
Genetic Algorithms and Genetic Programming for
Multiscale Modeling: Applications in Materials

Science and Chemistry and Advances in Scalability

Kumara Sastry
IlliGAL Report No. 2007019

September 2007

Illinois Genetic Algorithms Laboratory
University of Illinois at Urbana-Champaign

117 Transportation Building
104 S. Mathews Avenue Urbana, IL 61801

Office: (217) 333-2346
Fax: (217) 244-5705





c© 2007 by Kumara Narasimha Sastry. All rights reserved.





GENETIC ALGORITHMS AND GENETIC PROGRAMMING FOR MULTISCALE
MODELING: APPLICATIONS IN MATERIALS SCIENCE AND CHEMISTRY AND

ADVANCES IN SCALABILITY

BY

KUMARA NARASIMHA SASTRY

MENGR., Birla Institute of Technology & Science, 1998
M.S., University of Illinois at Urbana-Champaign, 2001

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Systems and Entrepreneurial Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2007

Urbana, Illinois









Abstract

Effective and efficient multiscale modeling is essential to advance both the science and synthesis

in a wide array of fields such as physics, chemistry, materials science, biology, biotechnology and

pharmacology. This study investigates the efficacy and potential of using genetic algorithms for

multiscale materials modeling and addresses some of the challenges involved in designing competent

algorithms that solve hard problems quickly, reliably and accurately. In particular, this thesis

demonstrates the use of genetic algorithms (GAs) and genetic programming (GP) in multiscale

modeling with the help of two non-trivial case studies in materials science and chemistry.

The first case study explores the utility of genetic programming (GP) in multi-timescaling

alloy kinetics simulations. In essence, GP is used to bridge molecular dynamics and kinetic Monte

Carlo methods to span orders-of-magnitude in simulation time. Specifically, GP is used to regress

symbolically an inline barrier function from a limited set of molecular dynamics simulations to

enable kinetic Monte Carlo that simulate seconds of real time. Results on a non-trivial example of

vacancy-assisted migration on a surface of a face-centered cubic (fcc) Copper-Cobalt (CuxCo1−x)

alloy show that GP predicts all barriers with 0.1% error from calculations for less than 3% of active

configurations, independent of type of potentials used to obtain the learning set of barriers via

molecular dynamics. The resulting method enables 2–9 orders-of-magnitude increase in real-time

dynamics simulations taking 4–7 orders-of-magnitude less CPU time.

The second case study presents the application of multiobjective genetic algorithms (MOGAs)

in multiscaling quantum chemistry simulations. Specifically, MOGAs are used to bridge high-

level quantum chemistry and semiempirical methods to provide accurate representation of complex

molecular excited-state and ground-state behavior. Results on ethylene and benzene—two com-

mon building-blocks in organic chemistry—indicate that MOGAs produce high-quality semiempir-

ical methods that (1) are stable to small perturbations, (2) yield accurate configuration energies on
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untested and critical excited states, and (3) yield ab initio quality excited-state dynamics. The pro-

posed method enables simulations of more complex systems to realistic multi-picosecond timescales,

well beyond previous attempts or expectation of human experts, and 2–3 orders-of-magnitude re-

duction in computational cost.

While the two applications use simple evolutionary operators, in order to tackle more complex

systems, their scalability and limitations have to be investigated. The second part of the thesis

addresses some of the challenges involved with a successful design of genetic algorithms and ge-

netic programming for multiscale modeling. The first issue addressed is the scalability of genetic

programming, where facetwise models are built to assess the population size required by GP to

ensure adequate supply of raw building blocks and also to ensure accurate decision-making between

competing building blocks.

This study also presents a design of competent genetic programming, where traditional fixed

recombination operators are replaced by building and sampling probabilistic models of promising

candidate programs. The proposed scalable GP, called extended compact GP (eCGP), combines

the ideas from extended compact genetic algorithm (eCGA) and probabilistic incremental program

evolution (PIPE) and adaptively identifies, propagates and exchanges important subsolutions of a

search problem. Results show that eCGP scales cubically with problem size on both GP-easy and

GP-hard problems.

Finally, facetwise models are developed to explore limitations of scalability of MOGAs, where

the scalability of multiobjective algorithms in reliably maintaining Pareto-optimal solutions is ad-

dressed. The results show that even when the building blocks are accurately identified, massive

multimodality of the search problems can easily overwhelm the nicher (diversity preserving oper-

ator) and lead to exponential scale-up. Facetwise models are developed, which incorporate the

combined effects of model accuracy, decision making, and sub-structure supply, as well as the effect

of niching on the population sizing, to predict a limit on the growth rate of a maximum number

of sub-structures that can compete in the two objectives to circumvent the failure of the niching

method. The results show that if the number of competing building blocks between multiple objec-

tives is less than the proposed limit, multiobjective GAs scale-up polynomially with the problem

size on boundedly-difficult problems.
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Chapter 1

Introduction

In recent years there has been growing interest in developing effective modeling and simulation

methods to advance both the science and synthesis in a wide array of fields such as physics,

chemistry, materials science, biology, biotechnology, and pharmacology. Many of the underlying

phenomena involved are inherently multiscale acting over multiple time- and length-scales. For

example, to simulate realistic nano-layered film growth, we often require systems with sizes in the

range of 10–100 nm (simulation cells over one million atoms), and simulation times of about 10–

1000 seconds (Jacobsen, Cooper & Sethna, 1998). To simulate realistic systems, we should be able

to accommodate different system sizes, but also different time scales. Thus, there is a significant

premium on cost-effective modeling techniques that can simulate physical, chemical or biological

phenomena across multiple scales in both time and space, even at the price of losing information

at intermediate scales.

Many powerful methods exist that address modeling at single scales. For example, molecular

dynamics (MD) can accurately simulate pico-nano seconds of materials kinetics, but requires hours-

days of CPU time. On the other hand, kinetic Monte Carlo (KMC) can simulate kinetics from

seconds to hours, but requires the knowledge of all activation barriers. If we can effectively bridge

these methods, then we can simulate complex materials, chemical, physical, and biological systems

up to realistic time and space scales with high accuracy and significant reduction in CPU time.

However, bridging these powerful methods across scales for effective multiscaling is non-trivial.

One approach is to apply modeling methods of a single scale and couple them by transferring

key information from the finer scale to a coarser scale (Picu, 2003). For example, microstructural

information from atomistics can be used to regress a constitutive relation between stress and strain

that in turn can be used in a finite-element analysis. An important and often daunting task in

this multiscaling approach is the development of proper coupling methods. This work proposes
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the use of genetic algorithms (GAs) (Goldberg, 1989b; Goldberg, 2002; Holland, 1975)—search,

optimization, and machine-learning methods based on natural selection and genetics—and genetic

programming (GP) (Koza, 1989; Koza, 1992; Koza, 1994; Koza et al., 1999; Koza et al., 2003)—GAs

that evolve computer programs—as effective methods for coupling modeling methods from different

scales and is applicable in various multiscaling areas, for example, modeling multi-timescale kinetics

(Sastry et al., 2005), obtaining constitutive rules (Sastry et al., 2004) and finding chemical reaction

pathways (Sastry et al., 2006; Sastry et al., 2007).

The purpose of this study is twofold.

1. Demonstrate the effectiveness and efficacy of using GAs and GP for multiscale modeling with

the help of two important and non-trivial case studies in materials science and chemistry.

2. Advance our understanding of the scalability of multiobjective GAs and GP with the help of

facetwise models and propose scalable designs of GP and multiobjective GAs.

The two applications used to demonstrate the potential of GAs and GP in multiscale materials

modeling are as follows:

Multi-timescaling alloy kinetics, which is critical for designing functional nanomaterials.

Specifically, GP is used to bridge molecular dynamics (MD) and kinetic Monte Carlo (KMC)

(Sastry et al., 2004; Sastry et al., 2005) to span simulations by orders-of-magnitude in time.

Multiscaling quantum chemistry simulation, with particular focus on photochemical reac-

tions, which are fundamental in many settings such as biological (for example, photosynthesis

and vision) and technological (for example, solar cells and LEDs). Specifically, a multiobjec-

tive GA is used to tune semiempirical methods to enable orders-of-magnitude faster reaction

dynamics simulations with ab initio accuracy.

The applications part of this thesis uses fairly straightforward flavor of GP and multiobjective

GA. However, how these algorithms scale with increasing problem sizes and complexity is not

fully understood. The second part of the thesis addresses these issues and also proposes scalable

designs of both GP and multiobjective GAs that can tractably solve boundedly-difficult problems

which are intractable with the first generation GAs and GPs. Specifically, the thesis advances our

understanding of scalability of GP and GAs in the following aspects:
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Scalability of GP. Facetwise models of (i) population sizing required for adequate supply of

raw subsolutions required to obtain optimal solutions (Sastry, O’Reilly & Goldberg, 2003),

and (ii) population sizing required to ensure accurate decision making between competing

subsolutions (Sastry, O’Reilly & Goldberg, 2004) are developed.

Competent GP design. A scalable design of GP, called extended compact genetic program

(eCGP) (Sastry & Goldberg, 2003a), which is based on the extended compact genetic al-

gorithm (eCGA) (Harik, 1999; Harik, Lobo & Sastry, 2006) is developed. The proposed

competent GP solves a broad class of adversarially-designed boundedly-difficult problems us-

ing only polynomial (cubic) number of function evaluations. In contrast, a standard GP with

fixed recombination operators scales exponentially on GP-hard problems.

Scalability of multiobjective GAs. Limits on the scalability of multiobjective GAs in reliably

maintaining a diverse set of optimal solutions—also known as Pareto-optimal solutions—

is modeled and verified with empirical results (Sastry, Pelikan & Goldberg, 2005). Along

the way, based on the multiobjective Bayesian optimization algorithm (Khan, Goldberg

& Pelikan, 2002; Pelikan, Sastry & Goldberg, 2005), a competent MOGA design—the

multiobjective extended compact genetic algorithm (meCGA)—is proposed that can solve

boundedly-difficult problems using only a polynomial (quadratic) number of function evalu-

ations (Pelikan, Sastry & Goldberg, 2006; Sastry, Pelikan & Goldberg, 2005).

While the scalability studies were motivated with the specific application of GAs and GP to multi-

scale modeling problems, the models developed and the lessons learned are not just limited to the

multiscale modeling domain, but are broadly applicable to a wide range of problems of interest to

both theoreticians and practitioners of genetic and evolutionary computation.

1.1 Roadmap

This thesis is organized as follows.

Chapter 2 gives a brief introduction to genetic algorithms, genetic programming, and multi-

objective GAs. The chapter also presents a brief overview of GA design decomposition theory,

scalable or competent GAs, and principled efficiency-enhancement techniques. While competent
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GAs take problems that were intractable with first generation GAs and render them tractable,

efficiency enhancement takes us from tractability to practicality . More recent studies on synergistic

integration of competent GAs with efficiency enhancement techniques that lead to supermultiplica-

tive speedups are also briefly mentioned. These efforts are now leading to GA designs for routine

giga-variable optimization (Goldberg, Sastry & Llorà, 2007; Sastry, Goldberg & Llorà, 2007).

The rest of the thesis can be decomposed into two parts. The first part of the thesis deals

with applications of GAs and GP to multiscale modeling in materials science and chemistry. The

second part discusses advances in the scalability analysis of these methods, particularly GP and

multiobjective GAs.

Chapter 3 discusses the potential of using GAs and GP for multiscale materials modeling. In

essence, GAs and GP are used to bridge critical information between existing modeling methods

that are powerful at single scales. In other words, GAs and GP could be used to derive accurate

custom-made constitutive relationships for a higher level model using sparsely-sampled data from

lower-level models.

Chapter 4 provides details on using genetic programming for bridging molecular dynamics and

kinetic Monte Carlo methods for fast and accurate alloy kinetics simulations. GP is used to regress

symbolically an inline barrier function using a limited set of molecular dynamics calculations. The

GP regressed barrier function is then used with kinetic Monte Carlo to span about 15 orders-of-

magnitude in time.

Chapter 5 discusses application of multiobjective GAs in bridging ab initio quantum chemistry

methods and semiempirical methods for fast and accurate reaction dynamics simulation. Specif-

ically, based on limited ab initio computations and experimental results, multiobjective genetic

algorithms are used to tune semiempirical parameters to yield globally accurate potential energy

surfaces. The multiobjective GA tuned semiempirical methods yield reaction dynamics with ab ini-

tio accuracy enabling us to predict reaction dynamics of more complex systems such as nanotubes

and proteins for orders-of-magnitude longer and realistic timescales.

Chapter 6 develops facetwise models of population sizing in GP for raw subsolution supply

and for accurately deciding between competing subsolutions. Models show that like in GAs, the

population sizing for decision making usually governs the population sizing in GP over population
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sizing for adequate subsolution supply. The population sizing for good decision making suggests

that the population size grows quadratically with the optimal program (tree) size. Moreover,

facetwise models show that in GP the number of function evaluations scales cubically with optimal

program size.

Chapter 7 proposes a design for scalable GP developed based on the extended compact ge-

netic algorithm (eCGA). Unlike traditional genetic programming, which use fixed recombination

operators, the proposed probabilistic model-building GP automatically discovers important sub-

structures of the underlying problems and effectively samples them to evolve high-quality solutions.

The proposed algorithm, called the extended compact genetic programming (eCGP), adaptively

identifies and exchanges non-overlapping subsolutions by constructing and sampling probabilistic

models of promising solutions. The results show that in contrast to standard GP, eCGP scales

polynomially with the problem size (the number of functionals and terminals) on both GP-easy

and boundedly difficult GP-hard problems.

Chapter 8 studies the limits of scalability of multiobjective GAs in reliably evolving and main-

taining a diverse set of optimal solutions. Specifically, facetwise models and empirical results

suggest that the number of optimal subsolutions that differ between different objectives has to be

limited for multiobjective GAs to be competent. In other words, if the optimal subsolutions are

different for different objectives in all partitions, then, for a class of additively separable problems,

multiobjective GAs scale exponentially due to the presence of exponential number of optimal so-

lutions. On the other hand, if the optimal subsolutions that are different for different objectives

scale as O(log m), multiobjective GAs scale polynomially (usually subquadratically) with problem

size.

Finally, summary and key conclusions are given in chapter 9.
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Chapter 2

Genetic Algorithms (GAs) and
Genetic Programming (GP)

This chapter provides a brief introduction to genetic algorithms (GAs)—search, optimization, and

machine learning methods based on principles of genetics and natural selection. While the first

generation GAs were designed mostly on an ad hoc basis, over the last few decades, a decomposition-

based design theory has been proposed, an overview of which is presented in this chapter. The

design theory has led to the development of competent GAs—GAs that solve boundedly difficult

problems quickly, reliably, and accurately—and principled efficiency-enhancement techniques to

speedup GAs—which are surveyed in this chapter. Key concepts of genetic programming (GP)—

GAs that evolve computer programs—and multiobjective GAs—GAs that optimize multiple ob-

jectives and discover optimal tradeoffs between given objectives—are also briefly introduced.

2.1 Genetic Algorithms

Genetic algorithms (GAs) are search methods based on principles of natural selection and genetics

(Goldberg, 1989b; Goldberg, 2002; Holland, 1975). Over the past few decades, GAs have been

successfully applied to solve hard search problems in science and engineering ranging from gas-

pipeline design (Goldberg, 1983), analog circuit design (Koza et al., 2003), finger-print recognition

(Grasemann & Miikkulainen, 2005), and design optimization (Deb, 2001). Significant progress

has also been made in understanding and designing competent genetic algorithms, that solve hard

problems quickly, reliably, and accurately (Goldberg, 2002). The population sizing, convergence

time and scalability of competent GAs are well understood on different classes of boundedly difficult

problems (Goldberg, 2002; Harik et al., 1999; Miller & Goldberg, 1996a; Pelikan, 2005; Pelikan,

Sastry & Cantú-Paz, 2006).

Analogous to genetics, GAs encode the decision variables of a search problem into finite-length
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strings of alphabets of certain cardinality. The strings, which are candidate solutions to the search

problem are referred to as chromosomes, the alphabets are referred to as genes and the values of

genes are referred to as alleles. For example, in a problem such as the traveling salesman problem,

a chromosome represents a route, and a gene may represent a city. In contrast to traditional opti-

mization techniques, GAs work with coding of parameters, rather than the parameters themselves.

Several encoding methods such as binary, gray, real, permutation, and program codes can be and

have been used.

In order to evolve good solutions and to implement natural selection, the notion of fitness, or

a relative goodness measure, of a candidate solution is used. The measure could be an objective

function that is a mathematical model, computation or a computer simulation, or it can be a

subjective function where humans choose better solutions over worse ones, or it can be co-evolved

arising out of co-operative or competitive environments. In essence, the fitness measure must

determine a candidate solution’s relative fitness, which will subsequently be used by the GA to

guide the evolution of good solutions. Furthermore, the fitness of a solution can be quantified by

a single measure (as in single-objective optimization) or multiple measures (as in multi-objective

optimization).

Another important concept of GAs is the notion of a population. Unlike traditional search

methods, genetic algorithms rely on a population of candidate solutions. Population-based search

is not only robust, but also efficient in handling noise, scaling, and hard fitness landscapes. The

population size, which is usually a user-specified parameter, is one of the important factors af-

fecting the scalability and performance of genetic algorithms (Goldberg, 2002). Small population

sizes might lead to premature convergence and yield substandard solutions. On the other hand,

large population sizes lead to unnecessary expenditure of valuable computational time. Facetwise

population-sizing models have been developed to understand the scalability on a broad class of

boundedly-difficult search problems (Goldberg, 1989c; Goldberg, 2002; Goldberg, Deb & Clark,

1992; Goldberg, Sastry & Latoza, 2001; Harik et al., 1999; Mahfoud, 1994; Sastry & Goldberg,

2003b).

Once the problem is encoded in a chromosomal manner and a fitness measure for discriminating

good solutions from bad ones has been chosen, we can start to evolve solutions to the search problem
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using the following steps (Goldberg, 1989b; Goldberg, 2002; Sastry, Goldberg & Kendall, 2005):

1. Initialization: The initial population of candidate solutions is usually generated randomly

across the search space. However, domain-specific knowledge or other information can be

easily incorporated in the generation of the initial population.

2. Evaluation: Once the population is initialized or an offspring population is created, the

fitness values of the candidate solutions are evaluated.

3. Selection: The selection operator allocates more copies to solutions with better fitness val-

ues and thus imposes the survival-of-the-fittest mechanism on the candidate solutions. The

main idea of selection is to prefer better solutions to worse ones, and many selection proce-

dures have been proposed to accomplish this idea, including fitness-proportionate methods

such as roulette-wheel selection (Goldberg, 1989b; Holland, 1975) and stochastic universal

selection (Baker, 1985; Grefenstette & Baker, 1989), and ordinal methods such as tournament

selection (Goldberg, Korb & Deb, 1989; Sastry & Goldberg, 2001) and truncation selection

(Mühlenbein & Schlierkamp-Voosen, 1993). Usually, ordinal selection schemes are preferred

over fitness-proportionate methods as they are less noisy and are not affected by scaling of

fitness measures (Goldberg, 2002).

4. Recombination: Crossover or recombination operator combines bits and pieces of two or

more parental solutions to create new, possibly better solutions (that is, offspring). There

are many ways of accomplishing this (Booker et al., 1997; Goldberg, 1989b; Spears, 1997),

and achieving competent performance does depend on getting the recombination mechanism

designed properly; but the primary idea to keep in mind is that the offspring under recombi-

nation will not be identical to any particular parent and will instead combine parental traits

in a novel manner (Goldberg, 2002). Competent recombination operators that automatically

identify the important traits of parental solutions and effectively exchange them have been

developed for genetic algorithms (Goldberg, 1989b; Goldberg, 2002; Pelikan, 2005; Pelikan,

Goldberg & Cantú-Paz, 2000; Pelikan, Sastry & Cantú-Paz, 2006; Sastry & Goldberg, 2003a).

5. Mutation: While recombination operates on two or more parental chromosomes, mutation

operator makes random modifications locally around a solution. Again, there are many
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variations of mutation (Bäck, 1996; Beyer, 1996; Goldberg, 1989b; Hansen & Ostermeier,

2001; Rechenberg, 1973; Schwefel, 1977), but it usually involves one or more changes that

are made to an individual’s trait or traits. In other words, mutation performs a random walk

in the vicinity of a candidate solution. Competent mutation operators that automatically

identify the important traits of parental solutions and effectively search in the substructural

neighborhoods have been developed (Lima et al., 2006; Sastry & Goldberg, 2004a).

6. Replacement: The offspring population created by selection, recombination, and mutation

replaces the original parental population. Many replacement techniques such as elitist re-

placement, generation-wise replacement and steady-state replacement methods are used in

GAs.

7. Repeat steps 2–6 till one or more stopping criteria are met. Examples of stopping criteria

include reaching maximum number of function evaluations, maximum number of generations,

etc.

Elsewhere, Goldberg (1983, 1999a, 2002) has likened GAs to mechanistic versions of certain

modes of human innovation and has shown that, though selection, crossover, and mutation op-

erators when analyzed individually are ineffective, when combined together they can work well.

This aspect has been explained with the concepts of the fundamental intuition and innovation

intuition. The same study compares a combination of selection and mutation to continual improve-

ment (a form of hill climbing), and the combination of selection and recombination to innovation

(cross-fertilizing). These analogies have been used to develop a design-decomposition methodology

(Goldberg, 2002; Goldberg, Deb & Clark, 1992; Goldberg & Liepens, 1991), competent genetic

algorithms, or GAs that solve hard problems quickly, reliably, and accurately (Goldberg et al.,

1993; Pelikan, 2005; Pelikan, Sastry & Cantú-Paz, 2006; Yu, 2006), and the design of principled

efficiency-enhancement techniques (Cantú-Paz, 2000a; Goldberg & Voessner, 1999; Sastry, 2001;

Sastry & Goldberg, 2004b; Sastry, Pelikan & Goldberg, 2006).
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2.2 Scalable Genetic Algorithms

While using innovation for explaining working mechanisms of genetic algorithms is very useful,

as a design metaphor it poses difficulty as the processes of innovation are themselves not well

understood. However, if we want GAs to solve successfully increasingly difficult problems across a

wide spectrum of areas, we need a principled, but mechanistic way of designing genetic algorithms.

The last few decades have witnessed great strides toward the development of competent genetic

algorithms—GAs that solve hard problems, quickly, reliably, and accurately (Goldberg, 1999a).

From a computational standpoint, the existence of competent GAs suggests that many difficult

problems can be solved in a scalable fashion. Furthermore, it significantly reduces the burden on a

user to decide on a good coding or a good genetic operator that accompanies many GA applications;

if the GA can adapt to the problem, there is less reason for the user to have to adapt the problem,

coding, or operators to the GA.

2.2.1 GA Design Decomposition

Some of the key lessons of competent GA design are briefly reviewed in this section. We restrict

the discussion to selectorecombinative GAs, and focus on the cross-fertilization type of innovation

and briefly discuss key facets of competent GA design. Using Holland’s notion of a building block

(BB) (Holland, 1975), Goldberg proposed decomposing the problem of designing a competent

selectorecombinative GA (Goldberg, 1991; Goldberg, Deb & Clark, 1992; Goldberg & Liepens,

1991). This design decomposition has been explained in detail elsewhere (Goldberg, 2002), but is

briefly reviewed in what follows.

Know that GAs process building blocks (BBs). The primary idea of selectorecombinative

GA theory is that genetic algorithms work through a mechanism of decomposition and re-

assembly . Holland (Holland, 1975) called well-adapted sets of features that were components

of effective solutions building blocks (BBs). The basic idea is that GAs (1) implicitly identify

building blocks or sub-assemblies of good solutions, and (2) recombine different sub-assemblies

to form very high performance solutions.

Understand BB hard problems. From the standpoint of cross-fertilizing innovation, problems
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that are hard have BBs that are hard to acquire. This may be because the BBs are complex,

hard to find, or different BBs are hard to separate, or low-order BBs may be misleading or

deceptive (Deb & Goldberg, 1994; Goldberg, 1987; Goldberg, 1989a; Goldberg, Deb & Horn,

1992).

Understand BB growth and timing. Another key idea is that BBs or notions exist in a kind

of competitive market economy of ideas, and steps must be taken to ensure that (1) the best

ones grow and take over a dominant market share of the population, and (2) the growth rate

is neither too fast, nor too slow.

The growth in market share can be easily satisfied appropriately by setting the crossover

probability, pc, and the selection pressure, s, which quantifies the strength of selection

(Goldberg & Sastry, 2001)

pc ≤
1 − s−1

ε
, (2.1)

where ε is the probability of BB disruption.

Three main approaches have been used in understanding time:

• Takeover time models, where the dynamics of the best individual is modeled (Bäck,

1994; Cantú-Paz, 1999; Goldberg & Deb, 1991; Sakamoto & Goldberg, 1997; Smith &

Vavak, 1999; Rudolph, 2000).

• Selection-intensity models, where approaches similar to those in quantitative genetics

(Bulmer, 1985) are used and the dynamics of the average fitness of the population is

modeled (Bäck, 1995; Miller & Goldberg, 1995; Miller & Goldberg, 1996a; Mühlenbein

& Schlierkamp-Voosen, 1993; Thierens & Goldberg, 1994a; Thierens & Goldberg, 1994b;

Voigt, Mühlenbein & Schlierkamp-Voosen, 1996).

• Higher-order cumulant models, where the dynamics of average and higher-order cumu-

lants are modeled (Blickle & Thiele, 1995; Blickle & Thiele, 1996; Cantú-Paz, 2000b;

Prügel-Bennet & Shapiro, 1994; Rattray & Shapiro, 1997; Rogers & Prügel-Bennet,

1999; Shapiro, Prügel-Bennet & Rattray, 1994).

The time models suggest that for a problem of size (number of binary variables) � , with
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all BBs of equal importance or salience, the convergence time of GAs is given by (Miller &

Goldberg, 1995),

tc =
π

2I

√
�, (2.2)

where I is the selection intensity (Bulmer, 1985), which is a parameter dependent on the

selection method and selection pressure. For tournament selection, I can be approximated in

terms of s by the relation (Blickle & Thiele, 1995):

I =

√
2
(

log(s) − log
(√

4.14 log(s)
))

. (2.3)

On the other hand, if the building blocks of a problem have different salience, then the

convergence time scales differently. For example, when BBs of a problem are exponentially

scaled, with a particular BB being exponentially better than the others, then the convergence

time of a GA is linear with the problems size (Thierens, Goldberg & Pereira, 1998):

tc =
− log 2

log
(
1 − I/

√
3
)�. (2.4)

To summarize, the convergence time of GAs scales as O
(√

�
)
–O (�).

Understand BB supply and decision making. One role of the population is to ensure ade-

quate supply of the raw building blocks. Randomly generated populations of increasing size

will, with higher probability, contain larger numbers of more complex BBs (Goldberg, 1989c;

Goldberg, Sastry & Latoza, 2001; Holland, 1973; Holland, 1975; Reeves, 1993). For a problem

with m building blocks, each consisting of k alphabets of cardinality χ, the population size

required to ensure the presence of at least one copy of all the raw building blocks is given by

(Goldberg, Sastry & Latoza, 2001),

n = χk log m + kχk log χ. (2.5)

Just ensuring the raw supply is not enough, decision making among different, competing

notions (BBs) is statistical in nature, and, as we increase the population size, we increase the
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likelihood of making the best possible decisions (De Jong, 1975; Goldberg, Deb & Clark, 1992;

Goldberg & Rudnick, 1991; Harik et al., 1999). For an additively decomposable problem with

m building blocks of size k each, the population size required to not only ensure supply, but

also ensure correct decision making is approximately given by (Harik et al., 1999),

n = −
√

π

2
σBB

d
2k√m log α, (2.6)

where d/σBB is the signal-to-noise ratio (Goldberg, Deb & Clark, 1992), and α is the probabil-

ity of deciding incorrectly among competing building blocks. In essence, the population-sizing

model consists of the following components:

• Competition complexity, quantified by the total number of competing building

blocks, 2k.

• Subcomponent complexity, quantified by the number of building blocks, m.

• Ease of decision making, quantified by the signal-to-noise ratio, d/σBB.

• Probabilistic safety factor, quantified by the coefficient − log α.

On the other hand, if the building blocks are exponentially scaled, the population size

scales as (Goldberg, 2002; Rothlauf, 2002; Thierens, Goldberg & Pereira, 1998):

n = −co
σBB

d
2km log α, (2.7)

where, co is a constant dependent on the drift affects (Asoh & Mühlenbein, 1994; Crow &

Kimura, 1970; Goldberg & Segrest, 1987).

To summarize, the population size required by GAs scales as O
(
2k√m

)
–O

(
2km

)
.

Identify BBs and exchange them. Perhaps the most important lesson of current research in

GAs is that the identification and exchange of BBs is the critical path to innovative success.

First-generation GAs usually fail in their ability to promote this exchange reliably. The

primary design challenge to achieving competence is the need to identify and promote effective

BB exchange. Theoretical studies using facetwise modeling approach (Goldberg, Thierens &
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Deb, 1993; Sastry & Goldberg, 2002; Sastry & Goldberg, 2003b; Thierens & Goldberg,

1993; Thierens, 1999) have shown that while fixed recombination operators such as uniform

crossover, due to inadequacies of effective identification and exchange of BBs, demonstrate

polynomial scalability on simple problems, they scale up exponentially with problem size

on boundedly-difficult problems. The mixing models also yield a control map as a function

of control parameters for selection and crossover operators, delineating the region of good

performance for a GA. Such a control map can be a useful tool in visualizing GA sweet-

spots and provide insights in parameter settings (Goldberg, 1999a). This is in contrast to

recombination operators that can automatically and adaptively identify and exchange BBs,

which scale up polynomially (subquadratically-quadratically) with problem size (Goldberg,

2002; Goldberg et al., 1993; Pelikan, 2005; Pelikan, Sastry & Cantú-Paz, 2006).

2.2.2 Competent GA Designs

Efforts in principled design of effective BB identification and exchange mechanisms have led to the

development of competent genetic algorithms. Competent GAs are a class of GAs that solve hard

problems quickly, reliably, and accurately. Hard problems are loosely defined as those problems

that have large sub-solutions that cannot be decomposed into simpler sub-solutions, have badly

scaled sub-solutions, have numerous local optima, or are subject to a high stochastic noise. While

designing a competent GA, the objective is to develop a GA that can solve problems with bounded

difficulty and exhibit polynomial (usually subquadratic) scalability with the problem size.

