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Abstract: Modeling of metabolic pathway dynamics re-
quires detailed kinetic equations at the enzyme level. In
particular, the kinetic equations must account for me-
tabolite effectors that contribute significantly to the path-
way regulation in vivo. Unfortunately, most kinetic rate
laws available in the literature do not consider all the
effectors simultaneously, and much kinetic information
exists in a qualitative or semiquantitative form. In this
article, we present a strategy to incorporate such infor-
mation into the kinetic equation. This strategy uses fuzzy
logic-based factors to modify algebraic rate laws that ac-
count for partial kinetic characteristics. The parameters
introduced by the fuzzy factors are then optimized by use
of a hybrid of simplex and genetic algorithms. The re-
sulting model provides a flexible form that can simulate
various kinetic behaviors. Such kinetic models are suit-
able for pathway modeling without complete enzyme
mechanisms. Three enzymes in Escherichia coli central
metabolism are used as examples: phosphoenolpyru-
vate carboxylase; phosphoenolpyruvate carboxykinase;
and pyruvate kinase I. Results show that, with fuzzy logic-
augmented models, the kinetic data can be much better
described. In particular, complex behavior, such as allo-
steric inhibition, can be captured using fuzzy rules. The
resulting models, even though they do not provide addi-
tional physical meaning in enzyme mechanisms, allow
the model to incorporate semiquantitative information in
metabolic pathway models. © 1999 John Wiley & Sons, Inc.
Biotechnol Bioeng 62: 722–729, 1999.
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INTRODUCTION

Because of the rapid progress in molecular biology, the
underlying mechanisms of many biological processes have
been elucidated at the molecular level. These molecular
mechanisms can be combined to explain system behavior,
often in an intuitive manner. However, intuitive reasoning
becomes unsatisfactory as one demands more detailed ex-
planation of system behavior. Therefore, mathematical
modeling of biological systems is increasingly important for

understanding complex behavior at the systems level. Nu-
merous attempts have been reported to simulate or predict
system behavior based on individual mechanisms (Achs and
Garfinkel, 1977; Heinrich and Rapoport, 1974; Lee and Bai-
ley, 1984; Liao et al. 1988; Shuler and Domach, 1983). In
general, modeling of biochemical systems involves efforts
at two levels: (1) a component level involving description of
each molecular operation; and (2) a system level involving
interactions among each component. For metabolic systems,
the components are the enzymes, which interact with each
other according to the stoichiometry and enzyme kinetics.
Once the kinetic rate laws are known, they can be used in
pathway models, which take the following form:

dX

dt
= SV (1)

X is the vector of metabolite concentrations,S is the stoi-
chiometric matrix, andV is the vector of enzyme kinetic
rate laws. In metabolic systems, the stoichiometry is gen-
erally well characterized. However, the enzyme kinetic rate
laws are often incomplete, such that key characteristics (i.e.,
activation or inhibition) are missed, and thus the pathway
model [Eq. (1)] becomes unrealistic even at the qualitative
level. Therefore, it is important to develop enzyme kinetic
models that capture at least the qualitative characteristics of
metabolite effects on the enzymes.

Despite tremendous progress in understanding enzyme
actions in the past few decades, most enzyme kinetic studies
do not aim at developing kinetic rate expressions for the
purpose of pathway modeling. Therefore, kinetic equations
for enzymes are often incomplete, and most kinetic data are
not used to develop quantitative rate expressions. Further-
more, qualitative or semiquantitative information is com-
mon. For example, the effect of ATP onEscherichia coli
phosphoenolpyruvate carboxykinase (PCK) has been shown
to be biphasic: it accelerates the reaction at low concentra-
tions, whereas it inhibits at high concentrations (Wright and
Sanwal, 1969). Although it is possible to develop mecha-
nistic or empirical equations for describing the experimental
data, there is no simple and systematic way to capture such
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characteristics for the purpose of pathway modeling. This
article addresses this problem by using fuzzy logic-
augmented models and a hybrid of combinatorial and direc-
tional optimization algorithms.

