreements were measured again using C-S, A-D and K-S statistics for the 
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new estimations of α, β and γ. The following table gives the new locations, 3-parametrical and 
uniparametrical Log-P-3 MLE scores and p values measuring agreements in these two cases.  

SS nr.Obs MLE pK-S pA-D pC-S γuniparametrical 
TT 1379 150.1 146.3 0.46 0.09 0.47 0.17 0.27 0.12 17.171 
TD 1429 324.0 323.9 0.98 0.98 0.75 0.74 0.97 0.77 16.011 
TP 1318 192.9 192.4 0.29 0.30 0.24 0.19 0.16 0.10 12.758 
DT 996 -328.5 -335.3 0.39 0.47 0.41 0.52 0.3 0.55 11.640 
DD 1084 -72.80 -72.80 0.81 0.88 0.66 0.66 0.62 0.47 36.364 
DP 851 -387.4 -390.5 0.69 0.14 0.47 0.15 0.65 0.21 33.160 
PT 1463 401.1 401.3 0.58 0.68 0.43 0.46 0.25 0.36 15.347 
PD 1474 317.7 316.8 0.13 0.08 0.33 0.24 0.56 0.44 16.216 
PP 1353 140.4 140.2 0.99 0.90 0.75 0.64 0.97 0.80 17.180 
MLE, pK-S, pA-D, pC-S: first column for three-parametrical, second for uniparametrical
The analysis results given in the above table give no statistical reason to reject the 

hypothesis that the distribution law of relative moments of evolution is a uniparametrical 
degeneration of log-Pearson of type III distribution and the location parameter is a characteristic of 
selection and survival strategy chousen. 

Using the values for γuniparametrical, mean, mode, median, standard deviation, skewness and 
kurtosis excess calculated using the obtained probability density functions a principal component 
analysis of these values were conducted using Statistica software.  

The figure below depicts this analysis. The figure reveals relatives between PP & TT and 
TD & PD strategies. 
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Figure: First two (principal) factors in values of γ, μ, μ̂ , μ~ , σ, γ1, and γ2 

 
The distribution law for number of evolutions  

Ten statistical experiments were conducted, one with all data together and 9 - one for every 
strategy separately. Number of evolutions in time frame from generation 0 (initial) to generation 
20000 (end of the simulation) in every independent run (46 independent runs) were the observable. 
Sample of the observable has 46 observations for every strategy separately and 414 observations in 
all together. EasyFit software was used to conduct the experiment of agreement with the alternatives 
of distribution. Joining the results of ranks by statistic for all 10 experiments, Fisher-Tippett 
(Generalized Extreme Values) distribution were recorded with a rank of 284, followed at distance 
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by the rest of alternatives (over 420 is the rank of the next alternative). Hypothesis of distribution by 
Fisher-Tippett law was formulated for the number of evolutions. Very good agreements were 
observed between observations of number of evolutions and Fisher-Tippett distribution law 
(following table). 

Agreement between Fisher-Tippett distribution and number of evolutions in independent runs of GA 
Strategy nr.Obs K-S PK-S A-D PA-D C-S/df PC-S 
TT 46 0.0924 0.7931 0.4183 0.6028 5.17/5 0.3956 
TD 46 0.1199 0.4859 0.5976 0.4877 3.57/4 0.4671 
TP 46 0.0454 0.9999 0.0818 0.8972 0.96/5 0.9661 
DT 46 0.0632 0.9873 0.2303 0.7527 1.27/5 0.9381 
DD 46 0.0615 0.9906 0.215 0.7665 0.72/5 0.9816 
DP 46 0.0954 0.7612 0.2766 0.7127 3.76/4 0.4389 
PT 46 0.0712 0.9608 0.2052 0.7754 4.23/5 0.5171 
PD 46 0.0634 0.9869 0.1693 0.8090 0.99/5 0.9632 
PP 46 0.0665 0.9787 0.2428 0.7417 0.69/5 0.9835 
All 414 0.0342 0.7066 0.307 0.6875 7.14/8 0.5218 

The agreement of Fisher-Tippett and observed data is very good. There are no rejections of 
the null hypothesis at risks being in error from 1% to 20%. More, the average agreement measured 
by K-S statistic is 86.5%, 72.3% when A-D is used, and 71.7% for C-S statistic. Lowest agreement 
is for TT when C-S is the measure of (39.6%), and for TD when K-S and A-D has lowest p values 
(48.6% and 48.8 respectively). MLE estimations for shape (k), scale (β) and location (λ) parameters 
of Fisher-Tippett distributions as well as their common statistics are given in the following table. 