Interestingly, the mechanics of competent GAs vary widely, but the principles of innovative

success are invariant. Competent GA design began with the development of the messy genetic

algorithm (Goldberg, Korb & Deb, 1989), culminating in 1993 with the fast messy GA (Goldberg

et al., 1993). Since those early scalable results, a number of competent GAs have been constructed

using different mechanism styles that can be classified based on the following facets (Chen, 2005;

Chen et al., 2007):

1. means to distinguish between good and bad linkage;

2. methods to express or represent linkage;
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3. ways to store linkage information.

Based on the mechanisms used to distinguish good linkages from bad linkages, competent GAs

can be classified into the following categories:

Unimetric methods, which act solely on the fitness value given by the fitness function. No extra

criteria or measurements are involved for deciding whether an individual or a model is better.

Unimetric approaches, loosely modeled after natural environments, are believed to be more

biologically plausible. Methods such as linkage learning GAs (Chen, 2005; Harik, 1997; Harik

& Goldberg, 1997) are examples of unimetric methods.

Multimetric methods, which in contrast to unimetric approaches, employ extra criteria or mea-

surements other than the fitness function given by the problem for judging the quality of

individuals or models. Multimetric approaches are of artificial design and employ certain

bias which does not come from the problem at hand to guide the search. Methods such as

gene expression messy GA (gemGA) (Kargupta, 1996), estimation of distribution algorithms

(EDAs) (Larrañaga & Lozano, 2002; Pelikan, 2005; Pelikan, Goldberg & Lobo, 2002; Pelikan,

Sastry & Cantú-Paz, 2006), and design structure matrix GA (Yu, 2006) are examples of

multimetric methods.

Additionally, approaches such as the messy GA (mGA) (Goldberg, Korb & Deb, 1989), the

fast messy GA (fmGA) (Goldberg et al., 1993), the ordering messy GA (OmeGA) (Knjazew,

2002), the structured messy GA (Halhal et al., 1999), and the incremental commitment GA

(Watson & Pollack, 1999) use implicit multimetric approaches and therefore can be considered

to be in between uni- and multi-metric approaches.

Based on methods used to represent linkage, we can broadly classify scalable GA designs into

two categories:

Physical linkage, where linkage emerges from physical locations of two or more genes on the

chromosome. Physical linkage is closer to biological plausibility and inspired directly by it.

Examples of competent GAs that use physical linkage are the messy GA (Goldberg, Korb &

Deb, 1989), the fast messy GA (Goldberg et al., 1993), and the linkage learning GA (Chen,

2005; Harik, 1997; Harik & Goldberg, 1997).
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Virtual linkage, where linkage information is explicitly represented using graphs, groupings, ma-

trices, pointers, or other data structures that control the subsequent pairing or clustering

organization of decision variables. Virtual linkage is an engineering or computer science ap-

proach towards effectively representing key linkages of the underlying problem. Estimation

of distribution algorithms (Larrañaga & Lozano, 2002; Pelikan, 2005; Pelikan, Goldberg &

Lobo, 2002; Pelikan, Sastry & Cantú-Paz, 2006), general linkage crossover (Salman, Mehro-

tra & Mohan, 2000), and the dependency structure matrix GA (Yu, 2006) are examples of

competent GAs that employ virtual linkage.

Based on the ways to store linkage information, competent GAs can be classified into two

categories:

Distributed Model, where there is no centralized storage of linkage information, but it is main-

tained in a distributed manner. Similar to the unimetric approach, distributed-model ap-

proaches are also loosely modeled after evolutionary conditions in nature and more biologi-

cally plausible. Examples of competent GAs with distributed model include linkage learning

GA (Chen, 2005; Harik, 1997; Harik & Goldberg, 1997), the messy GA (Goldberg, Korb

& Deb, 1989), the fast messy GA (Goldberg et al., 1993), the gene expression messy GA

(Kargupta, 1996), and perturbation based linkage identification procedures (Coffin & Clack,

2006; Heckendorn & Wright, 2004; Munetomo & Goldberg, 1999; Tsuji, Munetomo & Akama,

2006).

Centralized Model, where linkage information is stored in centralized manner, such as a global

probabilistic vector or dependency table, to handle and process linkage. Centralized-model

approaches are developed to achieve the maximum information exchange and to obtain the de-

sired results. Examples of competent GAs with centralized linkage models include estimation

of distribution algorithms (Larrañaga & Lozano, 2002; Pelikan, 2005; Pelikan, Goldberg &

Lobo, 2002; Pelikan, Sastry & Cantú-Paz, 2006), general linkage crossover (Salman, Mehrotra

& Mohan, 2000) and the design structure matrix GA (Yu, 2006).
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2.3 Efficiency Enhancement of Genetic Algorithms

Competent GAs have successfully solved hard problems oftentimes requiring only a subquadratic

number of function evaluations. That is, competent GAs usually solve an �-variable search problem,

requiring only O(�2) number of function evaluations. While competent GAs take problems that were

intractable with first generation GAs and render them tractable, for large-scale problems, the task

of computing even a subquadratic number of function evaluations can be daunting. If the fitness

function is a complex simulation, model, or computation, then a single evaluation might take hours,

even days. For such problems, even a subquadratic number of function evaluations is very high. For

example, consider a 20-bit search problem and assume that a fitness evaluation takes one hour. We

will require about an order of a month to solve the problem. This places a premium on a variety of

efficiency enhancement techniques. While competence leads us from intractability to tractability ,

efficiency enhancement takes us from tractability to practicality . Efficiency-enhancement techniques

often used in GAs can be broadly classified into four principal categories:

Parallelization, where GAs are run on multiple processors and the computational resource is

distributed among these processors (Cantú-Paz, 2000a; Cantú-Paz, 1997). Evolutionary al-

gorithms are by nature parallel, and many different parallelization approaches such as a simple

master-slave (Bethke, 1976; Grefenstette, 1981), coarse-grained (Grosso, 1985; Pettey, Leuze

& Grefenstette, 1987; Tanese, 1989), fine-grained (Gorges-Schleuter, 1989a; Gorges-Schleuter,

1989b; Manderick & Spiessens, 1989; Robertson, 1987), or hierarchical (Goldberg, 1989b;

Gorges-Schleuter, 1997; Gruau, 1994; Lin, Goodman & Punch, 1997) architectures can be

readily used. Regardless of how parallelization is done, the key idea is to distribute the compu-

tational load on several processors thereby speeding-up the overall GA run. Moreover, there

exists a principled design theory for developing an efficient parallel GA and optimizing the

key facts of parallel architecture, connectivity, and deme size (Cantú-Paz, 2000a; Cantú-Paz

& Goldberg, 1999; Cantú-Paz & Goldberg, 2000).

For example, when the function evaluation time, Tf , is much greater than the communica-

tion time, Tc, which is very often the case, then a simple master-slave parallel GA—where the

fitness evaluations are distributed over several processors and the rest of the GA operations
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are performed on a single processor—can yield linear speed-up when the number of proces-

sors is less than or equal to 3

√
Tf

Tc
n, and a maximum speed-up when the number of processors

equals
√

Tf

Tc
n, where n is the population size (Cantú-Paz, 1998).

Hybridization, where domain-specific knowledge and other local-search techniques are coupled

with GAs to obtain high-quality solutions in reasonable time (Davis, 1991; Goldberg & Voess-

ner, 1999; Hart, 1994; Krasnogor, 2002; Moscato, 1989; Sinha, 2003b). Most industrial

strength GAs employ some sort of local search for a number of reasons such as achieving

faster convergence (Bosworth, Foo & Zeigler, 1972; Hart, 1994; Sinha, 2003b), repairing

infeasible solutions into legal ones (Ibaraki, 1997; Orvosh & Davis, 1993), initializing GA

population (Fleurent & Ferland, 1994; Ramsey & Grefenstette, 1993), and refinement of

solutions obtained by a GA (Hartmann & Rieger, 2001).

There are two methods to utilize the information gained through local search called Bald-

winian and Lamarckian approach. In Lamarckian evolution, both the fitness and alleles

(genotypes) of an individual are changed to obtained through local search (in the phenotypic

space). On the other hand, in Baldwinian learning, the individual retains its original alleles,

but has its fitness changed to that obtained through local search. Orvosh and Davis (1993)

have suggested an empirical rule of 20, according to which a Lamarckian step should be used

about once in twenty trials.

While GA practitioners have often understood that real-world or commercial applications

often require hybridization, there have been limited efforts in developing a principled design

framework on answering critical issues such as the optimal division of labor between global

and local searches (or the right mix of exploration and exploitation) (Goldberg & Voessner,

1999; Sinha, 2003a), the effect of local search on sampling (Hart, 1994; Hart & Belew, 1996),

and the optimal duration of local search (Hart, 1994; Land, 1998)

Time Continuation, where capabilities of both mutation and recombination are optimally uti-

lized to obtain a solution of as high quality as possible with a given limited computational

resource (Goldberg, 1999b; Sastry & Goldberg, 2004a; Sastry & Goldberg, 2004b; Sastry &

Goldberg, 2007; Srivastava, 2002; Srivastava & Goldberg, 2001). Time utilization (or contin-
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uation) exploits the tradeoff between search for solutions with large population and a single

convergence epoch or using a small population with multiple convergence epochs.

Early theoretical investigations indicate that when the building blocks are of equal (or

nearly equal) salience and both recombination and mutation operators have the linkage infor-

mation, then a small population with multiple convergence epochs is more efficient. However,

if the fitness function is noisy or has overlapping building blocks, then a large population with

single convergence epoch is more efficient (Sastry & Goldberg, 2004a; Sastry & Goldberg,

2004b). On the other hand, if the building blocks of the problem are of non-uniform salience,

which essentially require serial processing, then a small population with multiple conver-

gence epochs is more efficient (Goldberg, 1999b; Sastry & Goldberg, 2007). Interestingly,

recent efforts at using linkage models—for example, probabilistic models built by estimation

of distribution of algorithms—to decide between single-epoch GA with large population vs.

multiple-epoch GA with small population have yielded what promises to be supermultiplica-

tive speedups (Lima et al., 2006; Lima et al., 2005; Sastry & Goldberg, 2004a). These studies

are leading towards adaptive time-continuation techniques which yield speed-ups far in excess

of those obtainable through traditional means.

Evaluation relaxation, where an accurate, but computationally-expensive fitness evaluation is

replaced with a less accurate, but computationally inexpensive fitness estimator. The low-

cost, less-accurate fitness estimator can either be (1) exogenous, as in the case of surrogate

(or approximate) fitness functions (Jin, 2005), where external means can be used to develop

the fitness estimate, or (2) endogenous, as in the case of fitness inheritance (Smith, Dike &

Stegmann, 1995) where the fitness estimate is computed internally based on parental fitnesses.

Evaluation relaxation in GAs dates back to early, largely empirical work of Grefenstette and

Fitzpatrick (1985) in image registration (Fitzpatrick, Grefenstette & Van Gucht, 1984) where

significant speed-ups were obtained by reduced random sampling of the pixels of an image.

Approximate models have since been used extensively to solve complex optimization problems

in many engineering applications such as aerospace and structural engineering (Barthelemy

& Haftka, 1993; Booker et al., 1998; Dennis & Torczon, 1997).
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While early evaluation-relaxation studies were largely empirical in nature, design theories

have since been developed to understand the effect of approximate surrogate functions on

population sizing and convergence time and to optimize speed-ups in approximate fitness

functions with known variance (Miller & Goldberg, 1996b; Miller, 1997), in integrated fit-

ness functions (Albert & Goldberg, 2001), in simple functions of known variance or known

bias (Sastry, 2001), and in fitness inheritance (Pelikan & Sastry, 2004; Sastry, Goldberg &

Pelikan, 2001; Sastry, Lima & Goldberg, 2006; Sastry, Pelikan & Goldberg, 2004). Recent

work on using linkage models to induce the functional form of surrogates combined with stan-

dard techniques for estimating the coefficients of the induced surrogates have yielded super-

multiplicative speedups orders-of-magnitude above those achievable by conventional means

(Pelikan & Sastry, 2004; Sastry, Lima & Goldberg, 2006; Sastry, Pelikan & Goldberg, 2004;

Sastry, Pelikan & Goldberg, 2006).

2.3.1 Integration of Efficiency Enhancement Techniques

Speed-up obtained by employing an efficiency-enhancement technique (EET) is measured in terms

of a ratio of the computation effort required by a GA when the EET is used to that required by GA

in the absence of the EET. That is, η = Tbase/Tefficiency−enhanced. Speed-up obtained by employing

even a single EET can potentially be significant. Furthermore, assuming that the performance

of one of the above methods does not affect the performance of others, if we employ more that

one EET, the overall speed-up is the product of individual speed-ups. That is, let the speed-ups

obtained by employing parallelization, hybridization, time continuation and evaluation relaxation

be Ψparallel, Ψhybrid, Ψtime, and Ψevaluation respectively. Given a speedup of ΨcompetentGA can be

obtained by using a competent genetic algorithm, if one uses all these EETs, then the overall

speed-up obtained is

Ψtotal = ΨcompetentGAΨparallelelΨhybirdΨtimeΨevaluation.

Even if the speed-up obtained by a single EET is modest, a combination of two or more EETs can

yield a significant speed-up. For example, if we use a parallel GA that yields linear speed-up with

128 processors, and each of the other three EETs makes GAs 25% more efficient, then together
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they yield a speed-up of 128 ∗ 1.253 = 250. That is, evaluation relaxation, time continuation, and

hybridization would give over 100 processors’ worth of additional computation power.

While the prospect of multiplicative speedups is exciting enough, recent studies on tightly

integrating competent GAs with efficiency-enhancement techniques have revealed the possibility of

obtaining supermultiplicative speedups far in excess of those predicted by conventional means (Lima

et al., 2005; Pelikan & Sastry, 2004; Sastry, Lima & Goldberg, 2006; Sastry, Pelikan & Goldberg,

2004). For example, following multiplicative speedups, the use of inheritance with a competent

GA would have suggested a 20–25% efficiency gain by combining these two sources of improvement

(Sastry, Goldberg & Pelikan, 2001), but instead a tight integration of competence and inheritance

yields speedups of between 30–50 (Pelikan & Sastry, 2004; Sastry, Pelikan & Goldberg, 2004).

This initially unexpected supermultiplicative speedups can be explained using extensions of

design and efficiency enhancement theory (Sastry, Pelikan & Goldberg, 2006). This is an exciting

possibility that promises orders-of-magnitude improvements above those obtained independently

by competent GAs and efficiency enhancement techniques. A systematic study of the integration

of probabilistic model building and the four main sources of efficiency enhancement will enable

routine solutions to problems with millions and billions of variables (Goldberg, Sastry & Llorà,

2007; Sastry, Goldberg & Llorà, 2007)

2.4 Genetic Programming

Genetic programming (Koza, 1989; Koza, 1992; Koza, 1994; Koza et al., 1999; Koza et al., 2003)

is a genetic algorithm that evolves computer programs. Over the last two decades, GP has been

successfully used to solve problems in a wide range of areas from novel analog circuit design to

quantum computing that have resulted in several reinvention of patented inventions and some

patentable new inventions (Koza et al., 2003). A typical GP consists of the following components:

Representation: In GP a chromosome is a candidate computer program, which is usually rep-

resented by a tree (Koza, 1992). For example, see Figure 2.1. However, it should be noted

that other representations such as linear codes (Banzhaf et al., 1998; Pelikan, Kvasnicka &

Pospichal, 1997), grammar-based codes (Ratle & Sebag, 2001; Ryan, Collins & O’Neill, 1998),
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Figure 2.1: Illustration of tree representation, subtree crossover, subtree mutation, and point mu-
tation used in GP.

and domain-specific representations (Babovic & Keijzer, 2000; Koza et al., 2003) have also

been used.

In tree representations, the internal nodes of a tree are composed of elements from a set

of primitive functions and the leaf nodes consist of elements from a set of terminals as

shown in the example of Figure 2.1. Both the primitive functions and the terminals are

user specified. The primitive functions can be arithmetic functions (for example, “+”, “-”,

“*”, “/”), logical expressions (for example, “if-then-else”, “and”, “or”, “not”), boolean

functions (for example, “AND”, “OR”, “XOR”, “NOT”), loops (for example, “while”, “for”), and

other program constructs, including user-specified subroutines, or domain-specific functions.

The terminals usually consist of independent variables of a problem, constants, and ephemeral

random constants (Koza, 1992).

Choosing appropriate primitive functions and terminals is one of the key factors influencing

GP performance. In some cases, the choice of the primitive functions can be straightforward

and might consist of arithmetic functions, and a branching operator. In other cases, the

primitive functions might include specialized functions from the problem domain. For exam-
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ple, for thermal processes such as various creep mechanisms, a specialized function such as

Q/(kBT ) can be beneficial. Similarly, for thermal activation process, such as vacancy-assisted

climb (which is one of the creep-recovery mechanisms), using exp[−Q/(kBT )] as a primitive

function might be beneficial in obtaining an optimal solution. Koza (1992) suggests selecting

primitive functions that are capable of expressing the solution to the problem, and calls this

the sufficiency property. Kinnear (1996b) suggests using “the most powerful useful seeming

functions from the problem domain that you can think of”. It should be noted, however,

that if one uses advanced GP features like automatically defined functions and architecture

altering operations, then missing, but necessary primitive functions, can be automatically

co-evolved (Koza et al., 1999).

Initialization: A common initialization scheme used in GP is the ramped half-and-half method

(Koza, 1992), where trees of different sizes (between user-specified minimum and maximum

tree sizes) and shapes are initialized using the grow and full methods in equal proportion.

In a grow method, a tree of arbitrary size is generated by selecting terminals or primitive

functions with equal probability. In a full method a tree of specified size is generated by

selecting only primitive functions for the nodes till the tree size approaches a specified size

after which only terminals are selected.

Recombination: Typically, in a GP a subtree-crossover method is used (Koza, 1992). In subtree

crossover, a crossover point for each solution is randomly chosen and subtrees below the

crossover points are swapped to create two new solutions (see Figure 2.1).

Mutation: In GP, usually two mutation techniques are used, see Figure 2.1: Subtree mutation,

where a subtree is randomly replaced with another randomly created subtree, and point

mutation where a node is randomly modified.

2.4.1 Advanced Genetic Programming Features

The scalability and applicability of GP can be significantly enhanced with the help of one or more

of the advanced features (Koza et al., 1999; Koza et al., 2003), two of which are outlined in the

following:
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Constrained Syntactic Structures: In simple GP, the search space—or, the possible set of

valid combinations of functions and terminals—is usually unconstrained. However, when

solving complex problems, it might be advantageous, or even necessary, to search among a

restricted program space. Usually, grammar-based representations such as strong typing are

used to restrict the space of valid syntactic structures (Haynes, Schoenfeld & Wainwright,

1996; Koza et al., 2003; Montana, 1995). One such restriction (or constraint) that is useful for

symbolic regression is imposing the requirement that the GP operators create (or promote)

only dimensionally-correct functions (or programs) (Babovic & Keijzer, 2000; Ratle & Sebag,

2001). For example, when evolving a model for predicting activation energies, we need to

search among only those relations whose dimensions are consistent with energy units. By

restricting the GP to evolve only dimensionally-correct programs, the search space can be

significantly reduced and the evolutionary process can be accelerated.

Automatically Defined Functions (ADFs): Sometimes it is difficult or even impossible to

have prior knowledge of all the important primitive functions that are useful for solving

the problem at hand. Even when appropriate primitive functions are used, the solution

might contain repeated use of certain highly favorable combinations of functions and termi-

nals. For example, when modeling activation energies from atomistic simulations, a relation

representing the attractive and repulsive forces between atom pairs, such as (r/σ)n− (r/σ)m,

might be repeatedly used. In such cases, GP can automatically evolve highly favorable com-
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binations of functions and terminals and encapsulate them into reusable subroutines (Koza,

1994). These automatically defined functions eliminate the need to “reinvent the wheel” and

efficiently utilizes the modularities, symmetries, regularities, and hierarchy of the problem

(Koza et al., 2003). Moreover, the use of ADFs decreases the possibility of disrupting the

important sub-programs via the genetic operators such as recombination and mutation.

In GP, an ADF is evolved from a population of candidate ADFs in parallel to the main

program. That is, every individual comprises multiple trees, one representing the main pro-

gram and the others representing the ADFs as shown in Figure 2.2. The main program

invokes an ADF as a primitive function with predefined number of arguments. For example,

in Figure 2.2, the ADF takes a single argument. Other program features, such as iterations,

loops, recursions, and stores, can also be defined automatically along the lines of an ADF and

further details are available elsewhere (Angeline, 1996; Kinnear, 1996a; Koza, 1994; Rosca

& Ballard, 1996). Furthermore, the structure, content, and subroutine topologies can also

be evolved with the help of architecture altering operations such as addition, deletion, and

duplication of subroutines and arguments (Koza et al., 1999).

2.5 Multiobjective Genetic Algorithms

Another area where GAs are particularly effective is multiobjective optimization. Many real-

world optimization problems contain multiple competing objectives and there is a premium on

methods that can handle multiple objectives and discover optimal tradeoff (Pareto-optimal front)

between these objectives. Traditional approaches for handling multi-objective problems usually

convert multiple objectives into single-objective problems by using a priori weights denoting the

relative importance of the different objectives. They rely on multiple runs of single-objective

optimization with different weights to obtain different Pareto-optimal solutions. However, the

choice of weights is a non-trivial task and furthermore uniform coverage of the Pareto-optimal

front is usually improbable—sometimes, impossible—and the methods are usually inefficient and

less robust (Deb, 2001).

On the other hand, population-based approaches such as genetic algorithms are particularly

suited to handle multiple objectives as they can process a number of solutions in parallel and
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Figure 2.3: Illustration of non-domination and crowding for a two-objective minimization problem.
Solution A and B are non-dominant and solution B dominates C. Furthermore, solution A is less
crowded (less dense) than solution B. Therefore, when solutions B and C compete, solution B is
preferred as it is more dominant, and when solutions A and B compete, solution A is preferred as
it is more diverse, or less crowded (as it lies in a less dense area of the non-dominated set).

find all or majority of the solutions in the Pareto-optimal front. Based on Goldberg’s suggestion

(Goldberg, 1989b) of implementing a selection procedure that uses a non-domination principle,

many multiobjective evolutionary algorithms have been proposed (Coello Coello, Van Veldhuizen

& Lamont, 2002; Corne et al., 2001; Deb, 2001; Deb et al., 2002; Erickson, Mayer & Horn, 2001;

Fonseca & Fleming, 1993; Horn, Nafpliotis & Goldberg, 1994; Pelikan, Sastry & Goldberg, 2006;

Srinivas & Deb, 1995; Van Veldhuizen & Lamont, 2000; Zitzler, Laumanns & Thiele, 2001; Zydallis,

Van Veldhuizen & Lamont, 2001).

Two key components enable GAs to handle multiple objectives: (1) selection based on a non-

domination principle, and (2) niching in objective and/or decision variable space. Both these

mechanisms are illustrated in the following paragraphs with the non-dominated sorting genetic

algorithm II (NSGA-II) (Deb et al., 2002) as the exemplar of multiobjective GAs.

Non-dominated sorting: The non-dominated sorting procedure assigns domination ranks to in-

dividuals in the population based on their multiple objective values. A candidate solution X

dominates Y, if X is no worse than Y in all objectives and if X is better than Y in at least one

objective. For example, in Figure 2.3, solution B dominates solution C, whereas solutions A

and B are non-dominant.
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Figure 2.4: Illustration of non-dominated sorting procedure for a two-objective minimization prob-
lem from a set of randomly generated population of 10 individuals. The corresponding positions
of the individuals in the non-dominated fronts are also shown.

In non-dominated sorting, we start with the set of solutions that are not dominated by any

solution in the population and assign them rank 1. Next, solutions that are not dominated

by any of the remaining solutions are assigned rank 2. That is, all solutions with rank 2

are dominated by at least one solution with rank 1, but are not dominated by others in the

population. Thus the sorting and ranking process continues by assigning increasing ranks to

those solutions that are not dominated by any of the remaining unranked solutions. After non-

dominated sorting, we are left with subsets of the population with different ranks. Solutions

with a given rank are not dominated by solutions that have the same rank or higher and

are dominated by at least one solution with a lower rank. Therefore, with respect to Pareto

optimality, solutions with lower ranks should be given priority. The non-dominated sorting

procedure is illustrated for a two objective minimization problem in Figure 2.4.

Crowding distance computation: Apart from finding solutions in the Pareto front, it is also

essential to achieve good coverage or spread of solutions in the front. The diversity of solutions

in the objective space is usually maintained with a niching mechanism and NSGA-II uses

crowding for doing so. Each solution in the population is assigned a crowding distance,

which estimates how dense the non-dominated front is in the neighborhood of the solution.

Therefore, the higher the crowding distance of the solution, the more diverse the solution is

in the non-dominated front. For example, in Figure 2.3, solution A is less crowded, and hence

more diverse, than solution B.
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The pseudocode for computing the crowding distance is outlined below:

crowding distance computation(P)

for rank r = 1 to R

Pr = subset of solutions in P with rank r

nr = size(Pr)

for i = 1 to nr

dc(Pr(i)) = 0

for j = 1 to M

Qr = sort Pr using jth objective, fj.

dc(Qr(1)) = · · · = dc(Qr(nr)) = ∞

for i = 2 to nr-1

dist = Qr(i+1).fj - Qr(i-1).fj

dc(Qr(i)) = dc(Qr(i)) + dist

return dc

where, P is the population, R is the maximum rank assigned in the population, M is the number

of objectives, and Qr(i).fj is the value of the jth objective of the ith individual.

The selection operator in multiobjective GAs uses the non-domination principle and also typi-

cally acts as a diversity preserving operator. For example, NSGA-II uses an individual comparison

operator to compare the quality of two solutions and to select the better individual. Both the rank

and the crowding distance of the two solutions are used in the comparison operator, a pseudo-code

of which is given below. First, the rank of the two individuals are considered and the solution with

a lower rank is selected. If the two individuals have the same rank, then the solution with the

highest crowding distance is selected.

compare(X,Y)

if rank(X) < rank(Y) then return X

if rank(X) > rank(Y) then return Y

if rank(X) = rank(Y)

if dc(X) > dc(Y) then return X
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if dc(X) < dc(Y) then return Y

if dc(X) = dc(Y)

then randomly choose either X or Y

2.6 Summary

The chapter provided a brief introduction to genetic algorithms and design decomposition theory of

scalable GAs. Following the design-decomposition theory several designs of scalable or competent

GAs have been proposed and were briefly reviewed. While competence takes us from intractability

to tractability, efficiency-enhancement techniques take us from tractability to practicality. The

chapter briefly reviewed four classes of efficiency-enhancement techniques: (1) parallelization, (2)

hybridization, (3) time continuation, and (4) evaluation relaxation. While conventional view of

integrating competent GAs and efficiency-enhancement techniques predicts the combined speedup

to be multiplicative of speedups from individual sources, recent work on synergistically integrating

competent GAs with efficiency-enhancement techniques reveal the possibility of obtaining super-

multiplicative speedups. Finally, an overview of genetic programming and multiobjective GAs,

which are used in the applications part of this thesis for demonstrating the potential of GAs and

GP for multiscale materials modeling, was also provided in this chapter.
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Chapter 3

Genetic Algorithms and Genetic
Programming for Multiscale
Materials Modeling

Although there has been a rise in interest in multiscaling as of late (Barkema & Mousseau, 1996;

Barkema & Mousseau, 2001; Cai et al., 2002; Chen, 1999; Diaz De La Rubia et al., 1998; Fish

& Schwab, 2003; Henkelman & Jónsson, 1999; Jacobsen, Cooper & Sethna, 1998; Mukherjee

et al., 2000; Sørensen & Voter, 2000; Steiner & Genilloud, 1998; Voter, 1997; Voter, 1998; Voter,

Montalenti & Germann, 2002), the very notion of multiscaling has been an important part of

mathematical physics for some time. Perhaps the most commonplace examples are drawn from

the physics of solids, liquids, and gases, where assumptions are made about the molecular behavior

of matter and statistical mechanics enables us to derive constitutive relationships that enable us

to treat the mechanics of solids, liquids, and gases in a continuum. These cases are, of course,

somewhat special, depending on the microscopic homogeneity of the molecular level. As engineers

and scientists want to understand less regular low-level phenomena, multiscale speed-up depends on

our ability to derive custom-made constitutive relationships for the special case at hand. No longer

can we reliably rely on specialized mathematical tools to bridge the gap, and the two modeling

levels being bridged may not be assumed to exist in mathematical closed from. Instead, we must

find automatic ways to (1) sample sparsely low-level models, and (2) derive accurate custom-made

constitutive relationships for a higher level using a uniform, competent computational procedure.

Genetic algorithms (GAs) and genetic programming (GP) are a class of such effective tools

for bridging modeling methods working on different scales (see Figure 3.1)1. For example, GP

(Koza, 1989; Koza, 1992; Koza, 1994; Koza et al., 1999; Koza et al., 2003) could be used to

evolve automatically (reduced-order) models between macroscopic variables based on microscopic

data. Unlike traditional regression methods, GP does not require the knowledge of the functional

1It should be noted that like genetic programming, other machine-learning and data-mining techniques, such as
artificial neural networks and Bayesian-learning techniques, can also be used for multiscale modeling. For example,
see Tiley et al. (2004).
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Limited

Figure 3.1: Schematic of GA-based approach for multiscale simulation.

form of the coupling relation. Indeed, GP searches for both the functional form (via appropriate

choice of primitive functions, terminals, and program-tree structure) and regresses the coefficients

in parallel to best fit the data. That is, GP evolves important basis functions for regression

via appropriate hierarchical combination of primitive functions, and also optimizes the coefficient

values simultaneously. Similarly, for cases where the functional form of the constitutive relations

are known, GAs could be used to optimize the coefficients of the constitutive relations. Apart from

being robust general-purpose solvers, GAs and GP can also be readily and efficiently hybridized

with other multiscale methods (Sinha, 2003b). Additionally, GAs and GP are inherently parallel

making them readily amenable to a variety of parallelization techniques (Cantú-Paz, 2000a), which

is a significant advantage over other competitive methods.

The potential of GP in evolving custom constitutive relations is illustrated with the help of a

non-trivial example in the remainder of this chapter. The objective of the case study is to create

custom constitutive relations based on macroscale data arising from microscale effects. Specifically

GP is used evolve a relationship between flow stress and temperature-compensated strain rate for

an aluminum alloy based on limited experimental data.