Our goal is to provide a general approach to incorporate
qualitative or semiquantitative information into enzyme ki-
netic rate laws. Three enzymes inE. coli central metabolism
are used as examples: phosphoenolpyruvate carboxylase
(PPC); PCK; and pyruvate kinase I (PYKI). The resulting
models would capture the key characteristics of enzyme
kinetics, and thus will be suitable for use in pathway models
[Eq. (1)]. It should be emphasized that these rate laws are
meant to be descriptive, and no mechanistic information
will be gained by this approach. The fuzzy logic approach is
certainly not the only methodology suitable for this purpose.
It is chosen because of its conceptual simplicity and gener-
ality, as has been demonstrated repeatedly in multiple fields,
including medicine (Sproule et al., 1997; Wirsam and
Uthus, 1996), agriculture (Cassel-Gintz et al., 1997), and
biotechnology (Kennedy and Spooner, 1996; Mukherjee et
al., 1998;). Compared with other approximation techniques
(e.g., piecewise linear approximation, splines, etc.), a fuzzy
model offers two advantages. First, it is more flexible in
providing a smooth approximation to a complex nonlinear
relationship. Second, it explicitly describes qualitative
knowledge. In this work, a full integration of fuzzy model-
ing and mathematical modeling is accomplished.

METHODS

Fuzzy Logic-Based Modeling

A fuzzy logic-based model uses a set of fuzzy if–then rules
to capture the functional mapping relationship between a set
of input variables and an output variable. The rule’s ‘‘if’’
part (i.e., the antecedent) describes a fuzzy subregion and
the rule’s ‘‘then’’ part (i.e., the consequent) describes a
local model for the region. There are two major types of
fuzzy rule-based model for function approximation: the
Mamdani model (Mamdani, 1974,1976), and the Takagi–
Sugeno–Kang (TSK) model (Sugeno and Kang, 1988;
Takagi and Sugeno, 1985). Interpolative reasoning is used
to combine the output of multiple fuzzy rules whose ante-
cedents partially overlap. This process, which has also been
referred to as ‘‘fuzzy inference’’ or ‘‘approximate reason-
ing’’ in the literature, is analogous to linear interpolation.
Details of this reasoning process can be found in the litera-
ture (Yen et al. 1995).

Parameter Estimation Using the Hybrid Simplex
and Genetic Algorithm

Once the model is formulated, the parameters involved need
to be determined based on experimental data. We used a
hybrid of simplex and genetic algorithm (GA) by introduc-
ing the simplex method as an additional operator in the GA

(Yen et al., 1998). GAS are global search and optimization
techniques modeled from natural genetics, exploring search
space by incorporating a set of candidate solutions in par-
allel (Holland, 1975). The main benefit of GAs is that they
are less likely to be trapped in local optima, due to their
parallelism and randomness. The main disadvantage of GAs
are their high computational cost, because they typically
converge slowly. The simplex method (Nelder and Mead,
1965; Spendley et al., 1962) is a local search technique that
uses the current data set to determine the promising direc-
tion of search.

During the reproduction step of each iteration, the hybrid
approach applies the simplex method to a top percentage of
the population to produce new candidate solutions in the
next generation. The rest of the new population are gener-
ated using the GA reproduction scheme (i.e., selection,
crossover, and mutation). The hybrid method outperformed
the GA in terms of the speed of convergence and the quality
of solution (Yen et al., 1998).

RESULTS

Phosphoenolpyruvate Carboxylase

E. coli PPC catalyzes the carboxylation of phosphoenol-
pyruvate (PEP) to form oxaloacetate (OAA):

CO2 + PEP→ OAA + Pi

The experimental data (Fig. 1) show the following charac-
teristics (Izui et al. 1981): (1) the reaction rate exhibits a
hyperbolic function of PEP concentration; (2) without any
activator, the reaction proceeds at a very low rate; (3) ace-
tyl-CoA (ACoA) is a very potent activator; and (4) fructose
1,6-diphosphate (FDP) exhibits no activation alone, but it
produces a strong synergistic activation with ACoA. De-
spite such qualitative and quantitative information, no ki-
netic models were developed to capture these features.