Statistics of Fisher-Tippett distributions givingthe number of evolutions to optimum 
Strategy F-T(α; β; γ) distribution μ μ̂ μ~  σ γ1 γ2 
TT F-T(-0.0771; 8.0028; 26.929) 31.0 28 29.8 9.38 0.739 0.849
TD F-T(-0.19367; 8.9378; 28.367) 32.1 30 31.5 9.44 0.276 -0.095
TP F-T(0.04267; 8.7648; 24.208) 29.7 24 27.4 11.93 -1.420 3.975
DT F-T(-0.0309; 7.0811; 18.775) 22.7 19 21.4 8.74 0.966 1.635
DD F-T(-0.30349; 9.3813; 21.38) 24.6 25 24.6 9.26 -0.079 -0.289
DP F-T(-0.27344; 8.0192; 16.622) 19.5 19 19.4 8.05 0.013 -0.280
PT F-T(-0.15998; 8.6245; 29.02) 32.8 31 32.1 9.35 0.398 0.074
PD F-T(-0.12837; 9.3279; 28.721) 33.0 30 32.1 10.39 0.520 0.299
PP F-T(-0.24824; 9.8865; 26.7) 30.4 29 30.2 10.07 0.093 -0.249
All F-T(-0.16044; 9.6882; 24.161) 28.4 26 27.6 10.50 0.396 0.072
μ: Mean; μ : Mode; μˆ ~ : Median; σ: Standard deviation; γ1: Asimetry; γ2: Kurtosis exces

Results in the table above are close one to each other. In fact was not rejected the hypothesis 
that all numbers of evolutions come from same population (`All` entry in last two tables). Last table 
shows that one strategy - TP - has an extreme value of type II (Fréchet) distribution (α > 0), all 
others being of type III (Weibull, α < 0). 

A variance calculation using the data from the table above (σΣ2 = (σTT
2 + ... + σPP

2)/9 = 
9.682) allow separation of total variance (σAll

2 = 10.52) in variance inside strategies (9.682) and 
variance between strategies (4.072).  

 

Main conclusions 
÷ The use of molecular descriptors families on multiple linear regression opens a natural pathway to 

do the optimization of the regression by using of a genetic algorithm; 
÷ The classical type of genetic algorithm designed and implemented evolutes relatively fast near to 

the optimum (in the conducted experiment PDF & CDF of the determitation coefficient were 
obtained; probabilities from CDF to obtain 99% from the optimum in 1000 generations are as 
follows: TD - 55%, PD - 67%, PP - 68%, TP - 73%, PT - 78%, TT - 80%, DD - 87%, DP - 95%, 
DT - 97%); 
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÷ Evolution using different selection and survival strategies creates populations of genotypes living 
in the evolution space with different diversity and variability; under a series of criteria of 
comparisons (number of genotypes, number of phenotypes, number of associations in 
regressions, top of 23 occurences from 46 runs of above listed, etc), these populations were proof 
to be gouped and the groups were shown to be statistically different one to each other; 

÷ The investigated evolution objective (determination coefficient of the multiple regressions to 
maximum) was found to be distributed by the Fisher-Tippett law of extreme values; 

÷ Obtaining of the distribution laws given the opportunity to construct the Lucky lottery and the 
Unlucky lottery relative to the chosen strategy of selection and survival; 

÷ The relative moments of evolution were found to be distributed by a uniparametrical degeneration 
of log-Pearson of type III curve, and two pairs of relatives (for relative moments of evolution) 
were found in strategies (PP & TT and TD & PD); 

÷ Number of evolutions were found to be distributed by a Fisher-Tippett (again) distribution; 
÷ The dominance in the Fisher-Tippett distributions of evolution objective are Weibull type III 

extreme values excepting DP strategy which have dominance of Fréchet type II extreme values 
during evolution; 

÷ The Fisher-Tippett distributions of number of evolutions are Weibull type III extreme values 
(again) excepting TP strategy which have a Fréchet type II extreme values distribution. 