3.1 Evolving Constitutive Relations via GP

One of the ways to transfer information from microscopic analysis onto macroscopic analysis is

via constitutive relations. A methodology for discovering automatically not only the important

variables, but also the functional form of constitutive relations between them can be very effective.

Such reduced-order constitutive relations can then be used in macroscopic analysis via finite-element
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or finite-difference methods.

Here, the emphasis is on the effectiveness of GP in evolving custom constitutive relations and

measured data (Padilla et al., 2003) is used to evolve a constitutive relation between flow stress and

temperature-compensated strain rate for an aluminum alloy AA7055. Such a constitutive relation

is required for the simulation of the hot rolling process, which is an important thermomechanical

process involved in the treatment of aluminum alloys (Beaudoin & Cassada, 1998). The effect

of temperature, stress, and strain rate on the final product properties and their anisotropy are

required to understand the hot rolling process. Furthermore, the material properties are also

affected by changes in precipitate distributions, grain structure and texture (Deshpande, 1998).

Microstructural characterization can be used to describe the microstructural development with

temperature and the evolution of deformation structures. Moreover, high-temperature compression

tests can be performed to high strains to collect data that can correlate material properties with

microstructural damage characterization (Padilla et al., 2003).

The objective is to find a constitutive relation between the stress and strain rate to model

their correlation based on microstructural characterization. Padilla et al. (2003) conducted such

high temperature compression tests on AA7055 at temperatures ranging from 340◦C–520◦C at two

different strain rates of 1 s−1 and 10−3 s−1. A detailed experimental procedure used in obtaining the

stress-strain rate data is given elsewhere (Padilla et al., 2003). Assuming the power-law relation

between stress and strain rate, they obtained the coefficients that best fit the data to give the

following constitutive relation (Sastry et al., 2004):

ε̇ = Ao exp
(

Qd

RT

)(
σ

μ

)4.56

, (3.1)

where ε̇ is the strain rate, σ is the stress, μ is viscosity, Qd( = 125 kJ/mol) is the activation energy

for diffusion of zinc in aluminum, R is universal gas constant, T is the temperature, and Ao is an

Arrhenius exponent.

For evolving a custom constitutive relation between stress and strain rate, the following function

set F = {+,−, ∗, /, ^, exp, sin} and the terminal set T = {ε̇, T, exp[1/(RT )], and R} are used. Here

R is an ephemeral random constant (Koza, 1992). Both T as well as exp[1/(RT )] are used as

possible temperature-related variables to see if GP can automatically decide between the more
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likely useful primitive function exp[1/(RT )] over the less likely T . The output of the candidate

program is the ratio of stress and viscosity, that is, σ/μ.

The fitness of a solution is computed as the absolute error between the predicted and experi-

mental data for σ/μ:

f =
1
M

M∑
i=1

∣∣∣∣∣
(

σ

μ

)
pred

−
(

σ

μ

)
expt

∣∣∣∣∣ (3.2)

where M is the number of experimental data points. This fitness function is one of the obvious

choices for data-fitting problems. Here we note that experimental uncertainties can be incorporated

into the fitness function in a straightforward manner. For example, a Gaussian noise (or other

models of the uncertainty) can be added to the fitness function, which would prevent GP from

over-fitting the data. Alternatively, if any of GP-regressed data is within the error-bar of its

corresponding measured data, we can set the error to zero.

First, we start by obtaining a constitutive relation between stress-strain rate using only low-

strain-rate data. That is, we only use experimental data obtained for strain rate of 10−3 s−1. This

is because the power-law relation described by Padilla et al. (2003) was fit only to the low-strain-

rate data. Therefore, we want to verify if GP could find a similar relation as that of Equation 3.1,

and expect that this linear regression should be trivially reproduced—albeit by a highly non-trivial

approach. We find that GP does indeed discover a stress-strain rate relation that is in agreement

with the constitutive relation of Padilla et al. (2003) and other power-law relations used to describe

creep in metals (Kassner & Pérez-Prado, 2000; Mukherjee, 1975):

ε̇ = co exp
(

1
RT

)(
σ

μ

)4.55

, (3.3)

where co ≈ Ao exp(Qd) is a constant.

The above results are based on 10 independent runs of GP (which took wall time of 13–41

seconds per GP run on a 1.67 GHz AMD Athlon XP workstation with 2 parallel jobs) and in all

10 runs similar relation as above were obtained, suggesting that the above expression might be an

optimum. Furthermore, GP was able to select the appropriate form for incorporating the effect of

temperature in the constitutive relation. The comparison of the constitutive relation developed by

GP and that developed by Padilla et al. (2003) (Equation 3.1) to experimental data is shown in
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Figure 3.2: Constitutive relation developed by GP (Equation 3.3) and used by Padilla et al. (2003)
(Equation 3.1) between stress and strain rate for accounting variations in microstructural defor-
mation. Only low-strain-rate data is used for the symbolic regression via GP.

.

Figure 3.2.

Now, more importantly, GP regression is used to fit both the low-strain-rate and high-strain-

rate data to evolve a stress–strain-rate constitutive relation. We are interested in finding out if

GP can identify a single relation to fit both the data sets. Note that the GP does not have any

knowledge of the two different sets of data, that is, high- or low-strain rates. As far as GP is

concerned, there is no qualitative difference between high-strain-rate and low-strain-rate data. We

used the same set of functions and terminals as in the previous case and obtained the following

constitutive relation:

ε̇ =
co

g
[
ε̇, exp

(
1

RT

)] exp
(

1
RT

)(
σ

μ

)4 [
1 − σ

μ

]
, (3.4)
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where the denominator g is a complex mathematical expression:

g = 10.3

⎡
⎢⎣1 − 3

(
σ

μ

)√√√√6 +

√∣∣∣∣Aoe
−QD

RT − 2
σ

μ

∣∣∣∣ ·
{

1 − 3
σ

μ
· Aoe

−QD
RT ·

(
1 − A2

oe
− 2QD

RT + 2
σ

μ

)}⎤
⎥⎦ .

(3.5)

The behavior and functionality of g is explained in the later paragraphs. Equation 3.4 indicates a

competition between the 4th-order power-law ((σ/μ)4) and 5th-order power-law ((σ/μ)5) in stress.

Such power-law behavior is suggestive of possible competing mechanisms taking place during the

microstructural deformation process. Furthermore, three out of ten independent GP runs (which

took wall time of 34.4–58.2 seconds per GP run on a 1.67 GHz AMD Athlon XP workstation with 2

parallel jobs) yield similar constitutive relation as Equation 3.4. The rest of the seven GP runs gave

either a 4th-order power-law or a 5th-order power-law equation still highlighting the competition

between the two.

Notably, a 5th-order power-law represents creep in metals (Kassner & Pérez-Prado, 2000). How-

ever, it is unclear as to the physical mechanism represented by the 4th-order power-law. Nonetheless,

GP regression appears to have consistently identified a competing set of power-law-mechanisms; one

of which has a clear physical meaning (creep), while the other remains unknown, but, as discussed

below, yield crossover from low-strain-rate to high-strain-rate.

Comparison of the constitutive relation (Equation 3.4) with experimental data is shown in

Figure 3.3. The results show that the constitutive relation developed by GP does indeed agree

with experimental data. Furthermore, there is a noticeable kink incorporated in Equation 3.4

at the transition between low- and high-strain-rate data points. This indicates that GP implicitly

identified the transition point between high-strain-rate and low-strain-rate data. After some simpli-

fication and analysis of the denominator g in Equation 3.4, we found that the kink was represented

in the denominator. This indicates that GP was able to identify a missing variable and compensate

for the missing variable by a step function as shown in Figure 3.4. It is important to note that

this transition is well established. For example, a hyperbolic function is often used to specify the

transition between low-strain-rate and high-strain-rate data (Kassner & Pérez-Prado, 2000), which

approximates a step-function-like behavior in analytic models.
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(Equation 3.1) between stress and strain rate for accounting variations in microstructural deforma-
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3.2 Summary

The multiscaling example discussed in this section demonstrates the effectiveness of genetic pro-

gramming in regressing constitutive relation between key macroscopic variables using microscopic

information. Such a reduced-order model can be highly effective in multiscaling not only in space

coordinates, but also in time coordinate. The constitutive relations developed here can be readily

used with finite-element or finite-difference methods along the lines of Padilla et al. (2003) to

simulate the hot rolling process used in the treatment of aluminum alloys. However, we stress

that while the GP provided a better constitutive law that incorporates strain-rate effects, it does

not reveal the underlying physics—in this case a competing creep mechanism and as yet unknown

mechanism.
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Chapter 4

Multi-Timescale Alloy Kinetics
Modeling via Genetic Programming

The previous two chapters introduced basic concepts of GAs and GP and how they potentially can

be used for multiscale modeling. With this background information, the next two chapters of this

thesis will concentrate on multiscaling in the broad class of materials and chemistry phenomena

where the accuracy of the simulations depends on the accuracy of the potential energy surfaces

(PES). Ab initio methods compute the potential energy surfaces from scratch and are highly ac-

curate, but are prohibitively expensive even for small systems. These methods simulate only a

fraction of the real-time dynamics and take hours to days of CPU time. On the other hand, faster

methods are available which can simulate real-time dynamics orders-of-magnitude longer than ab

initio methods and do so using orders of magnitude less CPU time than ab initio methods. How-

ever, in order to simulate systems with ab initio accuracy, these faster methods need the knowledge

of the entire potential energy surface. Here, two specific cases are considered, one where the form

of the potential energy function is known (Sastry et al., 2006; Sastry et al., 2007) and the other

where it is unknown (Sastry et al., 2004; Sastry et al., 2005). However, it should be noted that in

both cases the entire potential energy surface is unknown.

This chapter considers the case where the form of the potential energy function is unknown.

Specifically, we consider the utility of genetic programming in bridging molecular dynamics and

kinetic Monte Carlo methods for fast and accurate alloy kinetics simulations. On one hand, molec-

ular dynamics while accurate, is prohibitively expensive and therefore falls orders-of-magnitude

short of real processing time. On the other hand, kinetic Monte Carlo methods are fast, but need

the information on the entire potential energy surface a priori . Therefore, this study proposes the

use of GP to regress symbolically the potential energy surface using limited molecular dynamics

simulations and thereby enabling the use of kinetic Monte Carlo for complex alloy systems with

orders of magnitude scale-up in simulation time.
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This chapter is organized as follows. The following section gives a brief description of the pro-

posed approach. Section 4.2 provides details of GP used to bridge molecular dynamics and kinetic

Monte Carlo methods. The proposed GP-based multi-timescale modeling approach is illustrated

with the help of non-trivial example of surface vacancy migration in a copper-cobalt alloy, details

of which is provided in section 4.3 followed by discussion of the results. Section 4.5 provides a brief

note on the CPU and time savings obtained by the proposed multi-timescale modeling approach

followed by summary and conclusions.

4.1 Symbolically-Regressed Table KMC (sr-KMC)

Molecular dynamics (MD) is extensively used for kinetic modeling of materials. Yet MD methods

are limited to nanoseconds of real time, and hence fail to model directly many processes. Re-

cently several approaches were proposed for multiscaling (Barkema & Mousseau, 1996; Barkema

& Mousseau, 2001; Cai et al., 2002; Diaz De La Rubia et al., 1998; Henkelman & Jónsson, 1999;

Jacobsen, Cooper & Sethna, 1998; Sørensen & Voter, 2000; Steiner & Genilloud, 1998; Voter, 1997;

Voter, 1998; Voter, Montalenti & Germann, 2002). Methods such as temperature-accelerated dy-

namics (TAD) (Voter, 1998) provide significant acceleration of MD but they still fall 3–6 orders

of magnitude short of real processing times. These methods assume that transition-state theory

applies, and concentrate only on infrequent events. An alternative approach to bridge timescales

(Jacobsen, Cooper & Sethna, 1998) uses kinetic Monte Carlo (Binder, 1986) (KMC) combined with

MD by constructing an a priori list of events (that is, “look-up table”). The table look-up KMC

yields several orders of magnitude increase in simulated time over MD depending on temperature

as discussed in section 4.5. The table of events is commonly comprised of atomic jumps, but col-

lective motions (or off-lattice jumps), for example, see Sørensen and Voter (2000), can be added

if they have been identified, for instance, by MD. Additionally, tabulating barrier energies from a

list of events is a serious limitation. For example, multicomponent alloys have an impossibly large

set of barriers, due to configurational dependence, making their tabulation impractical, especially

from first principles. An alternative approach is calculating energies “on-the-fly” (Bocquet, 2002;

Henkelman & Jónsson, 1999), but it too has serious time limitations (see Figure 4.1). Recent

developments and limitations of KMC methods are given, for example, in (Bocquet, 2002).
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Figure 4.1: Schematic illustration of simulation capabilities and bottlenecks of on-the-fly KMC,
table look-up KMC, and symbolically-regressed KMC (sr-KMC).

To avoid the need or expense of explicit calculation of all activation barriers—frequent or

infrequent—and thereby facilitate an effective hybridization of MD and KMC for multiscale dy-

namics modeling, genetic programming (GP) could be used to regress symbolically the PES (in the

present, non-trivial case, saddle-point barriers only) from a limited set of directly calculated points

on the PES using MD via semi-empirical, tight-binding, or ab initio potentials. Importantly, from

only a few calculated barriers relative to the total, GP-regression provides an in-line barrier function

for increasing number of active configurations (or complexity) as a machine-learned replacement to

the “look-up table” approach. A key point is that multiscale modeling requires only relevant (often

referred to as coarse-grained) information at the appropriate length or time scales. Hence, only the

diffusion barriers are needed for kinetics, not the underlying atomic-scale details; how that infor-

mation is obtained, direct calculation or machine-learning, is not relevant to the scaling, only that

the barriers are accurate. Therefore, an accurate GP-regressed PES extends the KMC paradigm,

as suggested in Figure 4.1, permitting simulation over experimentally relevant time frames, which

may not be possible from standard table look-up or on-the-fly KMC. Interfacing GP with TAD-MD

and/or pattern-recognition methods will further extend its applicability, for example, by finding

system-specific mechanisms. This new approach is referred to as as Symbolically-Regressed Table

KMC (sr-KMC). Of course, sr-KMC benefits from any advances in KMC methods. In addition,

GP-based symbolic regression holds promise in other multiscaling areas, for example, regressing

constitutive rules (Sastry et al., 2004) and chemical reaction pathways (Sastry et al., 2006; Sastry

et al., 2007). Also, as exemplified, standard basis-set regression are generally not competitive to GP

for fixed accuracy due to the difficulty in choosing (that is, guessing) appropriate basis functions
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to represent that space, which are here configurationally-dependent diffusion barriers.

To demonstrate the potential of sr-KMC, the application of GP to a non-trivial case of vacancy-

assisted migration on (100) surface of phase-separating CuxCo1−x at a concentrated alloy compo-

sition, that is, x = 0.50 is discussed. Although there are millions of configurations, only the atoms

in the environment locally around vacancy and migrating atom significantly influence the barrier

energies. We refer to these as the active configurations. The results show that GP predicts barriers

within 0.1–1% error using calculated barriers of less than 3% of the total active configurations,

depending on the type of potential (error is less for the more accurate potentials, and greater for

semi-empirical). The results also show the efficacy of GP approach relative to polynomial regres-

sion, where the more complex the space the less percentage of total barriers is required to regress

the potential energy surface, in contrast to standard regression. (Basically it is too difficult to guess

a good basis to fit a complicated PES, but a computer can machine-learn it efficiently). These ini-

tial results hold promise to enable the use of KMC (even with realistic potentials) for increased

problem complexity with a scale-up of simulation time.

4.2 Genetic Programming for Bridging Molecular Dynamics and

Kinetic Monte Carlo

The inline barrier function is represented by a GP tree generated from the function set F =

{+,−, ∗, /, ^, exp, sin} and the terminal set T = {�x,R}. Here �x is a vector representing the active

alloy configuration, and R is an ephemeral random constant. Since GP is used for predicting

the barriers, a tree represents a PES-prediction function that takes a configuration and ephemeral

constants as inputs and returns the barrier for that configuration as output.

A tree’s quality is given by its fitness f . For this, we calculate the barriers

{ΔEcalc (�x1) , · · · , ΔEcalc (�xM )} for M random configurations {�x1, �x2, · · · , �xM}. These configura-

tions are used as inputs to the tree and the barriers {ΔEpred (�x1) , · · · , ΔEpred (�xM )} are predicted.

The fitness is then computed as a weighted average of the absolute error between the predicted

and calculated barriers:

f =
1
M

M∑
i=1

wi |ΔEpred (�xi) − ΔEcalc (�xi)| (4.1)
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Table 4.1: Number of active configurations for 1st and 2nd n.n. jumps, and for 1st and 2nd n.n.
active atoms.

1st n.n. jumps 2nd n.n. jumps
1st n.n. active configurations 128 128
2nd n.n. active configurations 2048 8192

Total configurations � 2100 � 2100

with wi = |ΔEcalc|−1, which gives preference to predicting accurately lower-energy (most signifi-

cant) events over higher-energy events.

The GP population which represents candidate PES prediction functions is initially created

using the ramped half-and-half method. We use an s-wise tournament selection, subtree crossover,

subtree mutation, and point mutation.

4.3 Vacancy-Assisted Surface Diffusion in Binary Alloy

We consider the prediction of diffusion barriers for vacancy-assisted migration on (100) surface of

phase-separating fcc CuxCo1−x
1 for a concentrated alloy with x = 0.5, a non-trivial case with many

configurations that affect the diffusional barrier height. The system consists of five layers with 100

to 625 atoms in each layer, see Figure 4.2. The bottom three layers are held fixed to their bulk bond

distances, while the top layers are either held fixed (as a test) or fully relaxed via MD. The input

to the barrier regression/prediction function, �x = {xj} is a binary-encoded vector sequence, where

xj = 0 (1) represents a Cu (Co) atom. We consider only first and second nearest-neighbor (n.n.)

jumps, along with 1st (as a test) and 2nd n.n. environmental atoms in the active configuration, as

shown in Figure 4.2. This system already exhibits large complexity and is still small enough so

that table look-up and GP-regressed KMC can be implemented and directly compared. Table 4.1

gives the number of active configurations when 1st and 2nd n.n. environments are considered for a

binary alloy.

Note that, for the sake of simplicity, we have restricted the dynamics of the atoms to vacancy-

assisted jumps. This simplification, however, does not limit the generality of our demonstration.

Indeed, as long as the list of possible jumps is known a priori, which is a standard requirement for

1We note that Cu-Co alloys are characterized by a small size misfit (King, 1966), and the effectiveness of the
GP-based symbolic regression for Au-Ni or Cu-Ag alloys, which have a much larger size misfit is left as a future study
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Figure 4.2: Sketch of simulation cell for vacancy-assisted migration on (100)-surface of an fcc binary
alloy. Atoms in all but the bottom layers and the boundary can fully relax. The solid (dashed)
lines around the migrating atom and vacancy represent 1st (2nd) n.n environmental atoms. Atoms
for 1st (2nd) n.n. jumps are labeled from 1−7 (1−13) as they occur in the encoded vector �x along
with the barrier energy ΔE(�x).

lattice KMC simulations (Sørensen & Voter, 2000), the present approach can easily be extended.

One would simply use one symbolically-regressed function for activation energies corresponding

to each migration mechanism, for instance, di-vacancy migration, ad-atom migration and atom

exchanges at step surfaces.2

We model atomic interactions with a Morse potential (Girifalco & Weizer, 1959), which includes

at least 2nd n.n. interactions, and a tight-binding potential within a second-moment approximation

(TB-SMA) (Cleri & Rosato, 1993; Levanov et al., 2000; Mazzone & Rosato, 1997; Stepanyuk et al.,

2000; Stepanyuk et al., 2001; Stepanyuk et al., 2001). The atomic interactions of TB-SMA range

over 5th nearest neighbors, which are longer range and, hence, more computationally intensive (as

in timings given later) but more accurate (Roussel, 2005). For the TB-SMA with interactions up to

5th n.n. atoms, we only consider up to 2nd n.n. environmental atoms as variables for GP-regression

of the barrier function (which is just to minimize the large variable space). If the TB-SMA potential

is truncated to 2nd n.n. interactions, its timings would be approximately equal to those of the Morse

potential, but it requires additional terms such as those to ensure continuity of potential and no

truncation forces (Roussel, 2005). To validate interactions, we model vacancy-assisted migration

2Although di-vacancy diffusion is faster than single-vacancy diffusion in metals, a di-vacancy will have a shorter
lifetime due by reaching vacancy sinks more quickly; so single-vacancy diffusion is relevant to long-time diffusion,
even in our non-trivial case study.
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Figure 4.3: Activation energies (in eV) predicted by regression. GP (circles) and a quadratic poly-
nomial (crosses) are compared to the calculated (Morse) barriers for 1st n.n. jumps on (100)-surface
of Cu0.5Co0.5 for relaxed lattices. As a simple test, only first n.n. environments are considered in
the active configuration. The line is a guide for the eye.

on (100)-surface of Cu and consider only first n.n. jumps. The predicted barrier for n.n. vacancy

jumps with fully relaxed lattice in Cu is 0.39 eV for Morse and 0.45 eV for TB-SMA, agreeing with

0.42±0.08 (0.47±0.05) from ab initio (EAM) (Boisvert & Lewis, 1997) calculations.

4.4 Results: Efficacy of GP Regression

For simplicity, we begin by considering only seven surface 1st n.n. environmental atoms, that is, six

neighboring atoms of both the diffusing atom and vacancy—for a total of seven atoms that can be

either Cu or Co, yielding 128 active configurations. The environment outside this configuration is

fixed. About 20, that is, 16%, different active configurations are randomly chosen and their barriers

are computed using the conjugate-gradient method and are used in the GP fitness function, see

Equation 4.1. The barriers predicted by GP for the relaxed configurations are compared to the

exact values in Figure 4.3. We note that the prediction error for rigid lattice case (0.4±0.04%) is
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significantly less than that for relaxed lattice case (2.8±0.08%). Due to the weighting used in the

fitness function, GP predicts barriers for most significant, low-energy events more accurately than

for less significant, higher-energy events.

Figure 4.3 also compares the barriers predicted by GP to those predicted by a least-squares fit

quadratic polynomial, showing clearly the inadequacy of standard basis-set regression for alloys.

Furthermore, while GP requires only 16%, the quadratic (cubic) polynomial fit needs 28% (78%) of

the barriers. (For clarity, the large percentage needed for the polynomial regression arises because

of the number of variables. In the quadratic case for this simple test case, the variable �x has 7

occupation components of 0 or 1; so we need to fit coefficient terms from 1 constant, 7 linear, and

7 (21) (off-)diagonal quadratic, for 36/128 or 28%.) In limited cases, such as dilute Fe1−xCux, the

barriers can be predicted via a simple polynomial fit (Bouar & Soisson, 2002).

To test the scalability of GP with active configuration size, we consider the 2nd n.n. jumps

and 1st and 2nd n.n. environmental atoms in the active configuration. As shown in Table 4.1,

there are a total of 8192 configurations. The energies predicted by GP are compared with direct

calculations in Figure 4.4, along with the error in the Morse (worst case) example. The GP predicts

the barriers for most significant events with less than 0.1% error by fitting to energies from only 3%

(that is, 256/8192) of the active configurations (see error definition3). From Figure 4.4 clearly the

non-additive and non-linear tight-binding potential has less error than Morse case for even fewer

barriers in the learning set. In comparison, a cubic polynomial fit requires energies for ∼6% of the

configurations, predicting the barriers with 2.5% error for the most significant events.

The results shown in Figures 4.3 and 4.4 clearly demonstrate the effectiveness of GP in predict-

ing the potential energy surface, with high accuracy and little information. As expected, since the

regression and barrier calculation are nearly independent, the GP performance does not depend on

the potentials used, for example, Figure 4.4 shows results for both Morse, and non-additive and

non-linear tight-binding potentials. The regression only requires a database of barriers and has no

knowledge (nor the need) of the underlying potential used. We also find that the GP performance

3 The average relative error for N ′
cfgs configurations within the desired energy range is given by

ε̄rel =
100

N ′
cfgs

N′
cfgs∑

i=1

∣∣∣∣ΔEpred (�xi) − ΔEcalc (�xi)

ΔEcalc (�xi)

∣∣∣∣ ,
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and least- (ΔE > 4.8 eV) significant events from only 3% of active configurations; TB-SMA GP
error is 0.1% for less than 3%.

is independent of the configuration set used in calculating the fitness function, the order in which

they are used, and the labeling scheme used to convert the configuration into a vector of inputs.

Differences in the activation-energy scale on the PES prediction via GP are also negligible. That is,

even though the barriers for the 1st and 2nd n.n. jumps differ by an order of magnitude, GP predicts

the barriers with similar accuracy. Moreover, for more complex, cooperative effects, such as island

diffusion via surface dislocations (Hamilton, Daw & Foiles, 1995), sr-KMC could be interfaced with

pattern-recognition methods (Trushin et al., 2005), as well as long-range fields.4

4For long-range fields (for example, elastic fields from coherent interfaces, such as multilayers or precipitates), a
description based solely on local configurations may have to be extended, say, with phase field methods.
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4.5 Relative Time Comparisons: The Critical Success

The CPU time savings by coupling GP-regressed inline barrier function with KMC (that is, sr-

KMC) are simple to estimate. For our example, with ∼33 times fewer calculated barriers GP

symbolically regresses an inline barrier function—rather than the complete look-up table—and

thus, sr-KMC provides direct CPU savings of ∼100 over table look-up methods. Additionally, each

sr-KMC time step requires only 10−3 CPU-seconds for an inline function evaluation, as opposed to

on-the-fly KMC that requires seconds (empirical potentials) to hours (quantum methods), providing

a gain of 104–107 CPU-seconds. For our example, one relaxed barrier calculation takes ∼10 secs

(∼1800 secs) for Morse (tight-binding).

An important question, especially for bulk diffusion, is how the gain from sr-KMC scales with

system complexity (for example, the range of environment considered, the active environment, or

additional alloying components). While we cannot fully answer this question yet, in the present

study it is remarkable and promising that the fraction of explicit barrier calculations required by

sr-KMC decreases as the number of active configurations increases.

For completeness sake, we note the simulation time enhancements over MD (from nano-seconds

to seconds) by sr-KMC. (Of course, if a complete look-up table is also calculated, the estimate is

the same.) With event occurrence following a Poisson distribution, the real time in KMC is given

by (Binder, 1986; Fichthorn & Weinberg, 1991)

τr =
NKMC∑

j=1

− ln U∑Ncfgs

i=1 ν0e−βΔE(�xi)
(4.2)

where NKMC is the number of Monte Carlo steps, U ∈ (0, 1] is a uniform random number, Ncfgs is

the number of active configurations. Using ν0 ≈ 27× 1012 Hz for Cu-Co (Boisvert & Lewis, 1997),

Equation 4.2 gives—per time step of KMC relative to MD (assuming an MD time-step of 10−15

s)—an increase in simulated time of 109 at 300 K, 104 at 650 K, and 102.3 at 1000 K. Direct timing

runs from KMC agree with these estimates. So the key increase in timings comes from learning the

table from very few barriers, saving all the calculating time, and allowing more complex problems

to be addressed potentially.
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4.6 Summary

Here we have presented a new approach using a machine-learning method based upon symbolic

regression via genetic programming to determine, accurately, and with little information, complete

details of the potential energy surface and output as an inline function. We have shown on a

non-trivial example of vacancy-assisted migration on a surface of fcc CuxCo1−x that GP predicts

all barriers with 0.1% error from calculations for less than 3% of active configurations, independent

of type of potentials used to obtain the learning set of barriers via molecular dynamics. The

genetic programming-based KMC approach avoids the need or expense of calculating the entire

potential-energy surface, is highly accurate, and leads to significant scale-up in real simulation

time for complex cases as it enables the use of KMC and, more importantly, leads to a significant

reduction in CPU time needed for KMC (> 7-orders of magnitude for quantum-based calculations),

not possible from any other current means. For alloys, we believe the number of explicit barrier

calculations for the learning set can be reduced further by over an order of magnitude (∼0.3% of

the active configurations) using local cluster expansion methods (Van der Ven & Ceder, 2001).

The genetic programming regression allows atomic-scale information (in our example, diffusion

barriers on the potential energy surface) to be included in a long-time kinetic simulation without

maintaining a detailed description of the all atomistic physics, as done within molecular dynam-

ics. Our multiscale approach does not require finding pertinent “hidden variables”, but just uses

necessary information at the appropriate time scale (or length scale)—a coarse-graining of sorts.

We emphasize that the genetic programming is non-trivially regressing an inline function and its

coefficients that approximates the potential-energy surface, and its efficacy over standard basis-set

regression was made clear.
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Chapter 5

Fast and Accurate Chemical Reaction
Simulations via Multiobjective
Genetic Algorithms

Photochemical reactions are fundamental in many settings such as biological (for example, pho-

tosynthesis and vision) and technological (for example, solar cells and LEDs), and the associated

dynamics are energetically subtle, requiring highly accurate descriptions of the molecular forces.

Reliable quantum chemistry predictions are costly even for small molecular reactions, but rapidly

approach the impossible in complex environments, such as in solvents, in solid cages of zeolites, or

with protein ion channels. Hence, having substantially faster semiempirical potentials that accu-

rately reproduce high-level quantum chemistry results would make it possible to address critical

biological processes and technologically chemical reactions, or dramatically reduce searches for

potentially technological useful light-activated reactions.

The ab initio multiple spawning (AIMS) methods, which simultaneously solve both the elec-

tronic and nuclear Schrödinger equations (Ben-Nun, Quenneville & Martinez, 2000), while very

flexible and accurate, can be computationally expensive, especially for large molecules. On the

other hand, the semiempirical methods (Dewar & Thiel, 1977; Dewar et al., 1985; Stewart, 1989),

which neglect many two-electron integrals of ab initio methods and replace others with parameters,

while significantly less expensive than AIMS, have an accuracy that depends on the accuracy of

the semiempirical parameters. Notably, semiempirical potentials have traditionally had the critical

parameters hand-designed and optimized so as to predict ground-state energies—not excited-state

energies. Well established parameter sets in quantum chemistry databases (Dewar & Thiel, 1977;

Dewar et al., 1985; Stewart, 1989) (known by acronyms of MNDO, AM1, and PM3) and software

(Andersson et al., 2001; Stewart, 1999; Werner et al., 2002) give useful information on ground-state

energies. However, they fall short of yielding globally accurate potential energy surfaces critical

for accurate photochemical reaction simulation. For example, in ethylene, AM1 or PM3 parameter

sets incorrectly obtain the so-called pyramidalized structure as the excited-state minimum. Thus,
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these carefully established parameter sets oftentimes yield inaccurate potential energy surfaces,

resulting in unphysical excited-state reaction dynamics.