Without considering the detailed molecular mechanism,
we attempted to fit these data using an algebraic model
based on the hyperbolic relationship between the reaction
rate (Vppc) and PEP:

Vppc = Vm

@PEP#

Km + @PEP#
(2)

where [ ] indicates the concenatration. Two activators,
ACoA and FDP, modulateVm by the following equation:

Vm =
K1 + K2@ACoA# + K3@FDP# + K4@ACoA#@FDP#

1 + K5@ACoA# + K6@FDP#
(3)

In addition toKm in Eq. (2),K1 throughK6 are parameters
to be estimated by data fitting. These equations were chosen
because it exhibits the characteristics of the data, and were
used to demonstrate an intuitive representation of the data.
By using the hybrid GA simplex method, the parameters
were optimized to take the following values:Km 4 0.3231
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mM, K1 4 0.03176,K2 4 1.2878 mM−1, K3 4 0.05425
mM−1, K4 4 0.8139 mM−1, K5 4 0.0939 mM−1, andK6 4
0.2693 mM−1. Figure 1a shows that the model fits the data
reasonably well. Despite the satisfactory fitting, the ad hoc
approach is not generally applicable to other cases. In more
complex data, the algebraic form of Eq. (3) may not be
easily obtained.

To develop a general approach for data representation, we

used the fuzzy logic approach and incorporated a situation-
dependent scaling factor,appc, to modify Vm:

Vppc = appc Vm

@PEP#

Km + @PEP#
(4)

appc captures the various activation effects of ACoA and
FDP by the following fuzzy rules:

R1
ppc: If [ACoA] is LOW and[FDP] is LOW,

thenappc = c1

R2
ppc: If [ACoA] is LOW and[FDP] is HIGH,

thenappc = c2

R1
ppc: If [ACoA] is HIGH and[FDP] is LOW,

thenappc = c3

R1
ppc: If [ACoA] is HIGH and[FDP] is LOW,

thenappc = c4

wherec1, c2, c3, andc4 are parameters to be optimized. The
membership functions of the fuzzy sets (i.e., LOW and
HIGH), shown in Figure 2, were chosen based on experi-
mental data in Figure 1. Notice that the above rules (a
special case of the TSK model) are conceptually clear and
can be readily generalized. In this model, six parameters
need to be optimized (as opposed to seven in the algebraic
model). Again, simplex–GA was used to obtain the follow-
ing optimized values:Vm 4 0.987,Km 4 0.259 mM, c14
0.037,c2 4 0.095,c3 4 0.594, andc4 4 0.973. The per-
formance of this model with the identified parameters (Fig.
1b) is as good as the algebraic model (Fig. 1a) for the

Figure 1. Kinetic data (symbols) (from Izui et al., 1981) and model
fitting (lines) for PPC using: (a) the algebraic model [Eq. (2)] and (b) the
fuzzy logic-augmented model [Eq. (4)].

Figure 2. Membership functions of the fuzzy sets for PPC modeling.
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purpose of pathway modeling. They all catch the essential
characteristics of the data. In this case, the fuzzy logic-
augmented model used fewer parameters than the algebraic
model; furthermore, it is conceptually clear and potentially
generalizable.

Phosphoenolpyruvate Carboxykinase

PCK is a gluoneogenic enzyme found in many organisms.
The E. coli PCK catalyzes the following reaction:

OAA + ATP → PEP+ ADP + CO2

Experimental data (Wright and Sanwal, 1969) shown in
Figure 3 show the following characteristics: (1) the rate of
reaction is increased by ATP, but high ATP concentration
inhibits the reaction; and (2) other metabolites (i.e., OAA,
ADP, and PEP) increase the reaction rate in a hyperbolic
manner.

We first use an algebraic equation to capture the hyper-
bolic behavior of the kinetics.

vpck =
K7@ATP#@OAA# − K8@ADP#@PEP#

1 + K1@ATP# + K2@OAA# + K3@ATP#@OAA# +
K4@PEP# + K5@ADP# + K6@PEP#@ADP#

(5)

This form does not describe the inhibition effect of ATP at
the high concentration range. If all the data are used in
parameter optimization, the fitting is poor (Fig. 3). How-
ever, if only the OAA, ADP, and PEP data are used for
parameter estimation, then the above equation fit these data
very well (K1 4 1016.594 mM−1, K2 4 962.644 mM−1, K3

4 626.338 mM−2, K4 4 79.769 mM−1, K5 4 887.975
mM−1, K6 4 155.380 mM−2, K7 4 38.744 mM−2 , andK8

