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In this paper an exploratory study of 40 table wines by proton nuclear magnetic resonance

spectroscopy and chemometric region-selection methods is presented. Several components of wine

have been identified and quantified. It is demonstrated how signal alignment procedures were

utilized to compensate for pH effects in the NMR spectra prior to the chemometric data modeling.

The analysis included region selection by interval partial least squares for regression to reference

data obtained from infrared spectroscopy. Accurate calibration models to the contents of ethanol,

glycerol, lactic acid, methanol and malic acid were established. For the more general combined

glucose/fructose infrared reference backwards interval partial least squares was introduced for

optimal interval selection in calibration. The aim of the paper is to show how pre-processing and

region-selection methods can assist in interpretation and quantification of chemical shift multiplets

in 1H NMR spectra of complex biological systems. The extension to NMR metabolomics is straight-

forward. Copyright # 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Wine is a relatively complex biochemical system primarily

consisting of water, ethanol, organic acids, and carbo-

hydrates. In addition to the main constituents a range of

aromatic compounds, polyphenols and colorants are present

in small quantities. They are important ingredients with

respect to quality characteristics such as taste and color [1]. In

recent years the composition of wine has been the subject of

increased focus because of demands from consumers

regarding the quality and authenticity. With respect to

authenticity, the isotope-based SNIF-Nuclear Magnetic

Resonance (NMR) method [2], by which the deuterium

(2H) to hydrogen (1H) ratio is determined with high

accuracy, is used in order to obtain an isotopic fingerprint

of ethanol. This ratio depends on the origin of the ethanol as

well as on the type and geographical origin of the grape. No

information about other components in the wine is obtained

via this method. 1H NMR spectroscopy is a strong tool for

assessing additional wine constituents, such as aromatics,

carbohydrates and acids can be detected and quantified by

this method. However 1HNMR spectra of even rather simple
ndence to: S. B. Engelsen, Quality & Technology, Depart-
ood Science, The Royal Veterinary and Agricultural Uni-
olighedsvej 30, DK-1958 Frederiksberg C, Denmark.
@kvl.dk
single-phase foods often result in complex spectra. For this

reason it is advantageous to analyze the spectra by multi-

variate methods like those developed in the field of

chemometrics. A quality parameter of particular interest

for wine is the ratio of malic to lactic acid, essential for the

sourness or flatness. To adjust the ratio between these acids

the wine producers employ malolactic fermentation. This

process is usually run to completion, as it is difficult to stop,

and malic acid is thus completely converted into lactic acid.

By mixing malolactic fermented wine with non-fermented

wine the desired ratio of these acids is obtained.

The ability of chemometric methods to align NMR spectra

enables easier andmore reliable identification of components

and thereby improved quantification using for example,

Partial Least Squares (PLS) factor models. Furthermore,

advanced versions of PLS like interval PLS (iPLS) and

backward interval PLS (biPLS) serve as efficient tools for

region selection. For the exploration of NMR data, region

selection is mandatory in order to include a full multiplet

(due to J-couplings) and is thus preferable to single variable/

sample-points selection algorithms. In NMR spectroscopy

one single chemical component can manifest itself at

different locations on the chemical shift axis. NMR spectro-

scopists can interpret the dominant andwell-defined spectral

features but not necessarily less intense resonances.

Advanced chemometric methods such as iPLS and biPLS

can assist in interpretation of such diverse and information
Copyright # 2006 John Wiley & Sons, Ltd.
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rich signals, especially in case of a limited number of samples

or when the relation between the independent block (NMR

spectra) and the dependent block (IR measured reference

values) is not strong. In this context iPLS is to be considered

as an extension of the exploratory nature of chemometric

data analysis.

Previously, the combination of chemometrics and 1HNMR

spectroscopy has successfully been employed for analysis of

beer [3,4], table wine [5] and fruit juice [6]. Wine and beer are

more complex systems than fruit juice, but slightly less

complex compared to blood and urine in regards to

information contents and diversity [7,8].