Therefore, in order to obtain globally accurate energetics, the parameter sets have to be re-

optimized for different classes of molecules using a very limited set of ab initio and experimental

data (Owens, 2004; Toniolo, Thompson & Martinez, 2004). The reparameterization strategy is a

promising way to extend direct dynamics simulations of photochemistry to a more realistic multi-

picosecond time scales. The reoptimization problem is massively multimodal and involves multiple

conflicting and competing objectives, such as minimizing the difference between calculated and

predicted energies, gradients of energies, and stationary-point geometries. Previous semiempirical

parameter optimization attempts, mostly based on a staged fixed-weight single-objective optimiza-

tion, have been but partially successful (Brothers & Merz, Jr., 2002; Cundari, Deng & Fu, 2000;

Hutter, Reimers & Hush, 2002; Owens, 2004; Rossi & Truhlar, 1995; Toniolo, Thompson & Mar-

tinez, 2004). In this chapter, we propose the use of multiobjective genetic algorithms (MOGAs)

to reoptimize the parameter sets using a very limited set of ab initio and experimental data to

yield globally accurate potential energy surfaces and excited-states, yielding accurate photochemi-

cal reaction dynamics (Sastry, Johnson, Thompson, Goldberg, Martinez, Leiding, & Owens, 2006;

Sastry, Johnson, Thompson, Goldberg, Martinez, Leiding, & Owens, 2007).

This chapter is organized as follows. In the next section, a brief introduction to reparame-

terization of semiempirical methods is provided followed by a description of the multiobjective

genetic algorithm used for reparameterization in section 5.2. Section 5.3 presents key results ob-

tained via multiobjective genetic algorithms in yielding optimal semiempirical parameters that are

stable to random perturbation, yield accurate configurational energies, and yield ab initio quality

excited-state dynamics.

5.1 Reparameterization of Semiempirical Methods

A brief background of current computational methods for performing excited-state dynamics in

photochemistry is provided in this section and a more detailed overview is given elsewhere (Owens,

2004; Toniolo et al., 2005; Toniolo, Thompson & Martinez, 2004) and the references therein. As

mentioned earlier, a comprehensive understanding of the photochemistry of molecules requires
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bridging the gap between molecular dynamics and quantum chemistry, and quantum dynamics

simulations are required to simultaneously solve both the nuclear and electronic Schrödinger equa-

tions (Toniolo et al., 2005). Additionally, the potential energy surfaces (PESs) must be of high

quality and very robust because the portions of the PES that are critical to the behavior of the

molecule may be far removed from the Franck-Condon region.

The ab initio multiple spawning (AIMS) method has been developed in order to address such

problems (Ben-Nun & Martinez, 2002; Ben-Nun, Quenneville & Martinez, 2000). While the AIMS

method is extremely flexible and can describe quantum mechanical phenomena such as tunneling

and non-adiabatic transitions, it is computationally very expensive because of a large number of

ab initio electronic structure calculations involved, making long-time dynamics simulations highly

improbable, if not impossible.

In order to retain the flexibility of ab initio electronic structure methods with less computa-

tional cost, semiempirical methods—which ignore some two-electron integrals and use parameters

for others—were developed (Dewar & Thiel, 1977; Dewar et al., 1985; Stewart, 1989). Instead

of calculating each electron integral, semiempirical methods make certain approximations. First,

many of the two electron integrals (those on three or four centers) are assumed to be zero. Also,

the remaining one and two electron integrals are replaced with analytic functions that depend on

a set of parameters. The semiempirical parameters which are different for each element have been

optimized using ground state properties for a small set of molecules without the use of fractional

occupation molecular orbitals. Standard parameter sets, such as MNDO (Dewar & Thiel, 1977),

AM1 (Dewar et al., 1985), and PM3 (Stewart, 1989), yield useful information concerning the lo-

cations of the minimal energy conical intersections (MECIs), which often dominate photochemical

reactions. However, they often yield erroneous energetics, resulting in unphysical dynamics. There-

fore, the parameter sets must be reoptimized using a very limited set of ab initio and experimental

data to obtain an acceptable and an accurate description of the photodynamics. The reparame-

terization strategy is a promising way to extend direct dynamics simulations of photochemistry to

multi-picosecond time scales. It is also reasonable to expect transferability of the parameter sets

optimized on simple molecules such as ethylene and benzene to other complex molecules such as

stilbene and phenylacetylene dendrimers. Furthermore, the reparameterization approach opens up
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the possibility of accurate simulations of photochemistry in complex environments such as proteins

and condensed phases.

It should be noted that while the reparameterization procedure only fits energetics of a few

important stationary molecular geometries, much larger portions of the PESs will be accessed dur-

ing dynamics simulations. Therefore, the semiempirical methods have to incorporate enough of

the fundamental chemical physics to generate at least qualitatively correct global PESs. While

it is possible to include geometries and energetics of the MECIs in the reparameterization, the

strategy of using relatively little ab initio data is mandatory if reparameterization is to be appli-

cable for larger molecules, where ab initio data is extremely expensive to obtain. Therefore, we

intentionally use a minimal set of energies and gradients at ground state optimized geometries in

our reparameterization.

Here, we will concentrate on reparameterizing two simple molecules, which are fundamental

building blocks of organic molecules: ethylene and benzene. The small size of ethylene has many

advantages: First, semi-empirical calculations can be run very quickly so a large number of repa-

rameterization runs can be conducted. Second, the small number of atoms, basis functions, and

possible geometries imply that the results may be less complex and more easily interpretable.

Lastly, the size and simplicity enables the reoptimized parameter sets to be amenable for further

analysis of ethylene dynamics and for transferability to stilbene or conjugated polyenes. However,

despite its simplicity, ethylene has an associated set of ethylidene geometries that can be used to

evaluate performance of the reoptimized parameter sets in calculations for which they were not

optimized. Benzene plays an important role in photochemistry and photophysics of aromatic sys-

tems and has been extensively studied both experimentally and theoretically (Toniolo, Thompson

& Martinez, 2004).

Following Owens (Owens, 2004) for ethylene reparameterization, we use energetics for the

ground state planar and ethylidene geometries, twisted geometry (see Figure 5.1) on the excited

state as well as the gradients on the excited and ground states. The ab initio results used for

reparameterization are taken from previously reported calculations (Ben-Nun & Martinez, 2000)

and are calculated using CASSCF(2/6)*SDCI wavefunctions with the aug-cc-pVDZ basis set. Fol-

lowing Toniolo, Thompson and Martinez (2004), for reparameterization of benzene, we use four
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Figure 5.1: Ground state optimized geometries and important minimal energy conical intersections
(MECIs) for ethylene. Reproduced with permission from A. Thompson

Figure 5.2: Ground state optimized geometries and important minimal energy conical intersections
(MECIs) for benzene.

important local minima on S0: planar, Dewar benzene, prefulvene and benzvalene (see Figure 5.2)

and use ab initio calculations and experimental results reported in and used by Toniolo, Thompson

and Martinez (2004).

A floating occupation molecular orbital-configuration interaction (FOMO-CI) calculation is

used to describe electronic excited states (Granucci & Toniolo, 2000). The molecular orbitals are

optimized using an SCF calculation in which the occupation numbers of some of the orbitals are

allowed to fluctuate. These occupation numbers are updated at each SCF iteration according to

Oi =
∫ εF

−∞

√
2

πω2
e−

(ε−εi)
2ω2 dε, (5.1)

where Oi is the occupation number of orbital i, ω is the width of the Gaussian function, εi is the

energy of orbital i, and εF is the Fermi level energy determined such that

∑
i

Oi = Nelectrons, (5.2)

where Nelectrons is the number of electrons in the system. While all orbitals could be allowed to
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have fractional occupation, only the occupation numbers of orbitals in the active space are allowed

to vary. The benefit of this method is that it is a fast, low-cost way of generating better virtual

orbitals, which improves the treatment of excited states.

To calculate the excited state properties, multiple configurations need to be included in the

wavefunction. Using the floating occupation molecular orbitals, we use a complete active space

configuration interaction (CAS*CI) wavefunction. In this technique, all the configurations that

involve excitations within the active orbitals defined in the calculation are included. The energies

of each of the configurations are calculated using the fractionally occupied orbitals, but the orbitals

are not reoptimized at each step.

The semiempirical calculations are performed with a developmental version of MOPAC2000

(Stewart, 1999), while the ab initio results are performed with MOLPRO (Werner et al., 2002)

and MolCas (Andersson et al., 2001), details of which are beyond the scope of this study. For both

ethylene and benzene, 11 parameters for carbon—Uss, Upp, βs, βp, ζs, ζp, Gss, Gsp, Gpp, Gp2 , and

Hsp—are reoptimized. Following earlier studies (Owens, 2004; Toniolo, Thompson & Martinez,

2004), the core-core repulsion parameters—α, ai, bi, and ci—are not reoptimized.

With this general overview of reparameterization of semiempirical methods, the multiobjective

genetic algorithm used in reparameterization is described in the next section.

5.2 Multiobjective Genetic Algorithms for Optimizing

Semiempirical Methods

As mentioned earlier, reparameterization of semiempirical methods involves optimizing the semiem-

pirical parameters based on a very limited set of ab initio and/or experimental data. We use a

real-valued encoding to represent the 11 parameters—Uss, Upp, βs, βp, ζs, ζp, Gss, Gsp, Gpp, Gp2 ,

and Hsp—of the semi-empirical methods.

The two fitness functions involve minimizing the absolute error in energies and energy-gradients

for a very limited set of excited-state and ground-state configurations either calculated by ab initio

56



Table 5.1: The PM3 values and the lower and upper bounds on the percentage deviation from PM3
values used in generating the initial GA population.

SE parameter PM3 values Lower bound (%) Upper bound (%)
Uss -47.270320 -56.7243840 (-20%) -37.8162560 (20%)
Upp -36.266918 -43.5203016 (-20%) -29.0135344 (20%)
βs -11.910015 -14.2920180 (-20%) -9.5280120 (20%)
βp -9.802755 -12.7435815 (-30%) -6.8619285 (30%)
ζs 1.565085 1.2520680 (-20%) 1.8781020 (20%)
ζp 1.842345 1.4738760 (-20%) 2.2108140 (20%)
Gss 11.200708 7.8404956 (-30%) 14.5609204 (30%)
Gsp 10.265027 8.2120216 (-20%) 12.3180324 (20%)
Gpp 10.796292 8.6370336 (-20%) 12.9555504 (20%)
Gp2 9.042566 7.2340528 (-20%) 10.8510792 (20%)
Hsp 2.290980 1.1454900 (-50%) 3.4364700 (50%)

methods or obtained by experiments, and those predicted by semiempirical methods. That is,

f1 (x) =
nc∑
i=1

|ΔE0,i − ΔESE,i (x)| (5.3)

f2 (x) =
ng∑
i=1

|∇E0,i −∇ESE,i(x)| (5.4)

where x represents the semiempirical parameters to be optimized, nc is the number of configura-

tions, and ng is the number of gradient-energy data used in reparameterization. ΔE0,i and ΔESE,i

are the differences in energy between the geometry i and the reference structure (planar ethylene

and benzene) calculated by ab initio and semiempirical methods, respectively.

For ethylene, we make the restriction that the excited state at the ground state planar geometry

must have the correct state symmetry. For benzene, in the first objective we also include geometry

difference between the reparameterized semiempirical geometries and the ab initio geometries by

calculating the sum-squared differences between the corresponding atoms after the molecules have

been rotated and translated such that they are in maximum coincidence. ∇E0,i, and ∇ESE,i

represent the excited-state energy gradients using ab initio and semiempirical methods, respectively.

The semiempirical calculations are done within a development version of MOPAC2000 using a

CAS(2/2)*CI wavefunction. All geometries are minimized and then energies and gradients are

calculated at this minimum on the potential energy surface.

The initial population of candidate solutions is usually generated randomly across the search

57



space. However, domain-specific knowledge or other information can be easily incorporated in the

generation of the initial population. In reparameterization of semi-empirical potentials, the initial

population is randomly generated within a certain percentage (20–50%) of the PM3 parameter

values (Stewart, 1989) (see Table 5.1). The parameter bounds are restricted around the PM3 set

so as to maintain a reasonable representation of the ground-state potential energy surface.

The multiobjective GA used in this study is the non-dominated sorting genetic algorithm II

(NSGA II) (Deb et al., 2002), with binary (s = 2) tournament selection without replacement

(Goldberg, Korb & Deb, 1989; Sastry & Goldberg, 2001), simulated binary crossover (SBX) (Deb

& Agarwal, 1995; Deb & Kumar, 1995)—which models the behavior of single-point crossover in

binary genetic algorithms—with ηc = 5, and crossover probability pc = 0.9, and a polynomial

mutation (Deb, 2001) with ηn = 10 and mutation probability pm = 0.1.

In tournament selection without replacement with tournament size s, s chromosomes are chosen

at random without replacement and entered into a tournament against each other. The best (fittest)

individual in the group of s chromosomes wins the tournament and is selected into a mating pool

for evolving new solutions. The tournaments are continued till all the individuals in the population

have competed once, at which point there are exactly n/2 chromosomes in the mating pool, where

n is the population size.1 The entire process in repeated again—but this time the competitors in

each tournament will be different—so that the mating pool has n chromosomes.

In SBX, individuals in the mating pool are divided into random pairs and each pair undergoes

recombination with a probability pc. For each pair participating in the crossover, each gene (or

variable) undergoes contracting or expanding crossover operation with a probability 0.5. Therefore,

for each pair of chromosomes undergoing recombination on an average half of the genes are modified

using either contracting or expanding crossover operations. Assuming that two parents p1 and

p2 recombine to yield offspring c1 and c2, let xp1
i and xp2

i be the ith gene-value of parents p1

and p2 respectively. Without loss of generality assume xp1
i > xp2

i , and define a spreading factor

β =
∣∣∣∣ x

c1
i −x

c2
i

x
p1
i −x

p2
i

∣∣∣∣, where xc1
i and xc2

i are the ith gene-values of offspring c1 and c2 respectively. The

polynomial probability distribution for β, which is used to perform the contracting and expanding

1In using tournament selection without replacement, one has to ensure that that the population size is a multiple
of tournament size.
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operations is defined as:

f(β) =

⎧⎪⎨
⎪⎩

0.5(ηc + 1)βn β ≤ 1

0.5(ηc + 1)β−(ηc+2) β > 1
(5.5)

Once β is chosen based on the probability density function given by Equation 5.5, xc1
i and xc2

i are

given by

xc1
i =

1
2

(xp1
i + xp2

i ) +
β

2
(xp1

i − xp2
i ) (5.6)

xc2
i =

1
2

(xp1
i + xp2

i ) − β

2
(xp1

i − xp2
i ) (5.7)

The polynomial mutation is similar to SBX, and the only difference is in the computation of

the polynomial probability. Instead of using genotypic distance between two parents as in SBX,

the distance between a gene and its corresponding upper or lower bound, whichever is closer, is

considered in computing the contracting and expanding probability distributions. In polynomial

mutation, for a chromosome participating in mutation, each gene (or variable) undergoes contract-

ing or expanding operation with a probability pm.

5.3 Results and Discussion

The results presented in this section demonstrate the effectiveness of using multiobjective genetic

algorithm in rapid reparameterization of semiempirical methods for ethylene and benzene. We

begin with estimating population-sizing and run-duration requirements and then compare the per-

formance of the evolutionary approach in predicting globally accurate PESs—specifically on critical

and untested excited states—with previously published results and with single-objective optimiza-

tion.

5.3.1 Population-Sizing and Convergence-Time Analysis

Since the fitness calculations for ethylene are reasonably fast—about 2 seconds per evaluation on

a 1.7 GHz AMD Athlon XP workstation—we first verify the population-sizing and run-duration

requirements using a limited number of NSGA-II runs. In order to verify population-sizing re-

quirements, five independent runs of NSGA-II with a population size of 2000 for 200 generations

59



0 1 2 3

0.5

1

1.5

Error in energy, eVE
rr

or
 in

 e
ne

rg
y 

gr
ad

ie
nt

, e
V

/A
o Population size, n = 100

0 1 2 3

0.5

1

1.5

Error in energy, eVE
rr

or
 in

 e
ne

rg
y 

gr
ad

ie
nt

, e
V

/A
o Population size, n = 200

0 1 2 3

0.5

1

1.5

Error in energy, eVE
rr

or
 in

 e
ne

rg
y 

gr
ad

ie
nt

, e
V

/A
o Population size, n = 400

0 1 2 3

0.5

1

1.5

Error in energy, eVE
rr

or
 in

 e
ne

rg
y 

gr
ad

ie
nt

, e
V

/A
o Population size, n = 800

Figure 5.3: Effect of different population sizes on the convergence and coverage of the multi-
objective GA. The results are shown for ethylene and are averaged over 10 independent runs.
The results show that population sizes below 800 are not capable of converging onto the entire
Pareto-front. The empirical results agree with the population size estimate of 750 predicted by
Mahfoud’s (Mahfoud, 1994) population-sizing model. Points denoted by crosses are obtained with
a population of 2000 run for 200 generations and the points represented by circles are the best
non-dominated solutions at population sizes of 100, 200, 400, and 800.

were run. The best non-dominated set out of those 5 runs was used as an approximation of the

true Pareto-optimal front, which contains 61 distinct solutions. Using the population-size model

for niching (Mahfoud, 1994), the population size required to maintain at least 1 copy of each of

the Pareto-optimal points with a probability of 0.98 is computed to be 750. To verify this esti-

mate, 10 independent runs of NSGA-II with population sizes between 50–800 were run with a fixed

number of function evaluations of 80,000 for each run. The performance of NSGA-II with different

population sizes is shown in Figure 5.3. As shown in Figure 5.3, while NSGA-II with population

sizes below 800 are unable to converge to the approximate Pareto-optimal front, NSGA-II with a

population size of 800 discovers almost all the Pareto-optimal points.
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Figure 5.4: Convergence of NSGA-II for reparameterization of semiempirical parameters for ethy-
lene. The best non-dominated front out of 10 independent runs are shown at five different gener-
ations. Solutions of reasonable quality start appearing in about 25 generations and high-quality
solutions are discovered somewhere between 50–100 generations.

We now look at the convergence rate of NSGA-II and the run-duration requirements for repa-

rameterization. Specifically, ten independent runs of NSGA-II with a population size of 800 were

run and the evolution of the best non-dominated front at different generations of the evolutionary

process was considered. The results are depicted in Figure 5.4. The results show that reasonably

good quality solutions start appearing as early as 10th generation and the solution quality improves

at a steady pace till about 25 generations and gradually up to about 100 generations. We found

that after about 100 generations the improvement in solution quality was minimal.

Based on population-sizing and run-duration requirements in the remainder of the results a

population size of 800 and run duration of 100 generations are used. Since the number of decision

variables (semiempirical parameters) remains the same with different molecules involving carbon

and hydrogen, the population-sizing and run-duration estimates should hold for the reparameter-

ization of semiempirical parameters for those molecules as well. However, it should be noted that
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Figure 5.5: The best non-dominated front after 100 generations for ethylene compared to the
published results (Owens, 2004). The GA results are for population size n = 800, and are averaged
over 30 independent runs. The results obtained through GAs are significantly better—226% lower
error in the energy, and 32.5% lower error in the energy gradient—than existing reparameterized
sets.

the evaluation time increases with the complexity of the molecule under consideration.

5.3.2 Multiobjective GA Versus Single-Objective GA

Next, the performance and efficiency of multiobjective optimization to that of single-objective

optimization is compared. A weighted sum of the two objectives is taken to convert the multiple

objectives into a single objective that has to be minimized:

f ′ = αf1 (x) + (1 − α)f2 (x) (5.8)

where f1 and f2 are as given by Equations 5.3 and 5.4, respectively, and α is the weighting factor.

In order to potentially obtain different Pareto-optimal solutions, 20 different values for α ranging

from 0.05 to 1.0 with steps of 0.05 were used. The selection, recombination, and mutation operators
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and their parameters were kept identical to those of the multiobjective GA.

For the multiobjective GA, a population size of 800 and a run duration of 100 generations are

used. Thirty independent GA runs are conducted and the best set of results out of the 30 runs are

reported. Therefore, for the multiobjective GA we use a total of 800*100*30 = 2,400,000 function

evaluations. For the single-objective GA, for each of the 20 values of α, a population size of 100

and a run duration of 50 generations are used. As with multiobjective GA results, the best result

out of 30 independent single-objective GA runs are reported. Therefore, for single-objective GA

we use a total of 100*50*30*20 = 3,000,000 function evaluations. That is, the single-objective

GA runs use 20% more function evaluations than the multiobjective GA runs. Moreover, the

population size and run duration settings are consistent with previous reparameterization studies

using single-objective GAs. The best non-dominated set obtained by the multiobjective GA is

compared to results of single-objective GA in Figure 5.6. The results show that the solutions

obtained through multiobjective optimization are consistently superior, both in terms of error in

energy and energy-gradient, than the single-objective GA results. It can be easily seen that the

single-objective optimization does not yield even one solution comparable to those obtained with

the multiobjective GA. We also tried using a population size of 800 and run duration of 100 in the

single-objective GA for four different values of α and the results are qualitatively similar. That is,

even when single-objective GA used 4 times more function evaluations than the multiobjective GA,

the single-objective optimization failed to yield solutions comparable to those of multiobjective GA.

These results clearly demonstrate the efficiency of multiobjective approach to reparameterization

of semiempirical parameters as opposed to a single-objective optimization approach.

5.3.3 Multiobjective GA Versus Published Results

We now compare the solution qualities provided by the best non-dominated front of NSGA-II over

the current published results of Owens (2004) for ethylene in Figure 5.5. As shown in the figure,

the solutions obtained through the genetic algorithm is significantly superior, both in terms of

error in energy and energy-gradient, than those previously reported (Owens, 2004). Specifically,

the multiobjective GA yields solutions that are 384% lower error in the energy and 32.5% lower

error in the energy gradient than the previously published results. Moreover, the optimality of the
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Figure 5.6: Comparison of the best non-dominated solutions for ethylene obtained via the multi-
objective genetic algorithm (population size n = 800, 30 independent runs) as opposed to multiple
runs of single-objective GA (population size n = 100 and n = 800, 30 independent runs) with
different weights for the two objectives.

parameter sets representing the best non-dominated front have been confirmed with local-search

and random-perturbation methods.

To verify the effectiveness of the multiobjective GA, we also tested reparameterization on ben-

zene which is more complex than ethylene. The results for benzene reoptimization are shown in

Figure 5.7. Similar to the results obtained for ethylene, we observe that the GA provides significant

improvement—46% lower error in the energy and 86.5% lower error in the energy gradient—over

previously reported results (Toniolo, Thompson & Martinez, 2004).

For ethylene the multiobjective GA found a total of 150 unique semiempirical parameter sets

on the best non-dominated front and for benzene the multiobjective GA found a total of 82 unique

semiempirical parameter sets on the best non-dominated front. From an optimization point of

view, all the parameter sets in the best non-dominated front are equally good. However, from

the chemistry perspective this may not be the case, and ultimately we are interested in those
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Figure 5.7: The best non-dominated front after 100 generations for benzene compared to the
published results (Toniolo, Thompson & Martinez, 2004). NSGA-II results are for population size
n = 800, and are averaged over 10 independent runs. The results obtained through GAs are
significantly better—226% lower in error in energy, and 32.5% lower in error in energy gradient—
than existing reparameterized sets.

semiempirical parameters that yield globally-accurate potential energy surface. Therefore, using

ethylene results as an example, the remainder of this chapter will consider additional criteria for

evaluating the quality of the solution from a chemistry perspective. Specifically, we want those

parameter sets that

1. are not sensitive to small perturbations

2. yield accurate excited- and ground-state energies for untested, and critical configurations

3. yield accurate excited-state dynamics

Since we are dealing with two conflicting objectives, we can expect that solutions with low errors in

energy yield accurate configurational energies, and the solutions with low errors in energy gradient

yield accurate curvature (or shape) of the potential energy surface. Therefore, we are interested in
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selecting one or more parameter sets that not only yield accurate configurational energies, but also

yield accurate shape of the potential energy surface.

The above three criteria are investigated in the following sections.

5.3.4 Online Sensitivity Analysis

A preferable property of good-quality semiempirical parameter sets is that they should be less

sensitive to small perturbations. That is, if the reoptimized parameter sets are perturbed, we

would like the errors in the energy and energy gradient to be similar to those of the Pareto-optimal

parameter sets. A sensitivity or stability analysis of the parameter sets can be performed, for

example, by considering the errors in energy and energy gradient of randomly perturbed parameter

sets around the Pareto-optimal parameter sets. If the error in energy and energy-gradient of the

perturbed parameter sets are greater than some threshold, then they are deemed as sensitive. The

question remains as to what should the values of these thresholds be?

Standard parameter sets such as PM3 have traditionally been viewed as robust or stable. There-

fore, perturbing PM3 parameter set and analyzing the errors in energy and energy-gradient of the

parameter sets should give us an idea of what the threshold values for determining the stability of

the Pareto-optimal parameter sets. The PM3 parameter sets are randomly perturbed and over 600

perturbed parameter sets are created such that the parameter values of the perturbed parameter

are within 2% of the PM3 set. That is, the relative distance between every semiempirical parameter

in the perturbed set and the PM3 set is less than 0.01:

∣∣∣∣x′
i − xi

xi

∣∣∣∣ ≤ 0.01, i = 1, 2, · · · , 11. (5.9)

Here xi and x′
i are the values of ith parameter in the PM3 set and perturbed parameter set,

respectively.

The errors in energy and energy gradient for each of the perturbed parameter set are computed

and are plotted in Figure 5.8. The results in Figure 5.8 indicate that the RMS deviation in error in

energy of the perturbed points from that of PM3 is 0.99 eV. Similarly, the RMS deviation in error

in energy gradient of the perturbed points from that of PM3 is 0.023 eV/A◦. Therefore, threshold

values of 0.99 and 0.023 are used for assessing stability of the Pareto-optimal parameter sets.
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Figure 5.8: Sensitivity of PM3 parameter set to random perturbation. The errors in energy and
energy gradient of 606 randomly perturbed parameter sets around PM3 parameter set. The RMS
error in energy of the perturbed points is 0.99 eV and the RMS error in energy gradient is 0.023
eV/A◦.

One advantage of using genetic algorithms is that we have a population of candidate solutions

that can be used to perform an on-line sensitivity analysis of the optimal semiempirical parameter

sets. Performing such a sensitivity analysis not only reduces the number of acceptable reoptimized

parameter sets, but is also more efficient and reliable than a manual stability/sensitivity analysis.

That is what we do here, and along with saving the Pareto-optimal semiempirical parameter set,

for each of the Pareto-optimal solution we also maintain a list of parameter sets visited during the

GA process that are within 2% (as per Equation 5.9) from that Pareto-optimal solution. The RMS

deviation in errors in energy and energy gradient can then be computed between the Pareto-optimal

solution and the parameter sets around it. If both the RMS deviation in error and energy gradient

is less than their respective threshold, then the Pareto-optimal solution is labeled as being stable.

On the other hand, if either of the deviations is greater than the threshold, then the Pareto-optimal

solution is labeled as sensitive.
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Figure 5.9: (Upper) Histogram of the density of parameter sets around (within 2%) Pareto-optimal
solutions. There are a maximum of 495 and a minimum of 1 parameter set within 2% of some
Pareto-optimal solution in the GA population. The GA population contains, on an average about 95
parameter sets around the Pareto-optimal solution. (Lower left) RMS deviation in error in energy
between the Pareto-optimal solution and corresponding neighboring parameter sets. The threshold
determined by analyzing sensitivity of PM3 parameter set is shown as a red line. (Lower right)
RMS deviation in error in energy gradient between the Pareto-optimal solution and corresponding
neighboring parameter sets. The threshold determined by analyzing sensitivity of PM3 parameter
set is shown as a red line.

As shown in Figure 5.9, for majority of the Pareto-optimal solutions, there are sufficient pa-

rameter sets within 2% to yield acceptable measure of their sensitivity. Indeed the GA population

contains less than 5 parameter sets within 2% of only 6 Pareto-optimal solutions. On an average

there are 95 (and a maximum of 495) parameter sets within 2% of the Pareto-optimal solutions.

Figure 5.9 also shows the RMS deviations of error in energy and error in energy gradient between

the Pareto-optimal solutions and the corresponding neighboring parameter sets. The RMS devi-

ation in errors in energy and energy gradient for each of the Pareto-optimal solution is shown in

Figure 5.10. The online sensitivity analysis reveals that 44 out of 150 Pareto-optimal solutions

68



0 1 2 3 4 5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Error in energy (eV)

E
rr

or
 in

 e
ne

rg
y 

gr
ad

ie
nt

 (
eV

/A
o )

 

 

Stable parameters
Unstable parameters
Unknown stability

(a) Sensitivity of Pareto-optimal solutions.
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(b) Stable Pareto-optimal solutions.

Figure 5.10: (a) RMS deviations in error in energy and energy gradient for each of the Pareto-
optimal solutions. Pareto-optimal solutions with less than 5 neighboring parameter sets are labeled
as unknown stability. The stability of these solutions are determined offline by randomly gener-
ating perturbed solutions. (b) Stable Pareto-optimal solutions. From a set of 150 Pareto-optimal
solutions, 44 solutions with either (or both) the RMS deviation in error in energy greater than 0.99
eV or RMS deviation in error in energy gradient greater than 0.023 eV/A◦ are labeled as sensitive
and eliminated. Six Pareto-optimal solutions which have less than 5 neighboring parameter sets
are labeled as those of unknown stability. The remaining 100 Pareto-optimal solutions are found
to be stable and not sensitive to perturbation.

have either RMS deviation in error in energy or RMS deviation in error in energy gradient or both

are greater than their respective threshold and therefore are sensitive. The results also show that

100 out of 150 Pareto-optimal solutions have both RMS deviations in errors in energy and energy

gradient are below the threshold and thus are stable or less sensitive to small perturbations in the

parameter values. The parameter sets that are found to be stable via the online sensitive analysis

are shown in Figure 5.10(b).