4 335.25 mM−2). Instead of modifying the algebraic equa-
tion to represent the ATP inhibition effect, we used a situ-
ation-dependent factor,apck, in the following equation:

Figure 3. Experimental data (Wright and Sanwal, 1969) and model fitting for PCK kinetics using the algebraic [Eq. (5)] and fuzzy logic model [Eq. (6)].
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vpck = apck

K7@ATP#@OAA# − K8@ADP#@PEP#

1 + K1@ATP# + K2@OAA# + K3@ATP#@OAA# +
K4@PEP# + K5@ADP# + K6@PEP#@ADP#

(6)

whereapck is modeled according to the following rules:

R1
pck: If [ATP] is LOW, thenapck = 1.0

R2
pck: If [ATP] is HIGH, thenapck = 1.0− b@ATP#

whereb is a constant to be optimized. Because ATP con-
centration starts to inhibit the PCK reaction from around
1.0, as shown in the experimental data (Fig. 3) we divided
the ATP input space into two partially overlapping
subregions: ‘‘LOW ATP’’ and ‘‘HIGH ATP.’’ The mem-
bership functions for the ATP fuzzy sets in the fuzzy
model are shown in Figure 4. The fuzzy model behaves as
follows. The output of the fuzzy model (i.e.,apck) is 1.0
when ATP concentration belongs completely to LOW (i.e.,
ATP ø0.9). When ATP concentration belongs to HIGH
(i.e., ATP ù1.1), the output of the fuzzy model decreases
as ATP concentration increases, which is represented by a
linear equation (i.e.,apck 4 1.0 − b [ATP]). If the ATP
concentration is in the middle area between completely
LOW and completely HIGH (i.e., 0.9 < ATP < 1.1), the
scaling factor is an interpolation of the two aforementioned
effects:

apck = 1 − S@ATP# − 0.9

0.2 D b@ATP# (7)

Although the fuzzy rule is linear,apck becomes a second-
order polynomial equation of [ATP] in the transition region,
which gives a smooth transition between the two regions.
Note that nonlinear features of enzyme kinetics can be cap-
tured by properly choosing the linear fuzzy rules.

Because the values ofK4, K5, K6, and K8 in the aug-
mented model [Eq. (6)] are not affected by ATP concentra-
tions, they can be obtained directly from the partially opti-
mized values using Eq. (5), based on OAA, ADP, and PEP
data. We then can use OAA and ATP data to optimize
parameters related to ATP and OAA, providing the follow-

ing results:K1 4 91145.54 mM−1, K2 4 66866.11 mM−1,
K3 4 36753.48 mM−2, K7 4 11005.78 mM−2, b 4 0.24
mM−1.

The performance of this model with the identified param-
eters is shown in Figure 3. Table I compares the root-mean-
square errors of modelingVpck using the algebraic model
and the fuzzy logic-augmented model. The fuzzy logic-
augmented model fits the experimental data much better
than the algebraic model. The former correctly represents
the ATP inhibition effect, whereas the latter does not.

Pyruvate Kinase I

PYKI in E. coli is an allosteric enzyme, which shows non-
hyperbolic kinetic behavior under different concentrations
of metabolites (Fig. 5) (Waygood and Sanwal, 1974). It
catalyzes the following reaction:

PEP+ ADP → Pyruvate+ ATP

The reaction is activated by FDP and PEP with a qualitative
change from a sigmoidal kinetic to hyperbolic behavior
(Fig. 5). The data also indicate an inhibitory effect by ACoA
and ATP. However, the data are not sufficient to show the
quantitative behavior of the activators and inhibitors. Only
the trends of their effects are shown.

Because of the complex behavior, deriving a mechanistic
model to account for all the effectors is difficult. The
Monod–Wyman–Changeux (MWC) model (Monod et al.,
1965) can only describe the basic behavior with only one
varying metabolite. It was modified to account for some
aspects of PEP and FDP effects:

VpykI =

@PEP#~1 + @PEP#!3 + LC~1 + C@PEP#!3 +
@FDP#~1 + @FDP#!3 + LfCf~1 + Cf@FDP#!3

~1 + @PEP#4 + L~1 + C@PEP#!4 +
~1 + @FDP#!4 + Lf~1 + Cf@FDP#!4

(8)

whereL, Lf, C, andCf are to be determined. These param-
eters change the kinetic curve from sigmoidal to hyperbolic.
They are influenced by activators and inhibitors and should
be treated as functions of these metabolites. However, it is
difficult to identify the appropriate structure of these func-
tions. Moreover, the need to represent ACoA and ATP in-
hibition in addition to FDP and PEP activation is likely to
lead to a structure that is too complex for purposes of path-
way modeling.