The present work is an explorative study of 1H high-

resolution NMR spectra of 40 different wines. Exploratory

analysis of the data will be used to confirm our (a priori)
Table I. List

No. Name

1 Gewurztraminer, Martin Zahn, Vin Dálsace.
2 Maison Guillot, Merlot, Vin de Pays Dóc.
3 Col di Livido, Copertino Riserva, (Negroamaro/Malvasia/
4 Sylvaner, Dietrich, Vin Dálsace.
5 Sabika, Tempranillo/Cabernet sauvignon, Utiel-Requena.
6 Muscadet de Sevre et Maine, Loire.
7 Santa Rosana, Mendoza, Cabernet sauvignon/Merlot.
8 Vendange, Saint-Chinian rosé.
9 Hardy VR, Shiraz.
10 Pinot Noir, Martin Zahn, Vin D’Alsace.
11 Il Tasso Chianti, Toscana, Sangiovese/Canaiolo.
12 Torres, Viña Esmeraldi.
13 False Bay, Cabernet sauvignon/Cinsault, Stellenbosch.
14 Savanha, Sulanga, Chardonnay.
15 Santa Ana, Cabernet sauvignon/Merlot, Mendoza.
16 Quintana, Vinho de mesa tinto.
17 Sylvaner, Laugel, Vin Dálsace.
18 Hardy VR, Cabernet sauvignon rosé.
19 Riesling, Laugel, Vin Dálsace.
20 Château Fourcas Dupre, Appellation Listrac Médoc-Contro
21 Pierre André, Appellation Bourgogne Contrôlée 100% Pino
22 A.Amarone della Valpoicella Clássico. Denominazione di o

Mix of Molinara Corvina Rondinella
23 Domaine Guillaumette. Appellation Costières de Nı̂mes C

70% Syrah and 30% Grenache.
24 Finca La Celia. Mix of Cabernet Sauvignom y Tempranillo
25 Los Molinos. Felix-Solis. CRDO Valdepeñas.
26 Chateau Toutigeac. Appellation Bordeaux Contrôlée. Mix

Cabernet Sauvignon and Merlot.
27 Tegole. Indicazione Geografica Tipica Toscana.
28 Farina. Amarone della Valpoicella Classico. Denominazion
29 Same as wine 21
30 Otonal. Bodegas Olarra. Denominacion Origen Calificada R
31 Glen Ellen. California. Cabernet Sauvignon
32 Puteus. Denominazione di origine controllata Salice Salent
33 Castillo de Molina. Cabernet Sauvignon.
34 Baron Charles- Louis. Appellation Mercurey Contrôlée (Bo
35 Warburn. Shiraz
36 Agramont. Denominacion de Origen Navarra. Mix of Cabe
37 Plovdiv Region. Cabernet Sauvignon
38 Vidigal. Vinho Regional Estremadura. Reserva
39 Same as wine 22
40 Zalze. Wine of Origin Western Cape. Mix of Cinsault, Rub

Cabernet Sauvignon.

Copyright # 2006 John Wiley & Sons, Ltd.
knowledge about the chemical shifts of the various

components. In order to remove the major part of chemical

shift scatter induced by pH differences peak alignment

procedures have to be employed [9–14]. Specifically we will

employ Co-shifting and Correlation Optimized Warping

(COW) [9,10] for signal alignment in this paper, removing

pH-induced chemical shift dependencies in the NMR

spectrum. Principal component analysis (PCA) and PLS

factor models will be used for analysis, and (backwards)

interval PLS [15,16] will be used for range/variable

identification and selection. Several components in wine

will be calibrated against reference measurements from

infrared (IR) spectroscopy and a few representative

examples will be treated in detail to demonstrate the

capabilities of the methods employed.
of wines

Country Type

Germany White
France Red

Montepulciano). Italy Red
Germany White
Spain Red
France White
Argentina Red
France Rosé
Australia Red
Germany Red
Italy Red
Spain White
S. Africa Red
S. Africa White
Argentina Red
Portugal Red
Germany White
Australia Rosé
Germany White