5.3.5 Energetics of Untested Excited-State Configurations

We now consider solutions obtained through the GA and evaluate their results on energetic calcula-

tions for a set of ethylidene geometries for which they were not reoptimized. Before comparing the

results of GA with those of Owens, a brief description of salient properties of cis-trans isomerization

of ethylene is provided.

Previous ab initio work has shown that in addition to the twisting coordinate, a coordinate

involving the pyramidalization of one of the carbons is also important. Ultrafast pump-probe
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Figure 5.11: Energy levels of ethylene at various geometries: Planar, twisted, and pyramidalized
(left) from ab initio calculations and (right) from PM3 and AM1 calculations. Reproduced with
permission.

experiments have shown a very fast excited state lifetime for ethylene (Famanara, Stert & Radloff,

1998). Recent theoretical works suggest that the twisted-pyramidalized geometry is responsible

for the fast non-radiative transfer to the ground state through a conical intersection (Ben-Nun &

Martinez, 2000; Ben-Nun, Quenneville & Martinez, 2000). That is, the ground state for ethylene is

a planar structure as shown in Figure 5.11 and when it is excited, the carbon-carbon bond twists

90◦ and decreases in the energy gap from 7.8 eV to 2.5 eV. The twisted geometry, however, is not

an excited state minimum but a saddle point with respect to pyramidalization of one of the carbon

atoms. As shown in Figure 5.11, using the PM3 and AM1 parameters, however, the pyramidalized

geometry is actually higher in energy than the purely twisted geometry on the excited state, which

is in direct contrast to the results of experiments and high level calculations.

Specifically, we consider the above two important energetics, the results of which are shown in

Figure 5.12:

• Energy differences between planar ethylene (ground state, S0 minimized D2h) and twisted

geometry (S1 minimized D2d), ideal value for which is 2.28 eV as calculated by ab initio

methods (Ben-Nun & Martinez, 2000). If the energy difference between the planar and

twisted geometry is less than zero, then the excited state minimum would be the planar

structure, which is erroneous. In other words, for good parameter sets, the energy difference

between the planar and twisted geometry should be greater than zero, preferably around 2.28
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eV.

• Energy differences between the twisted geometry (S1 minimized D2d) and pyramidalized

structure, ideal value for which is 0.88 eV as calculated by ab initio methods (Ben-Nun &

Martinez, 2000). As shown in Figure 5.11 the standard semiempirical parameter sets do

not capture this feature, and therefore, this energetics is one of the critical phenomena in

determining the quality of the reoptimized parameter sets. If the energy difference between

the twisted geometry and the pyramidalized structure is less than zero, then the excited state

minimum would be the twisted geometry (as predicted by standard parameter sets) which is

inconsistent with ab initio and experimental results. Therefore, for good parameter sets, the

energy difference between the twisted and pyramidalized geometries must be greater than

zero, preferably around 0.88 eV.

Among the Pareto-optimal solutions, we would expect those parameter sets with lower error in

energy to be able to yield accurate energetics of untested configuration as opposed to those with

higher error in energy. The energy differences between planar and twisted geometry, and twisted

geometry and pyramidalized structure, for both the best non-dominated sets are shown in Figure

5.12 along with the corresponding solutions. As expected, from Figure 5.12 we can easily see

that the Pareto-optimal solutions with error in energies less than 1.5 eV yield near ideal energies

for both excited-state transitions. Moreover, as shown in Figure 5.13, the results obtained via

multiobjective GA are clearly superior when compared to previously published results (Owens,

2004). More importantly, the multiobjective GA optimized parameter sets correctly identify the

lowest-energy excited state as the pyramidalized structure as opposed to standard semiempirical

parameter sets and some of the previously reported reparameterized sets.

5.3.6 Energy Dynamics Calculations

The final requirement of good parameter sets from chemistry perspective is that they yield accurate

reaction dynamics simulations. It should be noted that the dynamics is controlled by the shape

of the potential energy surfaces. Since error in energy gradient gives a measure of the accuracy

of the potential energy surface, it is reasonable to expect that Pareto-optimal solutions with lower

error in energy gradient yield accurate dynamics over those with higher error in energy gradient.
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Figure 5.12: (Top) The best non-dominated parameter set obtained via multiobjective GA repro-
duced from Figure 5.5. (Bottom left) the energy differences between planar and twisted geometries,
and between twisted and pyramidalized geometry. The points on the best non-dominated set—
especially those with low error in energy—are near ideal values (shown by dashed lines). The ideal
value for energy difference between D2d S1 and pyramidalized S1 configuration of 0.9 eV, and that
between D2d S1 and planar (D2h S0) is 2.28 eV.

The dynamics calculations conducted by Alexis Thompson, one of our chemistry collaborators,

validates this expectation and indeed parameter sets with lower error in energy gradient produce

ab-initio-quality reaction dynamics simulations.

Specifically, Alexis considered excited state lifetime and computed the average time for half the

population to transfer from S1 (excited state, pyramidalized) to S0 (ground state, planar) following

photoexcitation of the gas-phase molecule. This phenomenon has been extensively studied using ab

initio simulations (Quenneville, Ben-Nun & Martinez, 2001). The AIMS simulations used multi-

reference configuration interaction (MRCI) electronic wavefunctions within a double zeta basis set.

The simulations did not include Rydberg basis functions and the nuclear dynamics is followed for
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Figure 5.13: (Top) The best non-dominated sets and solution set reported by Owens (Owens,
2004) reproduced from Figure 5.5. (Bottom) The energy difference between planar and twisted
geometries and the energy difference between twisted and pyramidalized geometry. The points on
the best non-dominated set—especially those with low error in energy and energy-gradient—are
near ideal values (shown by dashed lines). The ideal value for energy difference between D2d S1

and pyramidalized S1 configuration of 0.9 eV, and that between D2d S1 and planar (D2h S0) is
2.28 eV.

0.5 picoseconds, and the total dynamics is represented by averaging over results obtained using

10 different representations of the initial wavefunction. Overall, approximately 100 nuclear basis

functions are spawned during the simulation time. A more complete description of the technical

details is available elsewhere (Ben-Nun, Quenneville & Martinez, 2000; Quenneville, Ben-Nun &

Martinez, 2001). The ab initio results indicate that the average time for half the population to

transfer from S1 to S0 is 180 ± 50 fs.

The dynamics simulations are computed for each of the stable Pareto-optimal solutions and

compared to the ab initio simulation results. The dynamics results are averaged over 50 independent

dynamics simulations and are plotted as a function of error in energy gradient in Figure 5.14. The
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Figure 5.14: The average time for half the population to transfer from S1 (excited state, pyrami-
dalized) to S0 (ground state, planar) following photoexcitation of the gas-phase ethylene for the
stable Pareto-optimal semiempirical parameters. The average time for half of the population to
transfer to S0 from ab initio results is 180 ± 50 fs. The results are averaged over 50 independent
dynamics simulations. The dynamics results for the best solutions obtained via single-objective
optimization are denoted by triangles. Reproduced with permission from A. Thompson.

results show that most of the stable Pareto-optimal solutions—especially those with lower error

in energy gradient—yield near-ideal, ab initio quality dynamics results. Moreover, the dynamics

simulation results for the best solutions obtained via single-objective optimization are significantly

worse than those obtained via multiobjective optimization. In essence, the dynamics simulation

results clearly show that majority of the stable Pareto-optimal solutions—specifically 85 out of

100—yield dynamics results in agreement with ab initio simulations.

5.3.7 Stable, Energistically and Dynamically Accurate Parameter Sets

The results presented in the previous sections clearly show that multiobjective GA yields multiple

semiempirical parameter sets that (1) are stable to small perturbations, (2) yield accurate—indeed,

near ideal—energetics for untested, yet critical excited-state configurations, and (3) yield dynam-
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Figure 5.15: Subset of Pareto-optimal solutions for ethylene that (1) are stable to small pertur-
bations, (2) yield accurate—indeed, near ideal—energetics for untested, yet critical configuration,
and (3) yield dynamics with ab initio accuracy. Overall 61 out of 150 Pareto-optimal solutions
obtained via multiobjective GA are found to be stable and yield accurate energetics and dynamics.

ics with ab initio accuracy. The subset of Pareto-optimal solutions which are stable and produce

accurate energetics and dynamics are shown in Figure 5.15. Combining the results from online sen-

sitivity analysis, energetics tests, and dynamics simulations, reveals that out of the 150 parameter

sets in the Pareto-optimal front, 61 parameter sets are stable and yield accurate configurational

energies and dynamics. Interestingly, parameters sets that are stable and yield accurate energetics

and dynamics are not on and around the nose of the Pareto front as one might expect, but are

slightly to the right of the Pareto front. The reason being that, a slight increase in error in energy

leads to an improvement in error in energy gradient which controls the accuracy of dynamics.

It should also be noted that similar to ethylene, results for benzene also show that while the

standard semiempirical parameter sets yield inaccurate dynamics, the multiobjective GA optimized

parameter sets yield results consistent with experiments and ab initio computations. For example,

the newly optimized parameter sets predict an S2 lifetime of 100 fs, in agreement with experiment
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(Radloff et al., 1997).

5.3.8 Semiempirical parameter interactions

The multiobjective optimization of the semiempirical parameters for ethylene resulted in 61 different

optimal parameter sets. Figure 5.16 depicts the histogram of the deviation of the 11 semiempirical

parameter values from their corresponding PM3 values. The results show that the parameter

values, with the exception of ζp are very diverse. Understanding the relationship between these

optimal, stable, and accurate semiempirical parameters can yield insights into important energy

relations for the given molecule. In addition to yielding physical insights into the excited-state

energetics, if we can determine the relationships between the semiempirical parameters, we would

have interpretable semiempirical methods.

Another advantage of using multiobjective GA is that the Pareto optimal solutions can be

mined to automatically discover the relation between semiempirical parameters. That is, using

the optimal, stable, and accurate parameter-set data, the relationship between the semiempirical

parameters can be symbolically regressed via genetic programming. That is what we do here. First

the 61 Pareto-optimal parameter sets that (1) are stable to small perturbations, (2) yield accurate

configurational energies, and (3) yield ab initio quality excited-state dynamics are selected. The

data is normalized using a z-score

x′
i =

xi − x̄i

sxi

where x̄i and sxi are the sample mean and variance of the ith semiempirical parameter, respectively.

The objective then is to determine the functional relationship between each of the 11 semiempirical

parameters as a function of the rest of the 10 parameters. For example, we use GP to evolve a

functional relationship between Uss in terms of Upp, βs, βp, ζs, ζp, Gss, Gsp, Gpp, Gp2 , and Hsp.

The normalized data is used to evolve relationships between the semiempirical parameters via

GP. The following function set F = {+,−, ∗, /, ^, exp} is used for all the runs. The terminal

set contains an ephemeral random constant and all the semiempirical parameters except the one

for which we want to discover the functional relationship. For example, if we want to find the

relationship between Uss and the rest of the semiempirical parameters, then the terminal set would

consist of T = {Upp, βs, βp, ζs, ζp, Gss, Gsp, Gpp, Gp2 , Hsp,R}. The output of the candidate program
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Figure 5.16: Histogram of the deviation of stable, accurate and optimal semiempirical parameter
for ethylene from their corresponding PM3 parameter values.
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is the normalized value of a semiempirical parameter.

The fitness of a solution is computed as the root mean square error (RMSE) between the

predicted and Pareto-optimal value of the semiempirical parameter for which we are evolving the

candidate program. In all GP runs, a population size of 1000 and a run duration of 100 generations

were used. For each of semiempirical parameter, over 100 independent GP runs were computed.

The best evolved regression function for each of the independent runs is then simplified using the

symbolic math toolbox in matlab. The coefficients are then optimized using either linear or non-

linear regression methods. While the highlights of the results are discussed in the remainder of

this section, the best evolved solutions for each of the semiempirical parameters along with the

RMSE values and the number of independent GP runs that yield the functional form are given in

Appendix B.

Table 5.2: Functional relationship between semiempirical parameters symbolically regressed via

GP using the stable and accurate Pareto-optimal solutions. The coefficients of the GP-regressed

relations are optimized via linear or non-linear regression methods. The results show the two

most frequently evolved relations and the least-complex, most-accurate relationship for each of

the 11 parameters. More results are presented in Appendix B.

# GP

Runs

RMS

error

GP-regressed relation

Uss 1 0.198 1.658Upp + 2.086Gp2 + 0.795βs + 0.476ζs − 1.5Gss − 0.34Gsp

37 0.417 1.968Upp + 1.052Gp2 + 0.438βs

24 0.525 1.671Upp + 1.052Gp2

Upp 1 0.172 0.174Uss + 0.389βp − 0.3Gsp − 0.325Gp2

76 0.218 0.708βp − 0.474Gsp

21 0.324 0.441Uss − 0.726Gp2

βs 1 0.349 −0.627 − 0.087Gss + 0.754G2
ss + G3

ss (0.694Hsp + 0.039Gsp) + G4
ssHsp

continued on next page
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Table 5.2 – continued from previous page

# GP

Runs

RMS

error

GP-regressed equation

13 0.585 −0.579 + 0.583G2
ss

38 0.593 1.248Gss − 0.531Gp2

βp 1 0.199 0.034 − 0.737Gss + GssGpp (0.339 − 0.057Gpp) + 0.054Gppe
0.812Gsp

21 0.293 1.275Upp + 0.571Gsp

28 0.305 −0.724Gss + 0.299Gpp

ζs 1 0.468 −0.233 + 0.682ζpGppUsse
2.578βp

16 0.582 −0.145 + 0.39ζpGppUss

8 0.598 −0.182 + 0.193ζ2
p

ζp 1 0.146 −0.251 + βs (0.59Gss − 0.592Gp2) + 0.09ζ2
s β2

s

8 0.259 −0.159 + 0.063ζs + 0.183βsζs

52 0.262 −0.167 + 0.193ζ2
s βs

Gss 1 0.086 −0.315 + 0.516Gp2 + 0.278ζp + 0.103βs + ζp (0.17Gsp + 0.096βsζp)

+ Gp2 (0.119βs + 0.172Gp2) + Gp2ζp (0.445βs − 0.605ζp − 0.489Gp2)

22 0.312 0.697Gp2 + 0.346βs

14 0.313 0.871Gp2 + 0.276ζp

Gsp 1 0.140 −0.2749 + 1.592βp − 2.538Upp − 0.28ζs + βp [1.433βp

−ζs

(
1.652 + 0.043U−1

pp

)
− ζsGp2

(
5.758 + 0.197U−1

pp

)]
− Upp (2.608Upp + 0.537βs + 0.101ζs − 1.718ζsGp2)

− ζs (0.157βs − 0.366Gp2) − β2
p [3.16βp + 2.74Gp2 − 3.482βpGp2

−ζsU
−1
pp (0.91 + 2.288Gp2)

]
+ U2

pp [1.788Upp + 1.248Gss − 1.516βs

−1.01Gp2 + Uss (0.119 + 0.417Gp2 − 1.002βs)] + U3
pp (3.663Upp+

continued on next page
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Table 5.2 – continued from previous page

# GP

Runs

RMS

error

GP-regressed equation

1.699Gp2 + 0.502Uss + 2.433UssGp2) − βpUpp [0.311 − 2.781βp

+1.493Upp − 2.455βs + 9.914U2
pp − Gp2 (0.905 − 4.994βp

−6.97Upp) − Uss (2.45Uss + 0.978βp + 0.858Upp)

−UssGp2 (4.396 + 5.378βp − 6.152Upp)]

2 0.356 −0.118 + 1.017βp − 1.643Upp − 1.336βpUpp + 0.466β2
p + 0.813U3

pp

75 0.414 1.137βp − 1.7Upp

Gpp 1 0.256 − 0.204ζp + 0.762βp + 1.137Gp2 + 0.09βs

+ Gp2

(
0.481βp + 0.1ζs + 0.53ζ2

p

)

4 0.316 0.922ζp + 1.286βp + 1.048Gp2 − 0.235ζs

90 0.350 0.74ζp + 1.297βp + 1.082Gp2

Gp2 1 0.174 −0.068 + 0.39Gss + 0.343Uss − 0.844Upp − 0.314βs + 0.289Gppβp

20 0.333 0.977Gss − 0.256ζs

29 0.337 0.51Gss − 0.467Upp

Hsp 1 0.456 −0.594 + 1.12βp − 0.537Gp2 − 0.316ζp + 0.455Gpp

+ 1.558Gp2Gpp − 0.071Gssβs − Gp2βp [1.797 − 2.245βp

−0.947Upp + Gp2 (1.716βp + 0.086Upp + 2.783Gpp − 1.623Gp2Gpp)]

+ G2
p2

GppUpp (1.798 − 0.972Gp2)

25 0.654 0.221 + 0.274G3
p2

Gpp

28 0.666 −0.013 − 0.323Gp2 + 0.545Gp2Gpp

Table 5.2 shows the two most frequently evolved, and statistically most-accurate and least-

complex (determined via an F-test) relationships for each of the 11 semiempirical parameters. The

results can be summarized as follows:
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• For Uss, 37 out of 113 independent GP runs suggest that Uss is linearly proportional to Upp,

Gp2 , and βs. Moreover all the independent runs suggest a linear relationship between Uss

and Upp which is in agreement with previously published analysis (Owens, 2004).

• For Upp, 76 out of 113 independent GP runs suggest that Upp is linearly proportional to βp

and Gsp. Additionally, 21 independent GP runs suggest that Upp is linearly proportional to

Uss and Gp2 . Finally, the most-accurate, least-complex relationship is a linear combination

of the two most frequently evolved symbolic expressions.

• For βs, 38 out of 113 independent GP runs suggest that βs is linearly proportional to Gss

and Gp2 . Moreover all the independent GP runs indicate a relationship between βs and Gss.

• For βp, 28 independent GP runs suggest a linear relationship between βp and Gss and Gpp.

Additionally, 21 independent runs suggest a linear relationship between βs and Upp and Gsp.

• For ζs, 16 independent GP runs suggest that ζs is related to the product of ζp, Gpp, and Uss.

However, the high RMS error coupled with majority of independent GP runs yielding very

diverse relationships for ζs suggest that ζs does not have a strong relationship with other

semiempirical parameters.

• For ζp, 52 independent GP runs suggest that ζp is directly proportional to ζ2
s βs. Moreover,

all independent GP runs indicate a relationship between ζp and ζs.

• For Gss, 22 independent GP runs reveal a linear relationship between Gss, Gp2 and βs and

14 independent GP runs reveal a relationship between Gss, Gp2 and ζp. Moreover, majority

of the independent GP runs reveal a relationship between Gss and Gp2 .

• For Gsp, 75 independent GP runs suggest that Gsp is linearly proportional to βp and Upp.

Moreover, all the independent GP runs consist of the similar relationship between Gsp, βp

and Gsp.

• For Gpp, 90 independent GP runs reveal that Gpp is linearly proportional to ζp, βp, and Gp2 .

Indeed, the best solutions evolved in all the GP runs contain the above relationship.
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• For Gp2 , 29 independent GP runs suggest that Gp2 is linearly proportional to Gss and Upp and

20 independent runs suggest that Gp2 is linearly proportional to Gss and ζs. Furthermore,

all independent GP runs suggest that Gp2 depends on Gss.

• For Hsp, 28 independent GP runs reveal that Hsp is related to Gp2 and Gpp. More importantly

all the runs indicate that Hsp is related to Gpp and Gp2 , which is in agreement with previously

published analysis (Owens, 2004).

5.4 Summary

In this chapter, we investigated the use of multiobjective genetic algorithms in multiscaling simu-

lations of excited state dynamics in photochemistry. Specifically, multiobjective genetic algorithms

were used to bridge high-level quantum chemistry and semiempirical methods to provide an ac-

curate representation of complex molecular excited-state and ground-state behavior, well beyond

previous attempts, or expectation of human experts, and a dramatic reduction (from about 100 to

1000 times) in computational cost. Rapid reparameterization of semiempirical methods not only

eliminates the need for a full-fledged ab initio dynamics simulation, which is prohibitively expensive

for large molecules, but also eliminates drawbacks of semiempirical methods that use standard pa-

rameter sets and can yield unphysical dynamics. The results show that the evolutionary approach

provides significantly better results—with up to 384% lower error in the energy and 86.5% lower

error in the energy gradient—than those reported in literature. Furthermore, it also provides a

large number of parameter sets, all of which yield globally accurate PESs and physical dynamics.

Even more surprising and potentially groundbreaking, the multiobjective GA results produce

transferable potentials—that is, parameters from one molecular system can be used for similar

systems. Transferability to chemists is analogous to building blocks to a GA researchers. Opti-

mized semiempirical parameters of a small number of relatively simple molecules can be used to

predict accurately the behavior of large complex molecules. More work needs to be done, but

transferability of ethylene parameters to simulate accurately benzene, and vice versa, is strongly

suggestive that GAs will enable the fast, accurate simulation of complex molecules from a standard

GA-tuned database. This is an ultimate goal of this work, since it would allow direct simulation
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of photoinduced cis-trans isomerization in molecules such as stilbene and azobenzene, as well as

energy transfer in dendrimeric molecules. Furthermore, this opens up the possibility of accurate

simulations of photochemistry in complex environments such as proteins and condensed phases. If

this pans out it will transform the way chemicals are modeled and designed radically.

In conclusion, the multiobjective GA-discovered potentials inherit the accuracy of the ab ini-

tio data, permit simulations to orders of magnitude larger time scales (multi-picoseconds) than

currently possible by ab initio methods, even for simple molecules, and exhibit transferability in

initial tests—the ”Holy Grail” for materials and chemistry simulations. This multiobjective opti-

mization approach is an enabling technology to simulate successfully, and within reasonable time

frame and with sufficient accuracy, complex, multiscale biological, chemical and materials problems

that are ubiquitous in science and engineering and thus impacting our ability to address critical

biophysical simulations of, for example, vision and photosynthesis, and for automated design of

pharmaceuticals and functional materials.
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Chapter 6

Scalability of Genetic Programming

The previous two chapters clearly demonstrated the efficacy of genetic algorithms and genetic

programming in multiscaling materials modeling. In order to systematically scale these methods

and to tackle more complex problems we need to understand their scalability and competence.

Competence here implies those GAs that can solve hard problems quickly, reliably, and accurately

(Goldberg, 1999a; Goldberg, 2002). Using Goldberg’s (Goldberg, 2002) design decomposition

theory and facetwise modeling approaches the remainder of this thesis will address some of the

scalability issues involved with GP and multiobjective GAs.

Central to the design-decomposition approach is the notion of building blocks or minimal se-

quential superior subsolutions of a problem (Goldberg, 2002). Based on this notion of building

blocks, facetwise models for analyzing scalability of GP and multiobjective GAs (MOGAs) are

considered and competent methods for each are proposed. Specifically, population sizing in GP

dictated by adequate building-block supply (Sastry, O’Reilly & Goldberg, 2003) and accurate deci-

sion making between competing building blocks (Sastry, O’Reilly & Goldberg, 2004) are addressed

in this chapter. The facetwise models are empirically verified on a broad class of test problems.

A competent GP design—the extended compact genetic programming (eCGP) which is based on

the extended compact genetic algorithm (eCGA) (Harik, 1999; Harik, Lobo & Sastry, 2006)—that

solves a broad class of adversarially-designed boundedly-difficult problems using only polynomial

(cubic) number of function evaluations is proposed (Sastry & Goldberg, 2003a) in chapter 7.

One of the requirements of multiobjective genetic algorithms is the ability to maintain a diverse

set of optimal solutions, termed as Pareto-optimal solutions, in a reliable manner. The scalability

of MOGAs in reliably maintaining is modeled and verified with empirical results (Sastry, Pelikan

& Goldberg, 2005) in chapter 8. Along the way, based on the multiobjective Bayesian optimization

algorithm (Khan, Goldberg & Pelikan, 2002; Pelikan, Sastry & Goldberg, 2005), a competent
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MOGA design—the multiobjective extended compact genetic algorithm (meCGA)—is proposed

that can solve boundedly-difficult problems using only a polynomial (quadratic) number of function

evaluations (Pelikan, Sastry & Goldberg, 2006; Sastry, Pelikan & Goldberg, 2005).

The first topic of the analysis part of this thesis deals with population sizing in GP both

from building-block supply and decision-making grounds and is discussed in the remainder of this

chapter.

6.1 Population Sizing in GP

The growth in application of genetic programming (GP) to problems of practical and scientific

importance is remarkable (Ebner et al., 2007; Keijzer et al., 2004; Koza et al., 2003; Riolo &

Worzel, 2003; O’Reilly et al., 2004; Thierens et al., 2007). Yet, despite the increasing interest and

empirical success, GP researchers and practitioners are often frustrated—sometimes stymied—by

the lack of theory available to guide them in selecting key algorithm parameters or to help them

explain empirical findings in a systematic manner. A key parameter determining performance of a

GP is the population size. For example, small population sizes might lead to premature convergence

and yield substandard solutions. On the other hand, large population sizes lead to unnecessary

expenditure of valuable computational time. Population size should be large enough to ensure that

all the raw substructures—tree segments that are potentially part of the solution to the search

problem—are present in the initial population so that recombination and mutation can assemble

and fine-tune them to yield high-quality solutions. Empirically, GP population sizes run from ten

to a million members or more, but at present there is no practical guide to knowing when to choose

which size.

The purpose here is to begin to address this lack of theory by providing an estimate of the

population size necessary to solve a given GP problem. It is hoped that, like in the GA theory

(Goldberg, 2002), the availability of a population sizing equation will be a valuable tool to aid

GP practitioners in their efforts to understand how GP processes information, a pursuit that may

eventually lead them to an understanding and design of competent GP (Looks, 2006; Sastry &

Goldberg, 2003a; Shan et al., 2006). The first step towards understanding population sizing is to

tackle the issue of building-block (BB) supply (Sastry, O’Reilly & Goldberg, 2003). The BB-supply
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population sizing model answers what population size is required to ensure the presence of all raw

building blocks for a given tree size (or size distribution) in the initial population.

However, the building-block supply based population size is conservative because it does not

guarantee the growth in the market share of good substructures. That is, while ensuring the

building-block supply is important for a selectorecombinative algorithm’s success, ensuring a growth

in the market share of good building blocks by deciding correctly between competing building

blocks is also critical (Goldberg, 2002). Moreover, the population sizing for GA success is usually

bounded by the population size required for making good decisions between competing building

blocks. Therefore, a population-sizing model to ensure good decision making between competing

building blocks (Sastry, O’Reilly & Goldberg, 2004) is also presented in this chapter. The analytical

approach is similar to that used by Goldberg, Deb and Clark (1992) for developing a population-

sizing model based on decision-making for genetic algorithms (GAs).

6.2 Population Sizing for Adequate Building Block Supply

This section presents facetwise models for the supply of BBs and estimate the population size

required to guarantee the presence of all raw BBs for a given tree size (or size distribution) in

the initial GP population. Although ensuring BB growth supersedes BB supply in the subsequent

population, BB growth will be extremely difficult if BB supply is not ensured. Although decision

making usually governs the population sizing, sometimes BB supply is the dominating facet. In such

cases a facetwise model of BB supply is necessary for ensuring a successful GP design. Furthermore,

understanding initial supply of BBs is essential for developing a practical population-sizing model.

The section is structured as follows. We start with a brief literature review of BB supply.

Section 6.2.2 provides background and states key assumptions made in this study. Details of an

expression mechanism and test problems are provided in section 6.2.3, followed by facetwise models

for BB supply in section 6.2.4. Section 6.2.5 outlines some thoughts on handling BB supply for

real GP expressions.
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6.2.1 Literature Review

The GP community is interested in identifying strategies to size populations, in order to estimate

the computational effort required to solve particular problems with GP; however, few studies have

addressed this topic, thus far. One approach has been suggested by Langdon and Poli (2002), but

it has not been fully developed. The approach proposed by Langdon and Poli (2002) employs the

methodology used by Poli (2000) for the sizing of populations in GA. Poli (2000) used Stephens and

Waelbroeck’s (1999) concept of transmission probability to develop a recursive conditional schema

theory that allows for the prediction of the probability of reaching a solution to a problem in a

fixed number of generations. An expression for the transmission probability for standard GP was

developed by Langdon and Poli (2002). However, the expression is very difficult to evaluate.

The methodological and analytic foundation for our approach to deciphering selectorecombi-

native GA (Goldberg, 2002) and GP (Goldberg & O’Reilly, 1998; O’Reilly & Goldberg, 1998) has

been stated before. Put succinctly, our approach is to analyze and understand GP’s simple mech-

anisms before its complex ones. We predict that lessons learned from experimentation and theory

on a simple case will lead to insight, and possibly, carry over to more complex cases. Therefore, we

start by analyzing building-block supply in GP’s initial population, before the activity of crossover

and selection.

While building-block supply has been largely ignored in GP literature, many researchers have

studied the BB supply in GAs. Holland (1975) estimated the number of BBs that receive at

least a specified number of trials using Poisson distribution. A later study (Goldberg, 1989c)

calculated the same quantity more exactly using binomial distribution and studied their effects on

population sizing in serial and parallel computation. Reeves (1993) proposed a population sizing

model for supply of alphabets with fixed cardinality. Recently, Goldberg, Sastry and Latoza (2001)

developed facetwise models for ensuring BB supply in the initial population for genetic algorithms.

They considered a population of fixed-length strings consisting alphabets of arbitrary cardinality χ.

They predicted that the population size required to ensure the presence of all competing building

blocks with a tolerance of ε = 1/m is given by n = χk (k log χ + log m), where χ is the alphabet

cardinality, k is BB size, and m is the number of BBs.

This section follows a similar methodology along the lines of Goldberg, Sastry and Latoza (2001)
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and develops facetwise models for predicting the probability of the presence of a single schema as

well as all schemas in a given partition. Before developing the models, we present some background

and state assumptions used in the modeling procedure.

6.2.2 Preliminaries

In this section, we present definitions and concepts that underpin our analysis of BB supply in GP.

GP Tree Composition

Most GP implementations reported in the literature use parse trees to represent candidate programs

in the population (Langdon & Poli, 2002). We have also assumed a tree representation in our

analysis. To simplify the analysis further, we consider the following:

1. A primitive set of the GP tree is F ∪T , where F denotes the set of functions (interior nodes

to a GP parse tree), and T denotes the set of terminals (leaf nodes in a GP parse tree).

2. The cardinality of F = χf and the cardinality of T = χt.

3. The arity of all functions in the primitive set is two: All functions are binary and thus parse

trees generated from the primitive set are binary.

We believe that our analysis could be extended to primitive sets containing functions with arity

greater than two (non-binary trees). We also note that our assumption closely matches a common

GP benchmark, symbolic regression, which frequently has arithmetic functions of arity two.