Figure 4. The membership function of fuzzy sets for PCK modeling.

Table I. Root-mean-square errors of modeling PCK.

Data set Algebraic model
[Eq (5)]

Fuzzy logic model
[Eq. (6)]

Fig. 3a 0.02234 0.00419
Fig. 3b 0.01369 0.00315
Fig. 3c 0.65955 0.02690
Fig. 3d 0.29632 0.06835
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We thus use fuzzy logic to represent these unknown func-
tions, in which only the trends are revealed by the data. Eq.
(8) is then modified to be:

VpykI = a1~1 − a2!

@PEP#~1 + @PEP#!3 + LC~1 + C@PEP#!3 +
@FDP#~1 + @FDP#!3 + LfCf~1 + Cf@FDP#!3

~1 + @PEP#!4 + L~1 + C@PEP#!4 +
~1 + @FDP#!4 + Lf~1 + Cf@FDP#!4

(9)

where a1 and a2 represent the activation and inhibition
effects, respectively, and they are determined by the follow-
ing fuzzy rules:

R1
a1: If [FDP] is LOW and[PEP] is LOW,

thena1 = a1

R2
a1: If [FDP] is LOW and[PEP] is HIGH,

thena1 = a2

R3
a1: If [FDP] is HIGH and[PEP] is LOW,

thena1 = a3

R4
a1: If [FDP] is HIGH and[PEP] is HIGH,

thena1 = a4

Similarly, we modela2 using fuzzy if–then rules with two
inputs that determine the inhibition effects by ATP and
ACoA:

R1
a2: If [ATP] is LOW and[AcoA] is LOW,

thena2 = a5

R2
a2: If [ATP] is LOW and[AcoA] is HIGH,

thena2 = a6

R3
a2: If [ATP] is HIGH and[AcoA] is LOW,

thena2 = a7

R4
a2: If [ATP] is HIGH and[AcoA] is HIGH,

thena2 = a8

However, changing onlya1 and a2 will not be sufficient
because they do not affect the qualitative behavior (i.e., the
shape of the kinetic curve). The qualitative change in kinetic
behavior by FDP and PEP activation is achieved by using
fuzzy if–then rules forC, L, Cf, andLf:

R1: If [FDP] is LOW and[PEP] is LOW,
thenC = C1, L = L1, Cf = Cf1, Lf = Lf1

R2: If [FDP] is LOW and[PEP] is HIGH,
thenC = C2, L = L2, Cf = Cf2, Lf = Lf2

R3: If [FDP] is HIGH and[PEP] is LOW,
thenC = C3, L = L3, Cf = Cf3, Lf = Lf3

R4: If [FDP] is HIGH and[PEP] is HIGH,
thenC = C4, L = L4, Cf = Cf4, Lf = Lf4

The membership functions for FDP, PEP, ATP, and ACoA
Figure 5. Experimental data (Waygood and Sanwal, 1974) and model
fitting for PYKI.



fuzzy sets in the fuzzy model are shown in Figure 6, which
were constructed from the experimental data (Fig. 5).