ˆlée France Red
t-Noir grapes France Red
rigine controllata. Italy Red

ontrôlée. Mic of France Red

Argentina Red
Spain Red

of Cabernet Franc, France Red

Italy Red
e di origine controllata Italy Red

France Red
IOJA Spain Red

USA Red
ino. Italy Red

Chile Red
urgogne) France Red

Australia Red
rnet Sauvignon-Tempranillo. Spain Red

Bulgary Red
Portugal Red
France Red

y Cabernet and S. Africa Red
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2. EXPERIMENTAL

1H NMR spectra were acquired on a Bruker Avance 400

spectrometer, operating at 400.13MHz for protons, equipped

with a 5mm BBI probe with Z-gradients. All experiments

were performed at 298K using the water pulse sequence [17]

that allows for efficient suppression of the water resonance

by pre-saturation followed by a composite pulse. All spectra

were acquired using a recycle delay of 5 s, 1536 scans and a

dwell time of 60.4ms for acquisition of 32 k data points

resulting in a total acquisition time of 1.979 s. Before Fourier

transformation the data set were zero filled to 64 k points and

apodized by Lorentzian line-broadening of 0.3Hz. Spectra

were processed in Xwin-NMR and thereafter analyzed using

Matlab with in-house routines and unscrambler. Samples

were prepared from 495ml wine and 55ml of TSP-d4

(5.8mM) in D2O. All spectra are referenced to TSP-d4

(0.0 ppm) prior to warping. The IR-data are obtained using

the WineScan instrument from Foss Analytical A/S. A

complete list of the 40 wines is given in Table I.

To correct for spectral misalignments due to pH differ-

ences in the wines two signal pre-processing methods were

employed: Correlation optimized shifting (called Co-shift-

ing) and Correlation Optimized Warping (COW) [9,10]. In

Co-shifting the sample spectra are aligned towards a

reference spectrum by simple ‘left-right’ shifting of the

signal vector in discrete steps on the equidistant, discrete

signal index within a predetermined window. For each

position the correlation between sample and reference is

computed and the optimal alignment pre-processing is
5

10

1.02.03.04.05.0

5

10

(a)

(c)

Shift (ppm)

Figure 1. (a) Raw (uncorrected) 1H NMR s

raw spectra to show the pH-related shift

Warping (COW)-corrected (segment¼ 1

points¼ 0.0158 ppm) 1H NMR spectra. (d)

show improvement.
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expressed by the maximum correlation coefficient. The same

approach is taken in COW, except that sample and reference

signal are divided into segments (usually of equal length)

and a slack window around the segment boundaries is

defined. The optimal alignment pre-processing is found via a

linear programming optimization [10]. Co-shifting could be

categorized as a linear correction, whereas COW can be seen

as a more flexible non-linear (or segment wise) pre-

processing method.

iPLS is employed for region selection in the information-

rich 1H NMR spectrum [11]. This is a variation of the normal

PLS regression method aimed at variable interval or region

selection with a strong emphasis on visual exploration of

spectroscopic data. When using iPLS, the NMR spectrum is

divided into rather arbitrary segments, usually of equal size.

The next step builds regression models—typically

represented by leave-one-object-out cross-validation predic-

tion errors—and compares the predictive performance of the

full-spectrum model with all the local one-segment models.

This gives the analyst an immediate indication of which

regions are correlated with the dependent/response variable

in the regression equation. However, since the segments are

chosen on an arbitrary basis, user interaction is required to

safeguard against chance correlations or to replace the

segment boundaries slightly into more sensible positions, for

example, to capture a full multiplet in NMR spectroscopy.

Note that the iPLS approach differs from the so-called

binning method for data reduction. The segmentation step in

iPLS is not a reduction of the number of variables; it is merely

a technique to obtain an overview of a large number of
3.553.603.65

(b)

(d)

Shift (ppm)

pectra of 40 table wines. (b) Zoom in

problem. (c) Correlation Optimized

00 points¼ 0.0631 ppm; slack¼ 25

Zoom in COW-corrected spectra to
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(possibly diverse) variables in complex data sets such as

high-resolution NMR spectra and to avoid unnecessary

interferences. Once the interesting region(s) is (are) detected,

all spectroscopic information is available for example,

alignment by Co-shifting or COW to improve the interpret-

ation could be the next step, a route that is pursued in this

manuscript.