Translating GA Schemas to GP Schemas Isn’t Straightforward

Schemas are similarity templates that describe sets of solutions that share a common feature. The

GP literature contains several alternative definitions of schemas (Altenberg, 1994; Koza, 1992;

Langdon & Poli, 2002; O’Reilly & Oppacher, 1995; Rosca, 1997; Whigham, 1995). Per O’Reilly

and Oppacher (1995), a GP schema is a multiset of subtrees and tree fragments with nodes denoted

as functions, terminals or “don’t care” symbols. Tree fragments are trees with at least one leaf

that is a “don’t care” symbol which can be matched by any subtree (including subtrees with only

one node).
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Figure 6.1: Smallest tree fragments in GP. Fragments (c) and (d) have mirrors where the child is
the 2nd parameter of the function. Likewise, fragment (f) has mirror where the 1st and the 2nd
parameters of the function are reversed.

Tree Fragments

While in general tree fragments refer to a multiset of tree patterns or tree templates, we restrict

ourselves to a single tree pattern. A tree fragment pattern has each of its nodes labeled with the

function symbol, F , or terminal symbol, T . However, it does not have an absolute position or

positional anchor. Figure 6.1 shows the fragments our analysis focuses on. Along the edge between

a function and its child node, a numeral denotes what parameter of the function the child node

is (that is, the first or second argument in the case of a binary function). A tree fragment has a

length or size; that is, its number of nodes, k = Nt + Nf , where Nt and Nf are the number of

terminal and functional nodes in the tree fragment, respectively. Furthermore, the total number of

possible instances of a tree fragment is given by

κ = χ
Nf

f ∗ χNt
t . (6.1)

For example, for the tree fragment Pb shown in Figure 6.1(b) (fragment with only terminal), Nf = 0,

and Nt = 1, and therefore, the total number of instances of Pb is χt.

Since a tree fragment is not anchored to a position of a tree, it is possible that none or more

than one instance of a fragment can be present in a single tree. Yet, the smallest fragments Pa and

Pb (see Figures 6.1(a)–(b)) appear at least once or twice in a tree respectively. Assuming a single

tree of size s1 and the tree properties listed in section 6.2.2, Table 6.1 provides estimates (derived

1It should be noted here that the average tree size of a population can be calculated for popular initialization
schemes (Koza, 1992), or initialization schemes such as PCT1 or PCT2 (Luke, 2000c) can be used to generate a
population which conform to an expected tree size.
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by probability of frequency) of the average quantity of tree-fragment instances, φ. In other words,

φ counts the expected number of tree-fragment instances, given the tree size (or size distribution),

in the population.

Table 6.1: Designations, Pi, and descriptions of tree fragments considered in the BB supply models,
the quantity of fragments φ, and the number of competing schemas in the fragments κ, for a binary
tree of size s. See also Figure 6.1.

P Description φ κ

Pa function 1
2(s − 1) χf

Pb terminal 1
2(s + 1) χt

Pc one terminal that is the first parameter of a binary function 1
4(s + 1) χf · χt

Pd a function at the root and a function as its first parameter 1
4(s − 3) χ2

f

Pe a function at the root and 2 terminals as its parameters 1
8

(s+1)2

(s−1) χf · χ2
t

Pf a function at the root and 1 terminal as the first parameter
and one function as it second parameter.

1
8

(s+1)(s+3)
(s−1) χ3

f

Pg a binary function at the root and 2 functions as its param-
eters

1
8

(s−3)2

(s−1) χ2
f · χt

The Tree Fragments are not Enough: How are They Expressed?

While tree fragments are the parts of a physical tree, and counting number of instances of tree frag-

ments can itself be important, what is more important are those tree fragments that get expressed.

The expression mechanism dictates what the building blocks of a problem are and therefore affects

the BB supply. Specifically, we are interested in expression of small tree fragments into partially

correct subfunctions. Let us consider, for example, symbolic regression of 1 +x+x2 +x3. Early on

in the GP run, it is important to get the constant and the linear part of the symbolic equation right.

Therefore, all the tree fragments that contribute to the correct constant and linear subfunctions

are important and their supply is critical in the initial population.

We illustrate the methodology to incorporate expression mechanism in BB supply models by

using a simple expression mechanism, called ORDER, which is explained in the next section. We

choose ORDER because while it models some of the GP behavior (Goldberg & O’Reilly, 1998; O’Reilly

& Goldberg, 1998), the expression mechanism can be analyzed in a straightforward manner.
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6.2.3 ORDER Expression Mechanism

ORDER is a simple, yet intuitive expression mechanism which makes it amenable to analysis and

modeling (Goldberg & O’Reilly, 1998; O’Reilly & Goldberg, 1998). The primitive set of ORDER con-

sists of the primitive JOIN of arity two and complimentary primitive pairs
(
Xi, X̄i

)
, i = 0, 1, · · · , �.

A candidate solution of the ORDER problem is a binary tree with JOIN primitive at the internal

nodes and either Xi’s or X̄i’s at its leaves. The candidate solution’s expression is determined by

parsing the program tree inorder (from left to right). The program expresses the value Xi if, during

the inorder parse, a Xi leaf is encountered before its complement X̄i. Furthermore, only unique

primitives are expressed in ORDER during the inorder parse.

Building blocks in ORDER are the sets of primitives that are part of the subfunctions that improve

fitness. In this study, we consider two test problems that use ORDER expression mechanism: 1.

UNITATION: where each primitive Xi is a BB, and 2. DECEPTION: where k primitives form a BB.

The following sections describe these two test problems.

UNITATION

In UNITATION, for each Xi that is expressed, an equal unit of fitness value is accredited. That is,

f1(xi) =

⎧⎪⎨
⎪⎩

1 if xi ∈ {X1, X2, · · · , X�}

0 otherwise
. (6.2)

The fitness function for ORDER is then defined as

F (x) =
�∑

i=1

f1 (xi) , (6.3)

where x is the set of primitives expressed by the tree. The output for optimal solution of a �-

primitive UNITATION problem is {X1, X2, · · · , X�}, and its fitness value is �.

DECEPTION

In DECEPTION, the primitives are divided into m subgroups, each subgroup consisting of k primitives.

The fitness of each subgroup is computed using the following trap function (Deb & Goldberg, 1992;
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Goldberg, 1987):

fk (u(x1, x2, · · · , xk)) =

⎧⎪⎨
⎪⎩

1.0 u = k

(1.0 − δ)
(
1 − u

k−1

)
u < k

, (6.4)

where u is the unitation, or the number of primitives, Xi, in a subgroup:

u (x1, x2, · · · , xk) =
k∑

i=1

f1(xi), (6.5)

where xi is the ith primitive, δ is the difference in the functional value between the correct BB and

its deceptive attractor. The fitness function of a candidate solution (tree) is then given by

F (x) = fk (u(x1, x2, · · · , xk)) + fk (u(xk+1, · · · , x2k)) + · · · + fk

(
u(x(m−1)k+1, · · · , xmk)

)
, (6.6)

where F is the fitness function, x is the expressed primitives, m is the number of BBs, and � = mk.

6.2.4 Facetwise Models of Building-Block Supply

In this section, we develop facetwise models for building-block supply for ORDER expression. First

we start with addressing the supply of a single BB in a given partition. Then we extend the model

to ensure the supply of all schemas in a partition. We then use the facetwise models to derive a

population-sizing model dictated by BB supply. The models developed in this section are verified

with empirical results for UNITATION and DECEPTION along the way.

Supply of a Single Building Block

Assuming trees of size, s, and that the expression mechanism used is ORDER, the probability that a

primitive Xi is expressed in a tree is given by

pXexp
i

= p
(
#ofXi ≥ 1, #ofX̄i = 0

)
+ p

(
Xi appears before X̄i

)
,

=
nl∑

j=1

⎛
⎜⎝ nl

nl − j

⎞
⎟⎠ 2j−1

(
� − 2

�

)nl−j (1
�

)j

,

=
1

2�nl
[�nl − (� − 2)nl ] ,
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Figure 6.2: Verification of the facetwise model for a single BB supply (Equation 6.11) with empirical
results for the UNITATION problem for different tree heights, h, as a function of population size, n.
The empirical results depict the proportion of runs having at least one copy of a particular schema
out of 1000 trials.

=
1
2

[
1 −

(
1 − 2

�

)nl
]
, (6.7)

where nl = (s + 1)/2, is the number of leaf nodes in the tree, and � = χt.

Assuming that primitives are expressed independent of each other, the probability that an order

k BB (without loss of generality, we will consider X1X2 · · ·Xk) is expressed by a tree is given by

pXexp
1···k

= p (Xi is expressed)k ,

=
[

1
2

{
1 −

(
1 − 2

�

)nl
}]k

. (6.8)
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Figure 6.3: Verification of the facetwise model for a single BB supply (Equation 6.11) with empirical
results for the DECEPTION problem for different tree heights, h, as a function of population size, n.
The empirical results depict the proportion of runs having at least one copy of a particular schema
out of 1000 trials.

The probability that the BB is not expressed by a tree is then given by

pXnot exp
1···k

= 1 − pXexp
1···k

,

= 1 −
[

1
2

{
1 −

(
1 − 2

�

)nl
}]k

. (6.9)

The probability that a BB is not expressed by any of the n individuals in the population is
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given by

p
Xexp=0

1···k
=

(
pXnot exp

i···k

)n
,

=

[
1 −

[
1
2

{
1 −

(
1 − 2

�

)nl
}]k

]n

. (6.10)

Therefore the probability that an order-k BB is expressed by at least one individual in the popu-

lation is given by

p
Xexp≥1

1···k
= 1 − p

Xexp=0
1···k

,

= 1 −
[
1 −

[
1
2

{
1 −

(
1 − 2

�

)nl
}]k

]n

. (6.11)

The model for single BB success given by Equation 6.11 is compared to empirical results for the

UNITATION problem (k = 1) in Figure 6.2, and for the DECEPTION problem (k = 4) in Figure 6.3.

The empirical results are for full trees, therefore, nl = 2h. The results show that the empirical

results agree with the models.

Using the approximation, (1 − r/s)s ≈ e−r, and recognizing that this approximation is suffi-

ciently accurate even for modest values of s, we can simplify Equation 6.11 as follows:

p
Xexp≥1

1···k
≈ 1 − exp

[
−n2−k exp

{
−k exp

(
−2nl

�

)}]
. (6.12)

When nl � �, p
Xexp≥1

i
≈ 1− exp

(
−n2−k

)
. In other words, the probability of a BB being expressed

by at least one individual, given a population size, increases with the tree size and saturates as

2h > �, as shown in Figure 6.4 for UNITATION problem.

Supply for Partition Success

When solving real-world problems, one does not have prior knowledge about a particular schema

being superior to others in a partition. Hence it is necessary to ensure that all competing schemas

in a partition are present. The decision process would then be able to consider all the relevant

alternative schemas. Therefore, in this section we extend the model developed in the previous

section to ensure the presence of at least one copy of all the competing schemas (both the primitive
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Figure 6.4: Verification of the facetwise model for a single BB supply (Equation 6.11) with empirical
results for the UNITATION problem for different population size, n, as a function of tree height, h.
The empirical results depict the proportion of runs having at least one copy of a particular schema
out of 1000 trials.

and its complement) in a partition.

For ORDER, we are interested in the probability that all the 2k possible schemas are present in

the population. Assuming that individual schema success values are independent, the probability

for partition success is given by

ps =
(

p
Xexp≥1

1···k

)2k

,

=

[
1 −

[
1 −

[
1
2

{
1 +

(
1 − 2

�

)nl
}]k

]n]2k

. (6.13)
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Figure 6.5: Verification of the models for BB partition success (Equations 6.16 and 6.14) with
empirical results for UNITATION problem for different tree heights, h, and problem sizes, �, as a
function of population size, n. The empirical results depict the proportion of runs having at least
one copy of a primitive and its complement in the population out of 1000 trials.

Using the approximation (1 − r/s)s ≈ e−r, the above equation can be further approximated as

ps ≈ exp

[
−2k exp

[
−n2−k exp

{
−k exp

(
−2h+1

�

)}]]
. (6.14)

It should be noted that the independence assumption of individual schema success is an ap-

proximation and a more exact model can be derived which is illustrated for BB of unit size (k = 1).

ps =
n∑

i=2

(
2i − 2

)⎛
⎜⎝ n

n − i

⎞
⎟⎠(

pXexp
i

)i (
1 − 2pXexp

i

)n−i
, (6.15)
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Figure 6.6: Verification of the BB partition success model (Equation 6.14) with empirical results for
DECEPTION problem for different tree heights, h, and problem sizes, �, as a function of population
size, n. The empirical results depict the proportion of runs having at least one copy of a primitive
and its complement in the population out of 1000 trials.

The above equation can be rearranged as follows:

ps =
n−2∑
j=0

⎛
⎜⎝ n

j

⎞
⎟⎠(

2pXexp
i

)n−j (
1 − 2pXexp

i

)j
− 2

n−2∑
j=0

⎛
⎜⎝ n

j

⎞
⎟⎠(

pXexp
i

)n−j (
1 − 2pXexp

i

)j
,

= 1 +
(
1 − 2pXexp

i

)n
− 2

(
1 − pXexp

i

)n
. (6.16)

Equations (6.16) and (6.13) are compared with empirical results in Figure 6.5. The figures show

that the approximate model (Equation 6.13) agrees with Equation 6.16 for higher population sizes
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and larger tree sizes. The partition success model (Equation 6.13) is compared with the empirical

results for DECEPTION with k = 4, in Figure 6.6. Both Figures 6.5 and 6.6 clearly validate the BB

supply model.

Population Sizing for Building-Block Supply

The facetwise model derived in the previous section will be rearranged in this section to estimate

the population size required to ensure the presence of all BBs of a partition for ORDER, given the

problem size is �, and the tree height is h. Assuming that we can tolerate a probability ε of not

having all BBs in a given partition, and setting ps to 1 − ε, we can rewrite Equation 6.14,

1 − ε = exp
[
−2k exp

[
−n2−k exp

{
−k exp

(
−2nl

�

)}]]
. (6.17)

Taking logarithms on both sides of the above equation and using the approximation, ln(1−ε) ≈ −ε,

we get

ε = 2k exp

[
−n2−k exp

{
−k exp

(
−2h+1

�

)}]
. (6.18)

After taking logarithms on both sides of the above equation and rearranging the resulting equation,

we can write

n = 2k (k ln 2 − ln ε) exp
[
−k exp

(
−2nl

�

)]
. (6.19)

If we assume tree size to be big enough (nl � �), then the above equation can be simplified as

n ≈ 2k (k ln 2 − ln ε). Furthermore, if we assume that the supply error is inversely proportional to

the number of BBs, m, that is, ε = 1/m,

n ≈ 2k (k ln 2 + ln m) . (6.20)

It is interesting to note that the above population-sizing equation for BB supply in DECEPTION is

identical to that developed by Goldberg, Sastry and Latoza (2001) for selectorecombinative GAs.
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6.2.5 Some Thoughts On Modeling Realistic GP Expressions

The last section developed BB supply models for ORDER expression mechanism and verified it for

two test problems for different parameter values. This section provides a brief outline on how to

develop BB supply models for realistic GP expressions. First we start by addressing the supply of

raw tree fragments, or in other words, we consider that every tree fragment in the tree is expressed.

Tree Fragment Supply

Single BB Success

The probability that a tree does not contain a partition, Pi, is given by

p (#ofPi = 0) =
(

1 − 1
κ

)φ

. (6.21)

Recall that the values for κ, and φ for different partitions are given in Table 6.1. From the

above equation, we can write the probability that the population contains at least one copy of the

partition, Pi, as

pk = 1 −
[(

1 − 1
κ

)φ
]n

. (6.22)

Using the approximation, (1 − r/s)s ≈ e−r, and recognizing that this approximation is sufficiently

accurate even for modest values of s, we can write

pk ≈ 1 − exp
(
−nφ

κ

)
. (6.23)

Furthermore, from Table 6.1, we can see that φ ≈ 2−ks, where k = Nt + Nf . Substituting this

approximation for φ in the above equation, we get

pk ≈ 1 − exp
(
− n · s

κ · 2k

)
. (6.24)

It should be noted that the approximation for φ is an underestimation for the tree fragments, Pb,

Pc, Pe and Pf , and an overestimation for the tree fragments, Pa, Pd, and Pg.

101



Partition Success

Similar to the previous section, we assume that the schema partition success values are independent.

Then, the probability of at least one success of each of the κ schemas, ps is given by ps = pκ
k :

ps =
[
1 − exp

(
− n · s

κ · 2k

)]κ

, (6.25)

≈ exp
[
−κ exp

(
− n · s

κ · 2k

)]
. (6.26)

Population Sizing for Partition Success

We now proceed to model the population size required to ensure the presence of all order-k tree

fragments. Assuming that we can tolerate a probability ε of not having all BBs in a given partition,

and setting ps to 1 − ε, we can rewrite Equation 6.26,

1 − ε = exp
[
−κ exp

(
− n · s

κ · 2k

)]
. (6.27)

Taking logarithm on both sides and using the approximation ln(1 − ε) ≈ −ε, for small values of ε,

gives

ε = κ exp
(
− n · s

κ · 2k

)
. (6.28)

Solving the above equation for n yields

n =
1
2

2kκ (log κ − log ε) . (6.29)

Recall that κ = χ
Nf

f χNt
t , and k = Nf + Nt. Then we can rewrite the above equation as

n =
1
s

(2χf )Nf

(
2χNt

t

)
[Nf ln χf + Nt ln χt − ln ε] . (6.30)

This relation can be further simplified if we assume that the supply error is inversely proportional

to the number of BBs, m, that is, ε = 1/m. Then, the equation may be rewritten as

n =
1
s

(2χf )Nf

(
2χNt

t

)
[Nf ln χf + Nt ln χt + ln m] . (6.31)
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Incorporating Expression

While counting the tree fragments may be useful enroute with proper expression model as in section

6.2.4, on its own it is not realistic. Therefore, we have to compute the combined probability that

a tree fragment is present in the population and that it expresses a correct subfunction:

p(BB is present) = p(fragment is present)p(expression). (6.32)

In the above equation we assume that the events that a tree being present in the population

and it being expressed are independent. It should be noted that this assumption becomes more

accurate as the population size increases. The probability of a tree fragment being present in the

population, p(fragment is present) = pk, and is given by Equation 6.24, and the expression model

is incorporated by the term p(expression). For example, in the symbolic regression example of

1+x+x2 +x3, the probability of expression incorporates the probability of different tree fragments

expressing the linear and constant subfunctions.

6.3 Population Sizing for Good Decision Making

This section builds on the previous section wherein we considered the building block supply problem

for GP. In the previous section, we asked what population size is required to ensure the presence

of all raw building blocks for a given tree size (or size distribution) in the initial population. The

building-block supply based population size is conservative because it does not guarantee the growth

in the market share of good substructures. That is, while ensuring the building-block supply is

important for a selectorecombinative algorithm’s success, ensuring a growth in the market share

of good building blocks by deciding correctly between competing building blocks is also critical

(Goldberg, 2002). Furthermore, the population sizing for GA success is usually bounded by the

population size required for making good decisions between competing building blocks. Our results

herein show this to be the case, at least for the ORDER problem.

The purpose of this section is to derive a population-sizing model to ensure good decision making

between competing building blocks. The analytical approach is similar to that used by Goldberg,

Deb and Clark (1992) for developing a population-sizing model based on decision-making for ge-

103



netic algorithms (GAs). In the proposed population-sizing model, we incorporate factors that are

common to both GP and GAs, as well as those that are unique to GP. The population-sizing model

is verified on three different test problems that span the dimension of building block expression—

thus, modeling the phenomena of bloat at various degrees. Using ORDER, with UNITATION as its

fitness function, provides a model problem where, per tree, a building block can be expressed only

once despite being present multiple times. At the opposite extreme, our LOUD problem models a

building block being expressed each time it is present in the tree. In between, the ON-OFF problem

provides tunability of building block expression. A parameter controls the frequency with which

a ‘function’ can suppress the expression of the subtrees below it, thus effecting how frequently a

tree expresses a building block. This series of experiments not only validates the population-sizing

relationship, but also empirically illustrates the relationship between population size and problem

difficulty, solution complexity, bloat and tree structure.

6.3.1 GA Population Sizing from the Perspective of Competing Building

Blocks

The derivational foundation for the proposed GP population-sizing model is the result for the

selectorecombinative GAs by Goldberg, Deb and Clark (1992), wherein they consider how the

GA can derive accurate estimates of BB fitness in the presence of detrimental noise. The model

recognizes that, while selection is the principal decision maker, it distinguishes individuals based

on their fitness and not the quality of subsolutions. Therefore, there is a possibility that an inferior

building block gets selected over a better building block in a competition due to noisy observed

contributions from adjoining building blocks that are also engaged in competitions.

To derive a relation for the probability of deciding correctly between competing BBs, the authors

considered two individuals, one with the best BB and the other with the second best BB in the

same competition (Goldberg, Deb & Clark, 1992).

Let i1 and i2 be these two individuals with m non-overlapping BBs of size k as shown in

Figure 6.7. Individual i1 has the best BB, H1 (111 · · · 111 in Figure 6.7) and individual i2 has

the second best BB, H2 (000 · · · 000 in Figure 6.7). The fitness values of i1 and i2 are fH1 and

fH2 respectively. To derive the probability of correct decision making, we have to first recognize
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H2

H1

k

*** ***. . . . . . *** ***

*** *** *** ***. . .

111 111. . .

000 000. . . *** ***. . .

*** ***. . .

. . . . . .

. . . . . .

. . .

*** ***

*** ***

. . .

. . .

Figure 6.7: Two competing building blocks of size k, one is the best BB, H1, and the other is the
second best BB, H2.

H1
f fH2

d

(a) Few samples

d

H1
f fH2

(b) Lots of samples

Figure 6.8: Fitness distribution of individuals in the population containing the two competing
building blocks, the best BB H1, and the second best BB H2. When two mean fitness distributions
overlap, low sampling increases the likelihood of estimation error. When sampling around each
mean fitness is increased, fitness distributions are less likely to be inaccurately estimated.

that the fitness distribution of the individuals containing H1 and H2 is Gaussian since we have

assumed an additive fitness function and the central limit theorem applies. Two possible fitness

distributions of individuals containing BBs H1 and H2 are illustrated in Figure 6.8.

The distance between the mean fitness of individuals containing H1, fH1
, and the mean fitness

of individuals containing H2, fH2
, is the signal, d. That is

d = fH1
− fH2

. (6.33)

Recognize that the probability of deciding correctly between H1 and H2 is equivalent to the

probability that fH1 − fH2 > 0. Also, since fH1 and fH2 are normally distributed, fH1 − fH2 is

also normally distributed with mean d and variance σ2
H1

+ σ2
H2

, where σ2
H1

and σ2
H2

are the fitness
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variances of individuals containing H1 and H2 respectively. That is,

fH1 − fH2 ∼ N (d, σ2
H1

+ σ2
H2

). (6.34)

The probability of correct decision making, pdm, is then given by the cumulative density function

of a unit normal variate which is the signal-to-noise ratio:

pdm = Φ

⎛
⎝ d√

σ2
H1

+ σ2
H2

⎞
⎠ . (6.35)

Alternatively, the probability of making an error on a single trial of each BB can estimated by

finding the probability α such that

z2(α) =
d2

σ2
H1

+ σ2
H2

, (6.36)

where z(α) is the ordinate of a unit, one-sided normal deviate. Notationally z(α) is shortened to

z.

Now, consider the BB variance, σ2
H1

(and σ2
H2

): since it is assumed that the fitness function

is the sum of m independent subfunctions each of size k, σ2
H1

(and similarly σ2
H2

) is the sum of

the variance of the adjoining m − 1 subfunctions. Also, since it is assumed that the m partitions

are uniformly scaled, the variance of each subfunction is equal to the average BB variance, σ2
BB.

Therefore,

GA BB Variance: σ2
H1

= σ2
H2

= (m − 1)σ2
BB. (6.37)

A population-sizing equation was derived from this error probability by recognizing that as the

number of trials, τ , increases, the variance of the fitness is decreased by a factor equal to the

number of trials:

z2(α) =
d2

2(m−1)σBB

τ

. (6.38)

To derive the quantity of trials, τ , assume a uniformly random population (of size n). Let χ

represent the cardinality of the alphabet (2 for the GA) and k the building-block size. For any

individual, the probability of H1 is 1/κ where κ = χk. There is exactly one instance per individual
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of the competition, φ = 1. Thus,

τ = n · pBB · φ = n · 1/κ · 1 = n/κ. (6.39)

By rearrangement and calling z2 the coefficient c (still a function of α) a fairly general

population-sizing relation was obtained:

n = 2cχk(m − 1)
σ2

BB

d2
. (6.40)

To summarize, the decision-making based population sizing model in GAs consists of the following

factors:

• Competition complexity, quantified by the total number of competing building blocks,

χk.

• Subcomponent Complexity, quantified by the number of building blocks, m.

• Ease of decision making, quantified by the signal-to-noise ratio, d/σ2
BB.

• Probabilistic safety factor, quantified by the coefficient c.

6.3.2 GP Definitions for a Population Sizing Derivation

We use the same assumption detailed in section 6.2.2 made for developing the BB supply-based

population sizing model. As in the BB supply model, the decision-making analysis adopts a defi-

nition of a GP schema (or similarity template) called a “tree fragment”. A tree fragment is a tree

with at least one leaf that is a “don’t care” symbol. This “don’t care” symbol can be matched by

any subtree (including degenerate leaf only trees). As before, we are most interested in only the

small set of tree fragments that are defined by three or fewer nodes.

The defining length of a tree fragment is the sum of its quantities of function symbols, F , and

terminal symbols, T :

k = Nf + Nt. (6.41)

Because a tree fragment is a similarity template, it also represents a competition. Since we are

concerned with decision making, we will therefore use “competition” instead of a “tree fragment”.
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From Equation 6.1, we know that the size of a competition (that is, how many BBs compete) is

κ = χ
Nf

f ∗ χNt
t

As mentioned in the previous section, because a tree fragment is defined without any positional

anchoring, it can appear multiple times in a single tree. We denote the number of instances of a

tree fragment that are present in a tree of size λ, (that is, the quantity of a tree fragment in a tree)

as φ. This is equivalent to the instances of a competition as φ is used in the GA case (see Equation

6.39). For full binary trees:

φ ≈ 2−kλ. (6.42)

Later, we will explain how φ describes potential number of instances of a BB in a tree.

6.3.3 GP Population Sizing based on Decision Making

We now proceed to derive a GP population sizing relationship based on building block decision

making. Preliminarily, unless noted, we also make the same assumptions as the GA population-

sizing derivation outlined in Section 6.3.1.

The first manner in which the GP population-sizing derivation diverges from the GA case is

how BB fitness variance (that is, σ2
H1

and σ2
H2

) is estimated (for reference, see Equation 6.37).

Recall that for the GA the source of a BB’s fitness variance was collateral noise from the (m − 1)

competitions of its adjoining BBs. In GP, the source of collateral noise is the average number of

adjoining BBs present and expressed in each tree, denoted as q̄. Thus:

GP BB Variance: σ2
H1

= σ2
H2

= [q̄expr
BB (m, λ) − 1]σ2

BB. (6.43)

Thus, the probability of making an error on a single trial of the BB can be estimated by finding

the probability α such that

z2(α) =
d2

2[q̄expr
BB − 1]σ2

BB

. (6.44)

The second way the GP population size derivation diverges from the GA case is in how the

number of trials of a BB is estimated (for reference, see Equation 6.39). As with the GA, for GP we
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assume a uniformly distributed population of size n. In GP the probability of a trial of a particular

BB must account for it being both present, 1/κ, and expressed in an individual (or tree), which we

denote as pexpr
BB . So, in GP:

τ =
1
κ
· pexpr

BB · φ · n. (6.45)

Thus, the population size relationship for GP is:

n = 2c
σ2

BB

d2
κ [q̄expr

BB − 1]
1

pexpr
BB φ

, (6.46)

where c = z2(α) is the square of the ordinate of a one-sided standard Gaussian deviate at a specified

error probability α. For low error values, c can be obtained by the usual approximation for the tail

of a Gaussian distribution: α ≈ exp(−c/2)/(
√

2c).

Obviously, it is not always possible to factor the real-world problems in the terms of this

population sizing model. A practical approach would be to first approximate φ = 2−k(λ) trials per

tree (the full binary tree assumption). Then, we can estimate the size of the shortest program that

will solve the problem, (one might regard this as the Kolomogorov complexity of the problem, λk),

and choose a multiple of the shortest program size for λ in the model. For the case where λ is

taken as a multiple of the shortest program size, q̄ = ckmk. To ensure the initial supply of building

blocks that is sufficient to solve the problem, the initial population should be initialized with trees

of size λ. Therefore, the population sizing in this case can be written as

n = c
σ2

BB

d2
κ

(ckmk − 1) 2k+1

pexpr
BB λ

. (6.47)

Similar to the GA population sizing model, the decision-making based population sizing model

in GP consists of the following factors:

• Competition complexity, quantified by the total number of competing building blocks, κ.

• Ease of decision making, quantified by the signal-to-noise ratio, d/σ2
BB.

• Probabilistic safety factor, quantified by the coefficient c.

• Number of subcomponents, which unlike GA population-sizing, depends not only on the
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minimum number of building blocks required to solve the problem mk, but also on the tree

size λ, the size of the problem primitive set and how bloat factors into trees (quantified by

pexpr
BB ).

6.3.4 Sizing Population for Model Problems

This section derives the components of the population-sizing model (Equation 6.46) for three test

problems, ORDER, LOUD, and ON-OFF. We develop the population-sizing equation for each of these

problems and verify them with empirical results. In all experiments we assume that α = 1/m and

thus derive c. Table 6.2 shows some of these values. For all experiments, the initial population

is randomly generated with either full trees or by the ramped half-and-half method. The trees

were allowed to grow up to a maximum size of 1024 nodes. We used a tournament selection with

tournament size of 4 in obtaining the empirical results. We used subtree crossover with a crossover

probability of 1.0 and retained 5% of the best individuals from the previous population. A GP run

was terminated when either the best individual was obtained or when a predetermined number of

generations was exceeded. The average number of BBs correctly converged in the best individuals

was computed over 50 independent runs. The minimum population size required such that m − 1

BBs converge to the correct value is determined by a bisection method (Sastry, 2001). That is the

error tolerance α is set to 1/m. The results for population size and convergence time were averaged

over 30 such bisection runs, while the results for the number of function evaluations were averaged

over 1500 independent runs. We start with population sizing for ORDER, where a building block can

be expressed at most once in a tree.