÷ The using number of evolutions the variance between strategies were found significalty smaller 
(4.072) than the variance inside strategies (9.682). 

 

Reprezentative papers published 
÷ On about what Can Be Done and what Cannot Be Done with Genetic Algorithms in Phylogenetic Tree and 

Gene Sequence Analyses. Lorentz JÄNTSCHI, Sorana D. BOLBOACĂ, Radu E. SESTRAŞ. Bulletin 
UASVM, Horticulture 65(1):63-70, 2008. 

÷ Hard Problems in Gene Sequence Analysis: Classical Approaches and Suitability of Genetic Algorithms. 
Lorentz JÄNTSCHI, Sorana D. BOLBOACĂ, Radu E. SESTRAŞ. Biotechnology & Biotechnological 
Equipment 23(2):1275-1280, 2009. 

÷ Classical Approaches of Genetic Algorithms and their Suitability. Lorentz JÄNTSCHI, Sorana D. 
BOLBOACĂ, Radu E. SESTRAŞ. Asian Journal of Chemistry 22(3):2275-2284, 2010. 

÷ Distribution Fitting 1. Parameters Estimation under Assumption of Agreement between Observation and 
Model. Lorentz JÄNTSCHI, Bulletin UASVM, Horticulture 66(2):684-690, 2009. ArXiv electronic library 
permanent link (July 16, 2009): http://arxiv.org/abs/0907.2829 (Subject: Statistics - Methodology). 

÷ Distribution Fitting 2. Pearson-Fisher, Kolmogorov-Smirnov, Anderson-Darling, Wilks-Shapiro, Kramer-
von-Misses and Jarque-Bera statistics. Lorentz JÄNTSCHI, Sorana D. BOLBOACĂ. Bulletin UASVM, 
Horticulture 66(2):691-697, 2009. ArXiv electronic library permanent link (July 16, 2009):  
http://arxiv.org/abs/0907.2832 (Subject: Statistics - Methodology). 

÷ Distribution Fitting 3. Analysis under Normality Assumption. Sorana D. BOLBOACĂ, Lorentz 
JÄNTSCHI. Bulletin UASVM, Horticulture 66(2):698-705, 2009. 

÷ Distribution Fitting 4. Benford test on a sample of observed genotypes number from running of a genetic 
algorithm. Lorentz JÄNTSCHI, Sorana D. BOLBOACĂ, Carmen E. STOENOIU, Mihaela IANCU, 
Monica M. MARTA, Elena M. PICĂ, Monica ŞTEFU, Adriana F. SESTRAŞ, Marcel M. DUDA, Radu 
E. SESTRAŞ, Ştefan ŢIGAN, Ioan ABRUDAN, Mugur C. BĂLAN. Bulletin UASVM, Agriculture 
66(1):82-88, 2009. 

÷ Meta-heuristics on quantitative structure-activity relationships: study on polychlorinated biphenyls. Lorentz 
JÄNTSCHI, Sorana D. BOLBOACĂ, Radu E. SESTRAŞ. Journal of Molecular Modeling 16(2):377-386, 
2010, DOI: 10.1007/s00894-009-0540-z. 

÷ A Study of Genetic Algorithm Evolution on the Lipophilicity of Polychlorinated Biphenyls. Lorentz 
JÄNTSCHI, Sorana D. BOLBOACĂ, Radu E. SESTRAŞ. Chemistry and Biodiversity, 2010, DOI: 
10.1002/cbdv.200900356. 

÷ A genetic algorithm for structure-activity relationships: software implementation. Lorentz JÄNTSCHI. 
ArXiv electronic library permanent link (June 26, 2009):  http://arxiv.org/abs/0906.4846 (Subject: Neural 
and Evolutionary Computing). 

http://arxiv.org/abs/0907.2829
http://arxiv.org/abs/0907.2832
http://dx.doi.org/10.1007/s00894-009-0540-z
http://dx.doi.org/10.1002/cbdv.200900356
http://arxiv.org/abs/0906.4846