Backward interval PLS (biPLS) [16] is a further develop-

ment of the concepts behind iPLS, designed to assist the user

in the selection or optimization of several spectral segments

for prediction. It functions similarly to iPLS, but discards one

segment at a time and employs genetic algorithm to select an

optimal combination of a predefined number of segments.

We illustrate the potential of biPLS in this 1H NMR study of

wines to improve the quantitative model for combined

glucose/fructose content.
8642
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glycerol contents in wine from spectral range 3.
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3. RESULTS AND DISCUSSION

The table wines in this study are analyzed ‘as is’, except for

the addition of D2O and chemical shift reference (TSP-d4).

The experiments have therefore been performed at the

wines’ natural pH value. A wide range of highly specific

information is obtained by 1HNMR spectroscopy. One of the

problems in analyzing complex foods and beverages, or

biological samples in general, is to assign and quantify the

resonances of individual protons. By far the most dominant

signal in 1H NMR of wines stems from ethanol and water.

Figure 1a shows the full spectral range used in this paper

(0.5–6.0 ppm) and Figure 1b zooms in on the ethanol quartet

at 3.65 ppm. A large shift in the peak positions, which is

related to the pH differences, is observed. To correct this

alignment problem, COW was applied to the whole spectral
1086
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Table II. PLS calibrationmodel results for various components in the wines, based on leave-one-out cross-validation. F¼ number

of Factors used, R2¼ squared correlation coefficient� 100%, RMSECV¼Root Mean Squared Error of Cross-Validation pre-

diction, Mean/std.¼mean and standard deviation of the reference values

Component Mean/std (g �L�1) Model type Spectral range (ppm) F RMSECV (g �L�1) R2 (%) Assignment

Glycerol 8.12/1.66 Aligned data 0.5–6.0 2 1.22 41 CH2þCH
iPLS� 3.5–3.6 2 0.43 92 CH2

Ethanol 12.72/1.00 Raw data 0.5–6.0 7 0.18 94 CH3þCH2

Aligned data 0.5–6.0 3 0.44 69 CH3þCH2

iPLS� 3.6–3.7 6 0.36 79 CH2

iPLS� 1.10–1.25 6 0.31 84 CH3

Lactic acid 1.03/0.51 Aligned data 0.5–6.0 4 0.44 27 CH3þCH
iPLS� 1.3–1.6 3 0.10 96 CH3

Malic acid 0.67/0.76 Aligned data 0.5–6.0 1 0.70 12 CH2þCH
iPLS� 2.7–2.9 1 0.17 94 CH2

Methanol 0.13/0.07 Aligned data 0.5–6.0 2 0.05 48 CH3

iPLS� 3.3–3.4 4 0.03 75 CH3

Glucose/fructose 2.90/4.20 Aligned data 3.9–4.7 2 1.22 73 CH2þCH
biPLS�� 1: 4.09–4.12 4 0.96 83 CH2þCH

2: 4.22–4.25
3: 4.12–4.15
4: 3.96–3.99

�Model based on ppm-range selected by iPLS for full range, adjusted by visual inspection around the interval selected.
��Model based on ppm-ranges automatically selected by biPLS; ordered according to importance.
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range. A clear improvement in appearance is evident in

Figure 1c–d.

To illustrate the potential of iPLS in exploratory data

analysis a model for glycerol prediction in the 40 wines is

made using 25 equidistant intervals. Figure 2a shows the

result; using the entire spectral range (0.5–6.0 ppm) a PLS

model to glycerol with two factors gives a leave-one-sample-

out cross-validation error of 1.22 g �L�1 (Figure 2a, horizontal
0.0
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contents for COW-corrected spectra.
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broken line) and a squared correlation coefficient between

prediction and IR reference of 0.41 (see Table II). However,

the results indicate a better prediction result for segment

number 12, and visual inspection of the iPLS model results

and data suggests the use of the interval 3.5–3.6 ppm for

glycerol quantification. This interval is in accordance with

the anticipated chemical shift for half of the CH2-protons in

glycerol around 3.56 ppm [8]. Using this interval resulted in a
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significantly improved 2-factor model with an error of

0.43 g �L�1 (Figure 2b) and a squared correlation coefficient

of 0.92 (Table II). It is noted that red wine contains more

glycerol than white and rosé wines—in some cases almost

twice as much (Figure 2c).