Table 6.2: Values of c = z2(α) used in population sizing equation.
m 8 16 32 64 128
c .97 1.76 2.71 3.77 4.89
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Figure 6.9: A candidate solution for a 4-primitive ORDER problem. The output of the program is
{X1, X̄2, X4} and its fitness is 2.

ORDER: At most one expression per building block per tree

In ORDER, for each Xi that is expressed, an equal unit of fitness value is accredited. That is,

f1(xi) =

⎧⎪⎨
⎪⎩

1 if xi ∈ {X1, X2, · · · , Xm}

0 otherwise
. (6.48)

The fitness function for ORDER is then defined as

F (x) =
m∑

i=1

f1 (xi) , (6.49)

where x is the set of primitives expressed by the tree. The output for an optimal solution of a

2m-primitive ORDER problem is {X1, X2, · · · , Xm}, and its fitness value is m. The building blocks

in ORDER are the primitives, Xi, that are part of the subfunctions that reduce error (alternatively

improve fitness). The shortest perfect program has λk = 2m − 1 nodes.

For example, consider a candidate solution for a 4-primitive ORDER problem as shown in Figure

6.9. The sequence of leaves for the tree is {X1, X̄1, X̄1, X4, X1, X̄2}, the expression during inorder

parse is {X1, X̄2, X4}, and its fitness is 2. For more details, motivations, and analysis of the

ORDER problem, the interested reader should refer elsewhere (Goldberg & O’Reilly, 1998; O’Reilly

& Goldberg, 1998).

For the ORDER problem, we can easily see that σ2
BB = 0.25, d = 1, and φ = 1. From the previous
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section, we know that

pexpr
BB ≈ exp

[
−k · e− λ

2m

]
. (6.50)

Additionally, for ORDER, q̄expr
BB is given by

q̄expr
BB = 1 +

m−1∑
i=0

⎛
⎜⎝ m − 1

i

⎞
⎟⎠ i

i∑
j=0

⎛
⎜⎝ i

j

⎞
⎟⎠ (−1)j

(
i − j + 1

m

)nl−1

, (6.51)

where nl is the average number of leaf nodes per tree in the population. The derivation of the

above equation was involved and detailed, and is provided elsewhere (Sastry, O’Reilly & Goldberg,

2004).

Substituting the above relations (Equations 6.50 and 6.51) in the population-sizing model

(Equation 6.46) we obtain the following population-sizing equation for ORDER:

n = 2k−1z2(α)

(
σ2

BB

d2

)
[q̄expr

BB − 1] exp
[
k · e− λ

2m

]
. (6.52)

The above population-sizing equation is verified with empirical results in Figure 6.10. The

initial population was randomly generated with either full trees or by the ramped half-and-half

method with trees of heights, h ∈ [hk − 1, hk + 1], where hk is the minimum tree height with an

average of 2m leaf nodes.

As shown in Figure 6.11, we empirically observed that the convergence time and the number

of function evaluations scale linearly and cubically with the program size of the most compact

solution, λk, respectively. From this empirical observation, we can deduce that the population size

for ORDER scales quadratically with the program size of the most-compact solution. For ORDER,

λk = 2m − 1.

To summarize, for the ORDER problem, where a building block is expressed at most once per

individual, the population size scales as n = O
(
2kλ2

k

)
, the convergence time scales as tc = O (λk),

and the total number of function evaluations required to obtain the optimal solution scales as

nfe = O
(
2kλ3

k

)
.
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Figure 6.10: Empirical validation of the population-sizing model (Equation 6.52) for ORDER problem.
Tree height hk equals 2m and λ = 2m − 1 = 2h+1 − 1.

LOUD: Every building block in a tree is expressed

In ORDER, a building block could be expressed at most once in a tree, however, in many GP problems

a building block can be expressed multiple times in an individual. Indeed, an extreme case is when

every building block occurrence is expressed. One such problem is a modified version of a test

problem proposed by Soule (2002) (see also (Soule, 2003; Soule & Heckendorn, 2002)), which we

call as LOUD.

In LOUD, the primitive set consists of an “add” function of arity two, and three constant terminals

0, 1 and 4. The objective is to find an optimal number of fours and ones. That is, for an individual

with i 4s and j 1s, the fitness function is given by

F (x) = |i − m4| + |j − m1| , (6.53)

where m4 and m1 denote the optimal number of 4s and 1s, respectively. In LOUD, even though
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Figure 6.11: Empirical results for the convergence time and the total number of function evaluations
required to obtain the global solution for ORDER problem. Note that λk = 2m − 1 so convergence
time and the number of function evaluations scale linearly and cubically with the program size of
the most compact solution or problem difficulty. The implication is that population size for ORDER
problem is quadratic.

a zero is expressed it does not contribute to fitness. On the other hand, a 4 or 1 is expressed

each time it appears in an individual and each occurrence contributes to the fitness value of the

individual. The problem size, m = m4 + m1 and λk = 2m − 1 .

For the LOUD problem the building blocks are “4” and “1”. It is easy to see that for LOUD,

σ2
BB = 0.25, d = 1, φ = λ/2, and pexpr

BB = 1/3. Furthermore, the average number of building blocks

expressed is given by q̄expr
BB = 2nl/3 ≈ λ/3. Substituting these values in the population-sizing model

(Equation 6.46) we obtain

n = 2 · 3kz2(α)

(
σ2

BB

d2

)[
1
3
λ − 1

]
·
(

2
λ

)
. (6.54)

The above population-sizing equation is verified with empirical results in Figure 6.12. The initial

population was randomly generated by the ramped half-and-half method with trees of heights,

h ∈ [2, 7] yielding an average tree size of 4.1 (this value is analytically 4.5).

We empirically observed that the convergence time was constant with respect to the problem

size, and the number of function evaluations scales sub-linearly with the program size of the most-

compact solution, λk. From this empirical observation, we can deduce that the population size for
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Figure 6.12: Empirical validation of the population-sizing model (Equation 6.54) and empirical
results for the total number of function evaluations required to obtain the global solution for LOUD
problem. Convergence time was constant with respect to problem size. Note that λk = 2m − 1 so
the number of function evaluations scales sub-linearly with the program size of the most compact
solution or problem difficulty. The implication is that population size for LOUD problem is sub-linear.

LOUD scales sub-linearly with the program size of the most-compact solution. For LOUD λk = 2m−1.

To summarize, for the LOUD problem, where a building block is expressed each time it occurs in

an individual, the population size scales as n = O
(
3kλ0.5

k

)
, the convergence time is almost constant

with the problem size, and the total number of function evaluations required to obtain the optimal

solution scales as nfe = O
(
3kλ0.5

k

)
.

ON-OFF: Tunable building block expression

In the previous sections we considered two extreme cases, one where a building block could be

expressed at most once in an individual and the other where every building block occurrence is

expressed. However, usually in GP problems, some of the building blocks are expressed and others

are not. For example, a building block in a non-coded segment is neither expressed nor contributes

to the fitness. Empirically, Luke (2000a) calculated the percentage of inviable nodes in runs of the

6 and 11 bit multiplexer problems and symbolic regression over the course of a run. This value

is seen to vary between problems and change over generations. Therefore, the third test function,

which we call ON-OFF, is one in which the probability of a building block being expressed is tunable.

In ON-OFF, the primitive set consists of two functions EXP and EXP of arity two and terminals X1,
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EXP
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Figure 6.13: A candidate solution for a 2-primitive ON-OFF problem. The output of the program is
{X1, X1, X1, X2} and its fitness is |3 − mx1 | + |1 − mx2 |.

and X2. The function EXP expresses its child nodes, while EXP suppresses its child nodes. Therefore

a leaf node is expressed only when all its parental nodes have the primitive EXP. This function can

potentially approximate some bloat scenarios of standard GP problems such as symbolic-regression

and multiplexer problems where invalidators are responsible for nullifying a building block’s effect

(Luke, 2000a). The probability of expressing a building block can be tuned by controlling the

frequency of selecting EXP for an internal node in the initial tree.

Similar to LOUD, the objective for ON-OFF is to find an optimal number of fours and ones. That

is, for an individual with i X1s and j X2s, the fitness function is given by

F (x) = |i − mX1 | + |j − mX2 | . (6.55)

The problem size m = mX1 + mX2 and λk = 2m − 1.

For example, consider a candidate solution for the LOUD problem as shown in Figure 6.13. The

terminals that are expressed are {X1, X1, X1, X2} and the fitness is given by |3−mx1 |+ |1−mx2 |.

For the ON-OFF problem the building blocks are X1 and X2, σ2
BB = 0.25, d = 1, φ = λ/2,

and pexpr
BB = ph

EXP . Here, pEXP is the probability of a node being the primitive EXP. The average

number of building blocks expressed is given by q̄expr
BB = nl · ph

EXP ≈ s
2 · ph

EXP . Substituting these
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Figure 6.14: Empirical validation of the population-sizing model (Equation 6.56) and empirical
results for the total number of function evaluations required to obtain the global solution for On-Off
problem. Convergence time was constant with respect to problem size. Note that λk = 2m − 1.
The convergence time scales linearly O (λk), and the number of function evaluations scales sub-
quadratically O

(
λ1

k.5
)

with the program size of the most compact solution or problem difficulty.
Therefore, the population size for On-Off problem scales sub-linearly O

(
λ0

k.5
)
.

values in the population-sizing model (Equation 6.46) we obtain

n = 2k+1z2(α)

(
σ2

BB

d2

)[
λ

2
ph

EXP − 1
]
·
(

2
λph

EXP

)
. (6.56)

The above population-sizing equation is verified with empirical results in Figure 6.14. The initial

population was randomly generated by the ramped half-and-half method with trees of heights,

h ∈ [hk − 1, hk + 1], where hk is the minimum tree height with an average of m leaf nodes. We

empirically observed that the convergence time was linear with respect to the problem size, and the

number of function evaluations scales sub-quadratically with the program size of the most-compact

solution, λk. From this empirical observation, we can deduce that the population size for On-Off

scales sub-linearly with the program size of the most-compact solution (λk = 2m − 1).

To summarize, for the On-Off problem, where a building block expression is tunable, the popula-

tion size scales as n = O
(
2kλ0.5

k /pexp

)
, the convergence time scales linearly as tc = O

(
2kλk/pexp

)
,

and the total number of function evaluations required to obtain the optimal solution scales as

nfe = O
(
2kλ1.5

k /p2
exp

)
.
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6.4 Summary

In this chapter, facetwise models for scalability of genetic programming were developed. Specifically,

population-sizing models were developed to ensure (1) adequate supply of raw building blocks in

the initial population, and (2) accurate decision-making between competing building blocks.

First a detailed analysis of building-block supply in the initial population of GP using ORDER

expression was presented. Two facetwise models were derived, one for ensuring the supply of a

single schema in a partition, and the other for ensuring the supply of all competing schemas in

a partition for problems which employ ORDER expression mechanism. The latter model has been

employed to estimate the population size required to ensure the presence of at least one copy of

all raw BBs of a partition in the initial population. The population sizing model indicates that

there is a minimum tree size dependent on the problem size. Furthermore, the models suggest

that when the tree size is greater than the problem size, the population size required on BB

supply grounds is 2k (k ln χ + ln m). This study also shows that the population size required to

ensure the presence of all instances of tree fragments (assuming that all of them are expressed) is

1
s (2χf )Nf (2χt)

Nt [Nf ln χf + Nt ln χf + ln m].

More importantly, in the process of deriving the building-block supply model, we gained valuable

insight into a) what makes GP different from a GA in the sizing context and b) the implications

of these differences. The difference of GP’s larger alphabet, while influential in implying GP needs

larger population sizes, was not a difficult factor to handle while bloat and the variable length

individuals in GP are more complicated.

Moving to the second step, by considering a decision making model, we extended the GA de-

cision making model along these dimensions. First, the proposed model retains a term describing

collateral noise from competing BBs (q̄[m, λ]) but it recognizes that the quantity of these competi-

tors depends on tree size and the likelihood that the BB is present and expresses itself (rather than

behave as an intron). Second, the proposed model, like its GA counterpart, assumes that trials

decrease BB fitness variance, however, what was simple in a GA—there is one trial per population

member, for the GP case is more involved. That is, the probability that a BB is present in a

population member depends both on the likelihood that it is present in lieu of another BB and

expresses itself, plus the number of potential trials any BB has in each population member.
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The decision-making population-sizing model for GP shows that, to ensure correct decision

making within an error tolerance, population size must go up as the probability of error decreases,

noise increases, alphabet cardinality increases, the signal-to-noise ratio decreases, tree size decreases

and bloat frequency increases. This obviously matches intuition. There is an interesting critical

trade-off with tree size with respect to determining population size: pressure for larger trees comes

from the need to express all correct BBs in the solution while pressure for smaller trees comes from

the need to reduce collateral noise from competing BBs.

The decision-making model is conservative because “[...]it assumes that decisions are made

irrevocably during any given generation. It sizes the population to ensure that the correct decision

is made on average in a single generation” (Goldberg, 2002). A more accurate and different model

would account for how correct decision making accumulates over the course of a run, and how, over

the course of a run, improper decision making can be rectified.

The fact that the model is based on statistical decision making means that crossover does not

have to be incorporated. In GAs crossover solely acts as a mixer or combiner of BBs. Interestingly,

in GP, crossover also interacts with selection with the potential result that programs’ size grows

and structure changes. When this happens, the frequency of bloat can also change (see (Luke,

2000a; Luke, 2000b) for examples of this with multiplexer and symbolic regression). These changes

in size, structure and bloat frequency imply a much more complex model if one were to attempt

to account for decision making throughout a run. They also suggest that when using the model

as a rule of thumb to size an initial population it may prove more accurate if the practitioner

overestimates bloat in anticipation of subsequent tree growth causing more than the bloat seen in

the initial population, given its average tree size.

It appears difficult to use this model with real problems where, among the GP-specific factors,

the most compact solution and BB size is not known a priori and the extent of bloat cannot be

estimated. In the case of the GA model, the estimation of model factors has been addressed by

Reed, Minsker and Goldberg (2000), where they estimated variance with the standard deviation

of the fitness of a large random population. In the GP case, this sampling population should be

controlled for average tree size. If a practitioner were willing to work with crude estimates of bloat,

BB size and most compact solution size, a multiple of the size of the most compact solution could
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be plugged in, and bloat could be used with that size to estimate the probability that a BB is

expressed and present and the average number of BBs of the same size present and expressed,

on average, in each tree. In the future we intend to experiment with the model and well known

toy GP problems (for example, multiplexer, symbolic regression) where bloat frequency and most

compact problem size are obtainable, and simple choices for BB size exist to see whether the ideal

population size scales with problem size within the order of complexity the model predicts.

As in GAs, population sizing is very important for successful application of GP, because it

is the principal factor in controlling ultimate solution quality. Once the quality-size relation is

understood, populations can be sized to obtain a desired quality and only two things can happen

in empirical trials. The quality goal can be equaled or exceeded, in which case, all is well with the

design of the algorithm, or (as is more likely) the quality target can be missed, in which case there

is some other obstacle to be overcome in the algorithm design. Moreover, once the population

sizing is understood in this way it can be combined with an understanding of run duration, thereby

yielding first estimates of GP run complexity, a key milestone in making our understanding of these

processes more rigorous.
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Chapter 7

Scalable Genetic Programming:
Extended Compact Genetic
Programming

The scalability analysis of the previous chapter indicated that with ideal recombination operator,

genetic programming scales cubically with the problem size. This chapter presents a competent GP

design that emulates properties of an ideal recombination operator and solves boundedly difficult

problems quickly, reliably and accurately. While the design of competent genetic algorithms has

received systematic and careful attention (Goldberg, 1999a; Goldberg, 2002), attempts in designing

scalable genetic programming are limited. That is, even though the growth in application of

genetic programming (GP) to problems of practical and scientific importance has been remarkable

(Koza, 1992; Koza et al., 2003; Spector et al., 1999), there has been limited attention given to

the development of competent operators that adapt linkage. Most of the studies on GP employ

fixed crossover operators such as sub-tree crossover. Analyses of fixed recombination operators in

selectorecombinative GAs suggest that fixed operators had highly inadequate and suggest operators

that adapt linkage are essential for solving GA-hard problems in tractable time (Thierens, 1999;

Thierens & Goldberg, 1993; Sastry & Goldberg, 2003b).

Therefore, the purpose of this chapter is to present one of the first designs of a competent

GP—called the extended compact genetic programming (eCGP)—that adaptively identifies and

propagates important subsolutions of a search problem. The proposed algorithm is similar to the

probabilistic incremental program evolution (PIPE) (Sa�lustowicz & Schmidhuber, 1997). PIPE is

a univariate probabilistic model building technique and is based on Baluja’s PBIL (Baluja, 1994).

In PIPE computer programs or mathematical functions are evolved as in genetic programming.

Programs are represented by trees where each internal node represents a function/instruction and

leaves represent terminals. In PIPE, probabilistic representation of the program trees is used and

the probabilities of each instruction in each node in a maximal possible tree are used to model

promising and generate new programs.
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Similar to other univariate estimation of distribution algorithms, PIPE can only handle prob-

lems where there is no interactions among variables. However, there are large classes of problems

where variables do interact and it is essential to capture those interactions and design operators

that respect these higher-order interactions. Therefore, the proposed algorithm is not only capable

of handling univariate variable interactions, but also can capture fairly complex multivariate inter-

actions among the variables of the search problem. The multivariate interactions are captured in

a similar fashion as in the extended compact genetic algorithm (eCGA) (Harik, 1999; Harik, Lobo

& Sastry, 2006). Initial scalability results show that eCGP solves problems of bounded difficulty

in polynomial time, as opposed to exponential time required by simple GP.

This chapter is structured as follows. The next section presents a synopsis of the extended

compact genetic algorithm. The key features of the proposed algorithm (eCGP) are described in

section 7.2 followed by an outline of test problems used to compare the performance of eCGP and

simple GP in section 7.3. Section 7.4 describes the results followed by a note on the future work

and key conclusions.

7.1 Extended Compact Genetic Algorithm (eCGA)

The extended compact GA proposed by Harik (1999) is based on a key idea that the choice of a

good probability distribution is equivalent to linkage learning. The measure of a good distribution

is quantified based on minimum description length (MDL) models. The key concept behind MDL

models is that all things being equal, simpler distributions are better than more complex ones.

The MDL restriction penalizes both inaccurate and complex models, thereby leading to an optimal

probability distribution. Thus, MDL restriction reformulates the problem of finding a good distri-

bution as an optimization problem that minimizes both the probability model as well as population

representation. The probability distribution used in eCGA is a class of probability models known

as marginal product models (MPMs). MPMs are formed as a product of marginal distributions

on a partition of the genes and are similar to those of the compact GA (CGA) (Harik, Lobo &

Goldberg, 1998) and PBIL (Baluja, 1994). Unlike the models used in CGA and PBIL, MPMs can

represent probability distributions for more than one gene at a time. MPMs also facilitate a direct

linkage map with each partition separating tightly linked genes. For example, the following MPM,
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[1,3][2][4], for a four-bit problem represents that the 1st and 3rd genes are linked and 2nd and

4th genes are independent. Furthermore, the MPM consists of the following marginal probabilities

{p(x1 = 0, x3 = 0), p(x1 = 0, x3 = 1), p(x1 = 1, x3 = 0), p(x1 = 1, x3 = 1), p(x2 = 0), p(x2 = 1),

p(x4 = 0), p(x4 = 1)}, where xi is the value of the ith gene.

The eCGA can be algorithmically outlined as follows:

1. Initialization: The population is usually initialized with random individuals. However, other

initialization procedures can also be used.

2. Evaluate the fitness value of the individuals

3. Selection: The eCGA uses s-wise tournament selection (Goldberg, Korb & Deb, 1989; Sastry

& Goldberg, 2001). However, other selection procedures can be used instead of tournament

selection.

4. Build the probabilistic model: In eCGA, both the structure and the parameters of the model

are searched. A greedy search heuristic is used to find an optimal model of the selected

individuals in the population.

5. Create new individuals: In eCGA, new individuals are created by sampling the probabilistic

model.

6. Replace the parental population with the offspring population.

7. Repeat steps 2–6 until some convergence criteria are met.

Two things need further explanation, one is the identification of MPM using MDL and the other

is the creation of a new population based on MPM. The identification of MPM in every generation

is formulated as a constrained optimization problem,

Minimize Cm + Cp (7.1)

Subject to χki ≤ n ∀i ∈ [1, m]. (7.2)

Where Cm is the model complexity which represents the cost of a complex model. In essence, the

model complexity, Cm, quantifies the model representation size in terms of number of bits required
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to store all the marginal probabilities. Let, a given problem of size � with alphabet cardinality χ,

have m partitions with ki genes in the ith partition, such that
∑m

i=1 ki = �. Then each partition i

requires χk−1 independent frequencies to completely define its marginal distribution. Furthermore,

each frequency is of size log2(n), where n is the population size. Therefore, the model complexity

(or the model representation size), Cm, is given by

Cm = log2(n)
m∑

i=1

(
χki − 1

)
. (7.3)

The compressed population complexity, Cp, represents the cost of using a simple model as

against a complex one. In essence, the compressed population complexity, Cp, quantifies the data

compression in terms of the entropy of the marginal distribution over all partitions. Therefore, Cp

is evaluated as

Cp = n
m∑

i=1

χki∑
j=1

−pij log2 (pij) (7.4)

where pij is the frequency of the jth gene sequence of the genes belonging to the ith partition.

In other words, pij = Nij/n, where Nij is the number of chromosomes in the population (after

selection) possessing bit-sequence j ∈ [1, χki ] 1 for ith partition. The constraint (Equation 7.2)

arises due to finite population size.

The following greedy search heuristic is used to find an optimal or near-optimal probabilistic

model:

1. Assume each variable is independent of each other. The model is a vector of probabilities.

2. Compute the model complexity and population complexity values of the current model.

3. Consider all possible 1
2�(� − 1) merges of two variables.

4. Evaluate the model and compressed population complexity values for each model structure.

5. Select the merged model with lowest combined complexity.

6. If the combined complexity of the best merged model is better than the combined complexity

of the model evaluated in step 2., replace it with the best merged model and go to step 2.
1Note that a BB of length k has χk possible sequences where the first sequence denotes 00· · ·0 and the last sequence

(χ − 1)(χ − 1) · · · (χ − 1)
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7. If the combined complexity of the best merged model is less than or equal to the combined

complexity, the model cannot be improved and the model of step 2. is the probabilistic model

of the current generation.

A new population is generated based on the optimal MPM as follows: A population of size

n(1 − Pc) where Pc is the crossover probability, is filled by the best individuals in the current

population. The remaining nPc individuals are generated by randomly choosing subsets from the

current individuals according to the probabilities of the subsets as calculated in the probabilistic

model.

7.2 Extended Compact Genetic Programming (eCGP)

The previous section outlined the key features of extended compact genetic algorithm. This section

combines the features of eCGA (Harik, 1999) and PIPE (Sa�lustowicz & Schmidhuber, 1997) to

create a multivariate probabilistic model building genetic programming. The proposed algorithm,

called extended compact genetic programming (eCGP), adaptively identifies both the building

blocks and their structure. eCGP also exchanges the building blocks from different partitions

effectively, and therefore drastically improves BB mixing when compared to fixed recombination

operators. The eCGP can be viewed as an extension of both eCGA and PIPE. While eCGA operates

on only fixed-length bit-strings, eCGP operates on variable-size program trees. While PIPE uses

only fixed-structure univariate probabilistic models to create new offspring, eCGP utilizes adaptive-

structure multivariate probabilistic models.

The eCGP algorithm is similar to that of eCGA described in the previous section (Section 7.1).

Similar to PIPE, the probabilistic model is built on a maximal tree. It should be noted that we

use a maximal tree only to build the probabilistic model. The trees that are generated from the

probabilistic model need not, and indeed are not, maximal trees. Unlike PIPE which considers each

node in the tree to be independent of each other, eCGP accommodates multivariate interactions

between nodes. In other words, eCGP decomposes or partitions the maximal tree into subtrees

and simultaneously builds the probabilistic models for each subtree. Therefore, eCGP not only

searches for the structure of the probabilistic model, but also learns the parameters of the model.

The structure of the model, similar to eCGA, is MPM, and the parameters are the respective
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Figure 7.1: Illustration of all possible subtrees in a given partition.

frequencies of all possible subtrees in a given partition. For example, Figure 7.1 shows all possible

subtrees, for a 3-variable problem (1 functional, 2 terminals) (Sastry, O’Reilly & Goldberg, 2003).

A greedy search heuristic is used to find an optimal probabilistic model and the MDL metric is

used as a measure of the model quality. Finally, the “best” model is used to sample new individuals

(program trees). Similar to PIPE, a maximal tree is created using the probabilistic model for each

offspring, and unused portions of the tree are pruned before the evaluation of the candidate solution.

We emphasize once more that even though we sample new offspring from maximal-tree probabilistic

model, the final pruned tree need not be a maximal tree. This is because, during the sampling

process, both functionals and terminals are candidates and if a terminal is chosen at a particular

internal node all the other nodes that are below it and connected to it are discarded during the

pruning process.

7.3 Test Problems

Our approach in designing pilot experiments for investigating the scalability of eCGP is to design

bounding adversarial problems that exploit one or more dimensions of problem difficulty. Particu-

larly, our pilot test problems should possess the following properties:

• Building-block identification should be critical for successful innovation. That is, if the BBs

of the problem are not identified and exchanged, it should be impossible to attain the global

solution.
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• Building-block structure and interactions of the problem should be known to the researchers,

but not to the problem solver (search method). Ensuring that the BB identification methods

work on such problems provides assurance that they would also identify BBs of real-world

problems, where the BBs are not known a priori.

• The properties such as building-block size, and problem difficulty should be tunable without

significantly changing the functional.

This adversarial and systematic design method contrasts sharply with the common practices of

using historical, randomly generated, or ad hoc test functions (Goldberg, 2002).

In this study we employ two classes of problems: 1. OneMax-like GP-easy problem, and 2.

Deceptive trap problem. They are respectively described in the following sections.

7.3.1 GP-Easy Problem: ORDER

As mentioned in the previous chapter, ORDER is a GP version of the OneMax problem in GAs

(Goldberg & O’Reilly, 1998; O’Reilly & Goldberg, 1998), and therefore is a GP-easy problem. The

primitive set of ORDER consists of the primitive JOIN of arity two and complimentary primitive

pairs
(
Xi, X̄i

)
, i = 0, 1, · · · , � of arity one. A candidate solution of the ORDER problem is a binary

tree with JOIN primitive at the internal nodes and either Xi’s or X̄i’s at its leaves. The candidate

solution’s output is determined by parsing the program tree inorder (from left to right). The

program expresses the value Xi if, during the inorder parse, an Xi leaf is encountered before its

complement X̄i and neither Xi nor its complement are encountered earlier. That is, the program

only expresses unique primitives during the inorder parse, and expresses the first occurrence of

either Xi or X̄i (for each i), whichever comes first during the inorder parse.

For each unique Xi (or X̄i) that a program expresses, an equal unit of fitness value is accredited.

That is,

f1(xi) =

⎧⎪⎨
⎪⎩

1 if xi ∈ {X1, X2, · · · , X�}

0 otherwise
. (7.5)

The fitness function for ORDER is then defined as

F (x) =
�∑

i=1

f1 (xi) (7.6)
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Figure 7.2: A candidate solution for a 4-primitive ORDER problem. The output of the program is
{X1, X̄2, X4} and its fitness is 2.

where x is the set of primitives output by the program. The expression for optimal solution of a

�-primitive ORDER problem is {X1, X2, · · · , X�}, and its fitness value is �.

For example, consider a candidate solution for a 4-primitive ORDER problem as shown in Figure

7.2. The sequence of leaves for the tree is {X1, X̄1, X̄1, X4, X1, X̄2}, the expression during inorder

parse is {X1, X̄2, X4}, and its fitness is 2.

For more details, motivations, and analysis of the ORDER problem, the interested reader should

refer elsewhere (Goldberg & O’Reilly, 1998; O’Reilly & Goldberg, 1998).

7.3.2 GP-Hard Problem: Deceptive Trap

Another test problem used in this study is the deceptive trap function (Deb & Goldberg, 1992; Deb

& Goldberg, 1994; Goldberg, Deb & Horn, 1992) which consists of additively separable deceptive

functions (Goldberg, 1987). Deceptive functions are designed to thwart the very mechanism of

selectorecombinative search by punishing any localized hillclimbing and requiring mixing of whole

building blocks at or above the order of deception. Using such adversarially designed functions

is a stiff test—in some sense the stiffest test—of algorithm performance. The idea is that if an

algorithm can beat an adversarially designed test function, it can solve other problems that are

equally hard or easier than the adversary. Furthermore, if the building blocks of such deceptive

functions are not identified and respected by selectorecombinative GAs, then they almost always

converge to the local optimum.

The expression mechanism of the program for deceptive trap function is identical to that of
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Figure 7.3: A Fully deceptive trap function with k = 4, and δ = 0.25.

ORDER, and the difference is in the fitness evaluation procedure. Unlike ORDER, a deceptive trap

function divides the expressed primitives into subgroups of k-primitives, and the fitness value for

a k-primitive subgroup is defined as follows:

fk (u(x1, x2, · · · , xk)) =

⎧⎪⎨
⎪⎩

1.0 u = k

(1.0 − δ)
(
1 − u

k−1

)
u < k

, (7.7)

where u is the unitation, or the number of primitives, Xi, in a portion of the tree:

u (x1, x2, · · · , xk) =
k∑

i=1

f1(xi), (7.8)

where xi is the ith unique primitive, δ is the difference in the functional value between the good BB

(all ones) and its deceptive attractor (all zeros). The difficulty of a trap function can be adjusted

by modifying the values k, and δ. The problem becomes more difficult as the value of k is increased

and that of δ is decreased. A 4-primitive deceptive trap function is illustrated in Figure 7.3.

The fitness function of the trap function is then defined as

F (x) = fk (u(x1, x2, · · · , xk)) + fk (u(xk+1, · · · , x2k)) +

· · · + fk

(
u(x(m−1)k+1, · · · , xmk)

)
, (7.9)
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where F is the fitness function, x is the expressed primitives (expressed leaf nodes of the tree), m

is the number of BBs, and � = mk.