The hybrid GA–simplex method was used to identify the
parameter set in three steps. In each step, we used a subset
of the experimental data to concentrate on optimizing pa-
rameters related to the specific effect demonstrated by the
data. This strategy significantly reduces the number of pa-
rameters that need to be optimized in each step. First, we
use data associated with the condition ATP4 ACoA 4 0
to optimize all the parameters except those related to ATP–
ACoA inhibition. We then use the data in Figure 5c to
optimizea5 througha8 while fixing other parameters. The
last step is to fine-tune model parameters for repairing
model deficiency resulting from an unbalanced distribution
of training data. The data in Figure 5a and b are highly
unbalanced in terms of PEP concentration. Most of them are
for high PEP concentration (i.e.,ù0.4 mM); only a small
portion of the data is for low PEP concentration. Conse-
quently, the parameter optimization process is easily domi-
nated by data at the high PEP concentration range, which
causes the GA to converge to a local minimum that does not
fit well at low PEP range (i.e., data for PEP4 0.1mM). To
address this deficiency, the third step uses the data of low
PEP concentration to optimize only parameters related to
‘‘PEP is LOW’’ (i.e., fixing all other parameters). The final
parameter set identified is as follows (with units consistent
with data in Fig. 5):a1 4 95.59,a2 4 56.61,a3 4 45.78,
a4 4 50.97,a5 4 0.0,a6 4 0.29,a7 4 0.042 ,a8 4 0.70,
L1 4 0.0,L2 4 264618,L3 4 5890509,L4 4 2263077,c1

4 0.0, c2 4 0.31, c3 4 24.96, c4 4 14.61, Lf1 4
88577785,Lf2 4 8811417,Lf3 4 4059350,Lf4 4 3440,cf1

4 0.0, cf2 4 0.0001,cf3 4 0.49, andcf4 4 0.0001.
The performance of the model with the identified param-

eters is shown in Figure 5, which shows that the fuzzy
logic-augmented model fits all the experimental data very
well.

DISCUSSION

This article presents a fuzzy logic-based approach to modify
algebraic kinetic equations to account for qualitative infor-
mation beyond the scope of the existing model. The fuzzy
parameter can be used to modify eitherVm or any other
parameters in a kinetic rate expression. In the cases of PPC
and PCK, modification ofVm was sufficient to fit the data
for various effectors. In the case of PYKI, however, one has
to modify six parameters (a1, a2, c, L, cf, andLf) by fuzzy
factors to account for the allosteric effects of FDP, ATP,
and ACoA. Although the fuzzy logic-augmented model pro-
vides no additional mechanistic insight, it is instrumental in
modeling pathway regulation, which is strongly dependent
on the effect of various allosteric effectors. One of the major
advantages of this approach is conceptually simple and can
be generalized to most situations. Fuzzy logic is a tool for
approximating a complex surface without a complicated
mathematical form. Obviously, there are other tools that
allow the approximation of a complex surface, such as non-
parametric regression (Hardle, 1989), splines, and radial
basis functions (Poggio and Girosi, 1990; Powell 1985). In
fact, fuzzy logic modeling shares a common property with
these techniques: they all approximate a complex surface by
combining multiple local models (Yen et al., 1996). How-
ever, fuzzy logic is unique in that it uses linguistic terms to
describe local models. This important feature establishes a
bridge between qualitative knowledge and numerical mod-
els. Without such a bridge, qualitative information cannot
be explicitly incorporated into an algebraic model of en-
zyme kinetics.

We chose to use the TSK fuzzy model instead of the
Mamdani model for its simplicity and its compactness. The
TSK model was developed to reduce the total number of
rules required by the Mamdani model. Consequently, the
number of rules in a TSK model is typically less than that in
a Mamdani model, assuming that they approximate the
same function to about the same accuracy. The simplicity
and the compactness of the TSK model further simplifies
the optimization problem that estimates the model param-
eters.

The fuzzy logic-based approach introduced a number of
new parameters that have to be determined by data fitting.
This task was made possible by using a hybrid of GA and
simplex optimization. GA allows parallel search of a large
parameter space without entrapment in a local minimum.
The simplex method, on the other hand, greatly accelerates
the convergence to a local minimum. By a proper mix of the
two approaches, one can quickly converge into a local mini-
mum and simultaneously search for other local valleys.

In summary, we have described an integration of four
techniques for modeling metabolic pathways: fuzzy logic-
based modeling; algebraic modeling of enzyme kinetics; use
of the genetic algorithm; and use of the simplex method.
The first two techniques were combined to achieve a more
flexible model structure that can incorporate qualitative in-
formation explicitly into enzyme kinetics. The latter twoFigure 6. Membership functions of the fuzzy sets for PYKI modeling.
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techniques were combined to obtain an efficient model
parameter estimator that can avoid entrapment in local op-
tima. Together, these four complementary techniques offer
a promising approach for modeling enzyme kinetics when
knowledge about their enzyme mechanisms is incomplete.
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