To illustrate the difference between exploratory data

analysis and pure quantification Figure 3 shows the results of
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PLS calibration models for ethanol on raw (un-aligned) and

COW-aligned data. The 7-factor model for the raw data has a

leave-one-sample-out cross-validation error of 0.18 g �L�1

and a squared correlation coefficient between predicted and

IR reference of 0.94 (Table II). In contrast, the alignment-

corrected data yielded a 3-factor prediction model that

performs worse: 0.44 g �L�1, 0.69 (Table II). For this major/
136852322434

hift (ppm)

val number (COW corrected spectra),

ethanol prediction. In each interval the

d PLSmodel is displayed. Horizontal line

7 2 1 5 3 4 5 3 2 2 1 2 

ift (ppm) 

rval number (COW-corrected spectra),

lactic acid prediction. (b) Leave-one-

s a function of PLS model complexity

spectral range 1.3–1.6 ppm. (c) Cross-

cid contents.
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dominant component the alignment was thus not beneficial.

The many-factor model for the raw spectra was required to

correct for the non-linearity in the signal introduced

primarily by peak misalignment. This non-linearity is

supported by an iPLS analysis for ethanol on the align-

ment-corrected data set (see Figure 4). The important spectral

areas are readily identified, but the local models for the

quartet (3.65 ppm) and triplet (1.17 ppm) still have a high

model complexity of six PLS factors (Table II). This indicates

that the leave-one-out cross-validation method might not be

sufficiently rigorous as a validation method in order to

prevent overfitting for the ethanol signals in these wine

samples. However, this subject will not be further pursued in

this paper. We will only focus on minor components like

glycerol for which the signal contributions of the aligned
lac

(a)

(b)

(c)

(d)

(e)

1.51.6

(f)

Shift (p

Figure 6. (a) Lactic acid and ethanol

correction. (b) Region below 1.35 ppm

shift correction by ‘cutting’ ethanol tri

of the lactic acid region. (d) Mergin

(e) PLS regression vector for ethanol. (

acid.
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COW spectra were more parsimonious and better interpret-

able.

Besides glycerol and ethanol, other components in wine

include small organic acids that are very important for the

taste profile of the wine. One of these is lactic acid, and the

results of PLS quantification are shown in Figure 5 and

Table II, a significant improvement obtained by alignment of

the spectra. A detailed picture of the methyl resonance in

lactic acid is shown in Figure 6. Even though the full data set

has been warped, the doublet of CH3 is still not well aligned

due to its strong dependence on pH. Next to this resonance is

the triplet originating from the 13C coupled CH3-group in

ethanol which is very well aligned (Figure 6c,d). By

additional Co-shifting of the lactic acid part of the spectrum

an excellent alignment is obtained. Using a priori chemical
tic acid | ethanol (CH3)

1.31.4
pm)

region before a global alignment

is set to zero before local co-

plet. (c) Local co-shift alignment

g of the two corrected regions.

f) PLS regression vector for lactic
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superimposed on the average spectrum for methanol prediction for 25 intervals.

(b) iPLS-plot for 70 intervals. (c) Zoom in on methanol spectral range 3.3–3.4 ppm.

(d) Cross-validation predicted versus reference methanol contents.
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knowledge the resonance doublet and triplet can be isolated

and near optimally aligned, which is supported by the fact

that the regression vectors for the two separate models show

very little interference (Figure 6e,f). A similar procedure was

applied for malic acid (Table II), the other component of

interest in the malolactic fermentation of wines. It is noted

that the content of malic acid is generally below 0.5 g �L�1 in

red wines and around 2g �L�1 in white and rosé wines. For

lactic acid the content is usually a factor of 3–4 higher in

red wines than the 0.4 g �L�1 level found in white and rosé

wines.

To further illustrate the exploratory nature of iPLS a

model for methanol is developed. Thus far, 25 intervals

have proven sufficient to assist the spectroscopic knowl-

edge in selection of the appropriate multiplet. As shown in

Figure 7a, this is not the case for methanol in which case the

model identifies the same interval as glycerol (see Figure 2)

with a relatively large prediction error (taking into
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consideration a factor of 10 difference in concentration

for glycerol and methanol for table wines). A subsequent

‘zoom’ into the problem was investigated by adding more

intervals (here subjectively set to 70) over the same spectral

range, requiring only a (modest) increase in computation

time. Based on Figure 7b the methanol singlet (Figure 7c)

was easily found making quantification of this component

in the wines possible (Figure 7d), and no additional manual

specification was necessary in this case. This iterative/

interactive data exploration nicely illustrates the potential

of iPLS when reference values are available. As an example,

the same search refinement led to the identification of a

second glycerol resonance around 3.56 ppm by isolating

it from the strong ethanol signal in the neighboring

region.

In the IR reference data available for our 40 table wines an

indicator variable ‘combined content of glucose and fructose’

was available. Information about these compounds is
3.904.069
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Figure 9. Components identified in 1H NMR spectra of a red (bottom line) and a white (top line) wine. (a) Whole

spectrum, (b) Alifatic region, (c) Carbohydrates, (d) Anomers, (e) Aromatic compounds and proteins plus the

spectrum of pure trans-resveratrol (lowest line).
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expected to reside in slightly different regions of the

carbohydrate region 3.9–4.7 ppm. As mentioned in the

introduction, wines can be considered as relatively complex

biological systems, and the number of possible and expected

compounds in this region is considerable. Figure 8a and

Table II show the results for iPLS; no obvious best interval is

found. biPLS is an automated chemometric tool used to

improve predictive performance, which may lead to better

interpretability of the simpler/reduced models. The biPLS

model results for combined glucose and fructose are shown

in Figure 8b,c; four intervals are selected, giving a prediction

error of 0.96 g �L�1 and a squared correlation coefficient of

0.83.

Besides the components analyzed in the previous parts of

this work, additional chemical components can be identified

in the NMR spectrum as displayed in Figure 9. The full NMR

spectra is dominated by the peaks from ethanol and water

(partly suppressed), but a detailed view of specific regions

reveals resonances from other organic acids such as succinic

and gallic acid as well as various carbohydrates such as a-

and b-anomers of fructose and glucose. All these resonance

peaks can be used for direct calibration as they are

quantitatively accurate. In IR-spectroscopy limited spectral

resolution in a large part of the spectrum (i.e., the fingerprint

region from approximately 400–1500 cm�1) prevents accu-

rate assignment without prior calibration. Moreover, the

performance of multivariate calibration models applied to

vibrational spectroscopy will sometimes rely on indirect

correlations and thus depend on the composition and

homogeneity of the data set. With complex and varying

samples like our wines a direct, chemically based technology
Copyright # 2006 John Wiley & Sons, Ltd.
like NMR provides complementary information. Even a

minor peak that is tentatively assigned [18] to trans-

resveratrol can be observed. This stilbene compound has

been related to health-beneficial properties, including the so-

called French paradox [19].
4. CONCLUSIONS

In this study a collection of table wines has been subjected to

analysis by 1H NMR spectroscopy and various PLS

regression variations. Since the pH value of the wines were

not adjusted prior to NMR analysis, the spectra required pre-

treatment to correct for shift differences induced by

variations in pH. Several important components such as

malic acid and glycerol were identified and their contents

calibrated against results from IR spectroscopy using PLS

methods. In general, the combination of NMR spectroscopy

and chemometrics is a promising partnership for detailed

wine analysis. Such analysis may be performed in any stage

of the wine manufacturing allowing for thorough evaluation

of every step in the process.

The next obvious step, automatic NMR region/multiplet

selection by algorithmic repositioning of the intervals, is not

pursued in this paper. However, the complexity of most

biological systems will make this a challenging task, placing

high demands on factors such as the quality of the data and

the number of samples available. The automatic selection

will also be a function of proper multiplet alignment,

requiring the merger of, for instance, iPLS and COW. This

algorithmically very challenging concept will be the subject

of future research.
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