The important feature of additively separable trap functions is that if the good BB (all ones) in

any particular partition is not identified, then the GA tends to converge to the deceptive attractor

(all zeros) in that partition. Therefore, BB identification and mixing is critical to innovation

success. Furthermore, notice that the problems are of bounded difficulty k < �. If the trap was

of length �, nothing could work better than enumeration or random search without replacement.

However, given that the difficulty is bounded, a GA that identifies BBs and mixes them well has

the opportunity to solve the problem in polynomial time (Goldberg, 2002).

7.4 Results and Discussion

This section compares the performance of eCGP and a simple GP for both ORDER and 3-primitive

deceptive trap function (k = 3). Specifically, we investigate how eCGP and simple GP scale-up

with the problem size (number of terminals and functionals) for both ORDER, which is a GP-easy

problem, and deceptive trap function which is a boundedly GP-hard problem.

A simple GP consists of a tree-swap crossover and s-wise tournament selection. Crossover

probability of 1.0 and tournament size of 2 was used for both eCGP and simple GP. Mutation is

not considered in this study. The initial population for both eCGP and simple GP was generated

using the ramped half-and-half method and maximum tree depth of 2 log2 � was used. A GP run

was stopped when the fitness variance of the population was less than �−2 for ORDER and less than

m−2 for the deceptive trap function. The number of function evaluations required in order to

obtain a population with at least m − 1 correct building blocks are empirically computed. All the

results presented in this section are averaged over 50 independent runs.

Figure 7.4 compares the scalability of eCGP and simple GP for the ORDER. The figure plots

the number of function evaluations against problem size. The results indicate that even though

eCGP requires a slightly larger number of function evaluations, the slope of the curve is slightly

less than that for simple GP. This result is consistent with the performance of competent GAs

on GA-easy problems (Pelikan, 2005; Pelikan, Goldberg & Cantú-Paz, 2000) and is caused by the

spurious dependencies that are introduced by the selection mechanism and fixed population size
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Figure 7.4: Comparison of eCGP and simple GP for ORDER. The figure plots the average number
of function evaluations as a function of problem size. The results are averaged over 50 independent
runs.

(Pelikan, Goldberg & Sastry, 2001; Pelikan, Sastry & Goldberg, 2003; Yu et al., 2007). However,

as the problem size increases, simple GP will suffer from mixing effects (Sastry & Goldberg, 2003b)

and the slope of the number of function evaluations will increase.

Figure 7.5 compares the scalability of the eCGP and the simple GP for the deceptive trap

problem. The building block size, k is set to 3 and the signal difference, d is set to 0.25. The figure

plots the number of function evaluations as a function of problem size. The results clearly indicate

the effectiveness of linkage-adaptive recombination operator of eCGP over the fixed recombination

operator of simple GP. The results indicate that eCGP scales-up polynomially (cubic) with problem

size. Furthermore, the scalability of eCGP is about the same for both ORDER and deceptive trap

function. Finally, the number of function evaluations required for simple GP appears to be very

high for problems with more than 24 terminals, and therefore the problems become intractable

quickly. For example, for deceptive trap problem with 30 terminals, the simple GP was not able

to converge to the optimal solution even after 5× 108 evaluations. However, for the problems sizes
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Figure 7.5: Comparison of eCGP and simple GP for the deceptive trap function (k = 3). The
figure plots the average number of function evaluations as a function of problem size. The results
are averaged over 50 independent runs. The simple GP was not able to solve problems beyond
24 primitives. For example, for a deceptive trap function with 30 primitive, simple GP did not
converge to the optimal solution even after 5 × 108 function evaluations. For the problem sizes
that we were able to obtain the optimal solution via a simple GP, the scale-up is O(�8.91). But its
failure to converge to the optimal solution for larger problems suggests that the scale-up is indeed
much larger than O(�8.91).

that simple GP was able to converge to the optimal solutions, the scale-up with problem size is

O(�9).

We recognize that both ORDER and the deceptive trap problems have non-overlapping building

blocks. That is, an expressed primitive is a part of only one building block. As mentioned earlier,

eCGP partitions the search problem into linkage groups and therefore is very effective in identify-

ing non-overlapping building blocks. Even though the success of eCGP in identifying, propagating,

and exchanging of non-overlapping building blocks, enables it to solve a broad class of additively

decomposable problems, we acknowledge that even broader class of problems can be tacked if com-

plex interactions such as overlapping BBs and hierarchically interacting BBs can also be identified.

The successful adaptation of eCGA into genetic programming domain, makes the adaptation of
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other powerful competent GAs such as the Bayesian optimization algorithm (BOA) (Pelikan, Gold-

berg & Cantú-Paz, 2000) and the hierarchical Bayesian optimization algorithm (hBOA) (Pelikan

& Goldberg, 2001; Pelikan, 2005) into GP domain straightforward and promising.

7.5 Summary

A competent GP, called extended compact GP (eCGP), was introduced in this chapter. The ex-

tended compact GP uses and combines the ideas from extended compact genetic algorithm (eCGA)

and probabilistic incremental program evolution (PIPE). The proposed algorithm adaptively iden-

tifies, propagates, and exchanges important subsolutions of a search problem. The subsolutions are

identified by building a multivariate probabilistic model of promising solutions and the subsolutions

are exchanged by creating new offspring by sampling the probabilistic model. The results of eCGP

were compared to those of a simple GP for two test problems: 1. ORDER: A GP-easy problem, and

2. Deceptive trap: A GP-hard problem. The results show that eCGP scales up polynomially with

the problem size (number of terminals) for both GP-easy and GP-hard problems. On the other

hand, as expected, a simple GP scales-up polynomially for a GP-easy problem, and exponentially

for GP-hard problems.

The chapter presented initial results of one of the first attempts at developing scalable GP

designs and researchers have started to pay increasing attention to develop competent GP (Looks,

2006; Shan et al., 2006). Much work still remains to be done, some of which is listed as follows:

• The eCGP can only identify non-overlapping BBs, and attempts to develop competent op-

erators that not only identify complex BB structures, but also tackle BBs with hierarchical

interactions, and some studies are currently underway (Looks, 2006).

• Two adversarially designed test problems were considered in this study, and more tests have

to be conducted on different class of problems and the scalability of eCGP has to be analyzed.

• We need to investigate the convergence time and population-sizing requirement of eCGP, both

analytically through facetwise and dimensionless models, and also empirically for different

classes of problems.
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• This study considered problems with only one functional and many more terminals. How-

ever, many GP problems consider many functionals and only a few terminals (assuming the

ephemeral random constant is one type of terminal). The performance of eCGP on such a

class of problems needs to be investigated.

The results presented in this chapter demonstrates that competent GP can be designed in a

principled manner to solve both GP-easy and GP-hard problems requiring polynomial (oftentimes

cubical) number of function evaluations. However, an important and open question still remains

as to whether there are any GP-hard problems that thwart the mechanism of selectorecombinative

GP. While it is clear that in optimization hard problems exist that thwart the mechanisms of selec-

torecombinative process, it is not very clear whether such hard problems exist in GP domain. For

example, the success stories of standard genetic programming with fixed recombination operators

successfully solving complex real-world problems seem to suggest that many complex real-world

domains might not be GP-hard.

This open question of existence of GP-hard problems is also related to a broader issue of

problem difficulty in system identification. While addressing optimization problems, it is clear that

there is premium on scalable recombination and mutation operators that automatically identify

and exploit good substructures (neighborhoods). However, when performing system identification,

say symbolic regression via GP or model building in estimation of distribution algorithms, we seem

to get away with simple crossover methods or even local search methods.

Another related question of critical importance—especially for scalable genetic-programming

design—is, if GP-hard problems do exist, then what are the principal dimensions of GP problem

difficulty that bound real-world GP-hard problems? Answer to this question will help us design

adversarial test problems that exploit one or more dimensions of problem difficulty and test GP

designs on the boundary of their design envelope. The answer to this question will also help

us understand what makes a problem hard for estimation of distribution algorithms such as the

Bayesian optimization algorithm where the probabilistic model building relies on a hill-climber.

Nevertheless, this chapter and subsequent work on scalable GP by other researchers clearly

demonstrate that, as with GAs, it is possible to design scalable GP designs in principled manner.

Moreover, this study also demonstrates that competent GP designs can be advantageous over
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standard GP with fixed recombination operators.
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Chapter 8

Scalability of Multiobjective Genetic
Algorithms

Multiobjective genetic algorithms (MOGAs) have received increased attention in the recent years

and have been applied with significant success to real-world problems (Coello Coello, Van Veld-

huizen & Lamont, 2002; Deb, 2001). However, studies on the theory and analysis of MOGAs have

been limited in part because of the complexity of both the algorithms and the problems. For ex-

ample, some aspects of problem difficulty and algorithm scalability have been studied (Chen, 2004;

Deb, 1999).

Recently, there has been a growing interest in extending estimation of distribution algorithms

(EDAs) (Larrañaga & Lozano, 2002; Pelikan, Goldberg & Lobo, 2002; Pelikan, Sastry & Cantú-Paz,

2006)—a class of competent genetic algorithms (Goldberg, 1999a) that replace traditional varia-

tion operators of GAs with probabilistic model building of promising solutions and sampling the

model to generate new offspring—to solve multiobjective search problems quickly, reliably, and

accurately. Such multiobjective EDAs (MOEDAs) (Ahn, 2005; Bosman & Thierens, 2002b; Khan,

Goldberg & Pelikan, 2002; Ocenasek, 2002) typically combine the model-building and sampling

procedures of EDAs with the selection procedure of MOGAs such as the non-dominated sorting

GA (NSGA-II) (Deb et al., 2002), and a niching method such as sharing or crowding in the objec-

tive space. MOEDAs have been shown to outperform traditional MOGAs in efficiently searching

and maintaining Pareto-optimal solutions on boundedly-difficult problems.

However, the scalability of the population size and the number of function evaluations required

by EDAs as a function of problem size and the number of Pareto-optimal solutions has been largely

ignored. This is the case even though one of the primary motives for designing MOEDAs is to

carry over the polynomial (oftentimes sub-quadratic) scalability of EDAs to boundedly-difficult

multiobjective search problems. However, the usual scalability approach used for single-objective

GAs with one or few global solutions—where, we investigate the minimum number of function
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evaluations to get high-quality solutions quickly, reliably, and accurately—does not work for mul-

tiobjective problems, and it is easy to get into combinatorial difficulty. Even with two objectives,

additively decomposable problems have exponentially many Pareto-optimal solutions. This mas-

sive multimodality introduces a fundamental limitation on the scalability of MOGAs in general,

and MOEDAs in particular. This chapter demonstrates that even if the substructures (or linkages)

are correctly identified, the combinatorial explosion of the number of Pareto-optimal solutions can

overwhelm the niching capability and as expected lead to exponential scalability. This fundamen-

tal nature of multiobjective additively decomposable problems introduces a limit on the number of

building blocks (or substructures) that can differ between the multiple objectives. That is, MOGAs

scale polynomially (subquadratically) only if the multiple objectives share common building blocks

and have a limited number of building blocks that are different. Facetwise models are used to

predict the limit in the number of competing substructures between multiple objectives.

The chapter is organized as follows. The next section provides a brief background on the

motivation for the chapter, followed by a brief description of multiobjective extended compact

genetic algorithm (meCGA). The details on the test problems and experimental methodologies are

described in the subsequent sections. Section 8.6 demonstrates how massive multimodality of the

search problem can overwhelm the niching mechanism and lead to exponential scale-up of MOEDAs.

In section 8.7, using facetwise models of population-sizing for EDAs and niching methods, a model

to predict the limit on the growth rate of the number of competing substructures between two

objectives that can lead to polynomial scalability is proposed. Finally, key conclusions of the study

are summarized.

8.1 Related Work

Over the last few decades, there has been a growing interest in extending estimation of distribution

algorithms to solve multiobjective search problems. Similar to single-objective EDAs (Larrañaga

& Lozano, 2002; Pelikan, 2005; Pelikan, Goldberg & Lobo, 2002), multiobjective EDAs replace the

variation operators of MOGAs with the probabilistic model building of promising solutions and

sampling the model to generate new offspring. Recently, several MOEDAs have been proposed

(Ahn, 2005; Bosman & Thierens, 2002a; Bosman & Thierens, 2002b; Khan, 2002; Khan, Goldberg
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& Pelikan, 2002; Laumanns & Ocenasek, 2002; Ocenasek, 2002) which have combined variants of

the Bayesian optimization algorithm (BOA) (Pelikan, Goldberg & Cantú-Paz, 2000) and iterated

density estimation evolutionary algorithm (IDEA) (Bosman & Thierens, 1999; Bosman & Thierens,

2000) with the selection and replacement procedures of MOGAs (Coello Coello, Van Veldhuizen &

Lamont, 2002; Deb, 2001). Even though MOEDAs have been shown to outperform their MOGA

counterparts on different test problems, none of the studies have systematically analyzed the scal-

ability of MOEDAs.

Therefore, the original purpose of this study was to systematically analyze the scalability of

MOEDAs on a class of boundedly-difficult additively decomposable problems. We followed a

methodology analogous to that used to test the scalability of single-objective EDAs with O(1)

global solutions. In particular, the minimum number of function evaluations required to obtain

and maintain all the Pareto-optimal solutions quickly, reliably, and accurately was investigated.

The scalability of multiobjective Bayesian optimization algorithm (Khan, 2002) and multiobjective

extended compact GA was tested on several bi-objective test problems and observed that MOEDAs

scale exponentially with problem size. This is the case even when the EDAs successfully solve each

of the objectives alone, requiring only sub-quadratic number of function evaluations.

Further analysis of the scalability results and the test problems, indicated a fundamental fact of

such building-block-wise difficult problems: Exponential growth in the number of Pareto-optimal

solutions. When considering each objective in isolation, there is only one global solution, but

when considering the two objectives in multiobjective optimization, the total number of global

(Pareto-optimal) solutions grow exponentially (O(2m)). Since we need at least one individual to

maintain a Pareto-optimal solution, we need exponentially many individuals to maintain all the

Pareto-optimal solutions in the population.

The following section briefly describes multiobjective extended compact genetic algorithm

(meCGA), which is used as a representative algorithm of MOEDAs. The multiobjective eCGA

is chosen not only because of its simplicity and ease of visualizing the probabilistic models, but also

because it bounds the scalability of other binary EDAs and competent GAs such as BOA (Pelikan,

Sastry & Goldberg, 2003; Sastry & Goldberg, 2004a; Yu et al., 2007).
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8.2 Multiobjective Extended Compact Genetic Algorithm

(meCGA)

In this study, multiobjective extended compact GA is used and its scalability on a class of

boundedly-difficult problems is tested. The multiobjective extended compact genetic algorithm

(meCGA) is similar to mBOA (Khan, Goldberg & Pelikan, 2002), except that the model building

and sampling procedure of BOA is replaced with those of extended compact GA (eCGA) (Harik,

1999). The meCGA is used in this study in part because the simplicity of the probabilistic model

and its direct mapping to linkage groups makes it amenable to systematic analysis. The typical

steps of meCGA can be outlined as follows:

1. Initialization: The population is usually initialized with random individuals. However, other

initialization procedures can also be used in a straightforward manner.

2. Evaluation: The fitness or the quality-measure of the individuals are computed.

3. Selection: As in mBOA, the selection procedure of NSGA-II (Deb et al., 2002) is used. That

is, the non-dominated sorting ranks are computed first, followed by the crowding distance for

all the individuals in the population. As in NSGA-II the individual comparison operator is

used to bias the generation of new individuals.

4. Probabilistic model estimation: Unlike traditional GAs, however, EDAs assume a particular

probabilistic model of the data, or a class of allowable models. A class-selection metric and a

class-search mechanism is used to search for an optimum probabilistic model that represents

the selected individuals.

Model representation: The probability distribution used in eCGA is a class of probability

models known as marginal product models (MPMs). MPMs partition genes into mutually

independent groups and specifies marginal probabilities for each linkage group.

Class-Selection metric: To distinguish between better model instances from worse ones,

eCGA uses a minimum description length (MDL) metric (Rissanen, 1978). The key concept

behind MDL models is that all things being equal, simpler models are better than more

complex ones. The MDL metric used in eCGA is a sum of two components:
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• Model complexity which quantifies the model representation size in terms of number

of bits required to store all the marginal probabilities:

Cm = log2(n)
m∑

i=1

(
2ki − 1

)
. (8.1)

where n is the population size, m is the number of linkage groups, ki is the size of the

ith group.

• Compressed population complexity, which quantifies the data compression in terms

of the entropy of the marginal distribution over all partitions.

Cp = n
m∑

i=1

2ki∑
j=1

−pij log2 (pij) , (8.2)

where pij is the frequency of the jth gene sequence of the genes belonging to the ith

partition.

Class-Search method: In eCGA, both the structure and the parameters of the model are

searched and optimized to best fit the data. While the probabilities are learnt based on the

variable instantiations in the population of selected individuals, a greedy-search heuristic is

used to find an optimal or near-optimal probabilistic model. The search method starts by

treating each decision variable as independent. The probabilistic model in this case is a vector

of probabilities, representing the proportion of individuals among the selected individuals

having a value ’1’ (or alternatively ’0’) for each variable. The model-search method continues

by merging two partitions that yields greatest improvement in the model-metric score. The

subset merges are continued until no more improvement in the metric value is possible.

5. Offspring creation: New individuals are created by sampling the probabilistic model. The off-

spring population are generated by randomly generating subsets from the current individuals

according to the probabilities of the subsets as calculated in the probabilistic model.

6. Replacement: Two replacement techniques are used in this study: (1) Restricted tournament

replacement (RTS) (Harik, 1995) in which offspring replaces the closest individual among w

individuals randomly selected from the parent population, only if the offspring is better than
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the closest parent. (2) Elitist replacement used in NSGA-II, in which the parent and offspring

population are combined. The domination ranks and crowding distances are computed on

the combined population. Individuals with increasing ranks are gradually added starting

from those with the lowest rank into the new population till its size reaches n. However, if

it is not possible to add all the solutions belonging to a particular rank without increasing

the population size to greater than n, then individuals with greater crowding distances are

preferred.

7. Repeat steps 2–6 until one or more termination criteria are met.

8.3 Test Problem

Our approach in verifying the performance of MOEDA is to consider bounding adversarial problems

that exploit one or more dimensions of problem difficulty (Goldberg, 2002). Particularly, we are

interested in problems where building-block identification is critical for the GA success. Addition-

ally, the problem solver (meCGA) should not have any knowledge of the building-block structure

of the test problem, but should be known to researchers for verification purposes.

One such class of problems is the m-k deceptive trap problem, which consists of additively

separable deceptive functions (Ackley, 1987; Deb & Goldberg, 1992; Goldberg, 1987). Deceptive

functions are designed to thwart the very mechanism of selectorecombinative search by punishing

any localized hillclimbing and requiring mixing of whole building blocks at or above the order of

deception.

In this study, we use a class of test problems with two objectives: (1) m-k deceptive trap, and

(2) m-k deceptive inverse trap. String positions are first divided into disjoint subsets or partitions

of k bits each. The k-bit trap and inverse trap are defined as follows:

trapk(u) =

⎧⎪⎨
⎪⎩

1 if u = k

(1 − d)
[
1 − u

k−1

]
otherwise

, (8.3)

invtrapk(u) =

⎧⎪⎨
⎪⎩

1 if u = 0

(1 − d)
[

u−1
k−1

]
otherwise

, (8.4)
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where u is the number of 1s in the input string of k bits, and d is the signal difference. Here, we

use k = 3, 4, and 5, and d = 0.9, 0.75, and 0.8 respectively.

The m-k trap and inverse trap functions have conflicting objectives. Any solution that sets the

bits in each partition either to 0s or 1s is Pareto optimal and thus there are a total of 2m solutions

in the Pareto-optimal front with m + 1 distinct points in the objective space.

8.4 Experimental Methodology

The scalability of MOGAs are measured as the minimum number of function evaluations required

to maintain at least one copy of all the Pareto-optimal solutions for problems of different sizes.

For each problem type, problem size, and algorithm, a bisection method was used to determine a

minimum population size to allocate at least one individual to each representative solution in the

Pareto front. As mentioned earlier, for the test problems we consider in this study, for an �-bit

problem—where � = m · k—there are 2m Pareto-optimal solutions with m + 1 distinct objective

value pairs. In this study, we investigate the population size required to (1) find at least one copy

of all the 2m Pareto-optimal solution, and (2) find at least one copy of the m + 1 distinct points

in the Pareto-optimal front. That is, we consider Pareto-optimal solutions with the same values of

both objectives to be equivalent.

The probability of maintaining at least one copy of all the representative Pareto-optimal solu-

tions at a given population size is computed by averaging 10–30 independent MOGA runs. The

minimum population size required to maintain at least one copy of all the representative solutions

in the Pareto front are averaged over 10-30 independent bisection runs. Therefore, the results for

each problem type, problem size, and algorithm correspond to 100–900 independent GA runs. The

number of generations for meCGA was bounded by 5�, where � is the string length.

8.5 Scalability of meCGA

Scalability tests were conducted on m-k deceptive trap and inverse trap functions for k = 3, 4, and

5, however, for brevity, only results for k = 3 are shown in this chapter. Moreover, the results for

other values of k are qualitatively similar and those for k = 3 are representative of the behavior of
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Figure 8.1: Scalability of meCGA with crowding and with RTS for the m-3 deceptive trap and
inverse trap with the problem size. Here, we plot the minimum number of function evaluations
required to search and maintain at least one copy of (a) all the 2m solutions in the Pareto-optimal
front, and (b) only the m + 1 solutions in the Pareto-optimal front with different objective-value
pairs. Here, we treat the genotypically (and phenotypically) different Pareto-optimal solution with
same values in both objectives to be equivalent.

meCGA.

Figure 8.1(a), shows the scalability of meCGA with the problem size for m-3 deceptive trap and

inverse trap problem. That is, the minimum number of function evaluations required to allocate

at least one copy of all the solutions in the Pareto-optimal front is plotted as a function of problem

size. As shown in the figure, all algorithms scale exponentially. The scale-up does not improve even

if we restricted the requirement to finding only those m + 1 Pareto-optimal solutions with different

objective-value pairs as shown in Figure 8.1(b). That is, even if we consider genotypically (and

phenotypically) distinct solutions that have the same value in both objectives to be equivalent,

meCGA scales exponentially. This is despite the linkage information being identified correctly by

meCGA. Additionally, the scalability does not improve if the niching or speciation is performed in

the objective space (as in NSGA-II) or in the variable space (as in restricted tournament selection).

To reiterate, meCGA scales up exponentially on the trap and inverse trap functions, in spite of

accurate identification of the building blocks. Furthermore, when considering the single-objective

case of m-k trap functions or inverse trap functions eCGA scales polynomially with problem size.
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8.6 Exponential Growth of Pareto-Optimal Solutions

As mentioned in the previous section, the exponential scale-up is not due to incorrect linkage

identification and mixing (Goldberg, Thierens & Deb, 1993; Thierens, 1999; Thierens & Goldberg,

1993), but because the niching mechanism gets quickly overwhelmed due to the exponential growth

in the number of Pareto-optimal solutions. Furthermore, the distribution of the 2m solutions in

the Pareto-optimal front is not uniform. There are exponentially as many solutions in the middle

of the front than at the edges (see Table 8.1). That is, there is only one solution—a binary

string with all 0s and all 1s—at each extreme of the Pareto-optimal front. In contrast, there are⎛
⎝ m

m/2

⎞
⎠ ≈ O (em) genotypically different solutions in the middle of the Pareto-optimal front with

same values in both objectives.

Table 8.1: Distribution of genotypically and phenotypically different solutions in the Pareto-optimal
front with same values in both objectives. n1,BBs refers to the number of k-bit partitions (sub-
structures) with 1s and n0,BBs is the number of k-bit partitions with 0s.

n1,BBs 0 1 · · · i · · · m

n0,BBs m m − 1 · · · m − i · · · 0

# solutions 1 m · · ·
(

m
i

)
· · · 1

This highly non-linear distribution of solutions in the Pareto-front has two effects on the niching

mechanisms used in MOGAs in general, and MOEDAs in particular:

• Since the extremes of the Pareto-optimal front (maximizing most partitions or substructures

with respect to one particular objective) have exponentially smaller representatives than in the

middle, it takes exponentially longer time, or exponentially larger population size (Goldberg,

2002; Thierens, 1999) to search and maintain the solutions at the extremes of the Pareto-

optimal front. When the population size is fixed, the probability of maintaining a solution

in the middle of the Pareto-optimal front is higher than doing so in extremes of the front, as

shown in Figure 8.2.

• Since there are multiple points that are genotypically and phenotypically different, but lie on

the same point on the Pareto-optimal front (solutions have same values in both objectives),

some of them vanish over time due to drift. The drift affects both the solutions in the middle
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Figure 8.2: Probability of finding and maintaining different solutions on the Pareto-optimal for the
10-3 deceptive trap and inverse trap problem as a function of population size. The results are for
meCGA with elitist crowding and the results are averaged over 100 independent runs.

and the extremes of Pareto front.

8.6.1 Overwhelming the Niching Method

To illustrate how additively decomposable problems with conflicting objectives can overwhelm

the niching mechanism used in MOGAs—irrespective of linkage adaptation capabilities of the

evolutionary algorithm—and lead to exponential scalability, we consider a problem where linkage

learning is not required. Specifically, we consider the OneMax-ZeroMax problem which is similar to

bi-criteria OneMax problem of Chen (2004). In OneMax-ZeroMax problem, the task is to maximize

two objectives, one of which is the sum of all the bits with value 1, and the other is the sum of all

the bits with value 0:

fOneMax(X) =
�∑

i=1

xi, (8.5)
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fZeroMax(X) =
�∑

i=1

(1 − xi), (8.6)

where � is the problem size, and xi is the value of the ith bit of a candidate solution X.

The OneMax-ZeroMax problem is specifically chosen to isolate the effect of linkage identification

from those of the niching methods on the scalability of the MOGAs. Unlike the m-k deceptive

trap and inverse trap function, linkage identification is not necessary for the OneMax-ZeroMax

problem. Furthermore, both OneMax and ZeroMax problems are GA-easy problems which a simple

selectorecombinative GA with uniform crossover and tournament selection can solve in linear time

(Harik et al., 1999; Mühlenbein & Schlierkamp-Voosen, 1993).

However, in a multiobjective scenario of the OneMax-ZeroMax, the entire search space (2�)

belongs to the Pareto-optimal front with � + 1 distinct objective-value pairs. Therefore, in order to

maintain all the Pareto-optimal solutions, we would require O(2�) population size. From the details

presented in the previous sections, even if we relax the scalability requirement to finding at least one

copy of all � + 1 distinct Pareto-optimal solutions, the exponential requirement in the population

size (and consequently the number of function evaluations) is not relaxed. Therefore, as expected,

the MOGAs, particularly multiobjective univariate marginal distribution algorithm (mUMDA) and

NSGA-II, scale exponentially in solving the OneMax-ZeroMax problem as shown in Figure 8.3. The

mUMDA algorithm used in this study is identical to meCGA where the probabilistic model is a

univariate model where each variable/bit is considered independent to each other (Mühlenbein &

Paaß, 1996), which is the ideal model for the OneMax-ZeroMax problems.

The results clearly indicate how the niching methods—both those that work in parameter space

(RTS) and those that work in objective space (Crowding)—get overwhelmed due to exponentially

large number of solutions in the Pareto-optimal front. That is, since the number of Pareto-optimal

solutions grow exponentially, in order to maintain at least one copy of all the global solutions we

would require exponentially large population sizes. Additionally, the results also show that even

if the requirement is relaxed by treating all the different points that lie on the same point in the

Pareto-optimal front to be equivalent, the scalability does not improve. Finally, the results suggest

that in decomposable problems, if all or majority of the substructures compete in the two objectives,

then the niching method fails to maintain good coverage, leading to exponential scale-up.
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Figure 8.3: Scalability of NSGA-II and mUMDA on the OneMax-ZeroMax problem in terms of
minimum number of function evaluations required to maintain at least one copy of each of the �+1
distinct solutions in the Pareto-optimal front. Both algorithms with two different niching methods
scale exponentially with the problem size.

This combinatorial growth in the number of Pareto-optimal solutions is a deal breaker for

tractable solutions and the following scenarios can be envisioned to address this issue:

• Acknowledge that with practical population sizes, some of the Pareto-optimal solutions cannot

be covered (especially at the edges of the Pareto front), and do the best we can. In such a

scenario, an MOGA with linkage-adaptation capabilities outperforms MOGAs with fixed

recombination operators (Pelikan, Sastry & Goldberg, 2005).

• Size the population appropriately in accordance with the exponential growth in the Pareto-

optimal solutions. Here, Mahfoud’s population-sizing model for niching methods (Mahfoud,

1994), which predicts that the population size grows linearly with the number of global

solutions, is applicable.

• Understand the fundamental limits on the growth in the number of Pareto-optimal solutions

and thereby the type of search problems that permit tractable search. If we want MOEDAs
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to scale polynomially on additively-decomposable problems, the number of Pareto-optimal

solutions have to be limited. In other words, if the number of substructures that are different

(or compete) between multiple objectives is limited, then MOEDAs can scale polynomially.

That is, there is an imposed limit on the type of additively decomposable problems MOEDAs

can solve in polynomial time. We use facetwise models to predict this limit on the growth

of competing substructures between multiple objectives (and consequently, the number of

Pareto-optimal solutions) in the next section.

8.7 Limit on the Growth of Competing Substructures

The results in the previous two sections clearly indicate that MOEDAs with either RTS or crowding

mechanism of NSGA-II scale-up exponentially with problem size on boundedly-difficult additively-

separable multiobjective problems. We also demonstrated that the exponential scalability is due to

the niching method being overwhelmed because of exponentially large number of solutions in the

Pareto-optimal front. The exponential growth in the number of Pareto-optimal solutions imposes

a fundamental limitation on the type of problems which MOEDAs can solve in polynomial time.

That is, MOEDAs can solve only those multiobjective problems in polynomial time that have

limited growth in the number of Pareto-optimal solutions.

One way to restrict the growth of the Pareto-optimal solutions is to control the number of

substructure (building blocks) that compete between the two objectives, md. That is, for a problem

with m substructures, the two objectives differ in only md substructures and share the same m−md

substructures. For example, consider 4− bit OneMax-ZeroMax problem, md = 2, and without loss

of generality, that the last two building blocks differ between the two objectives. Then there are

only four Pareto-optimal solutions (as opposed to 24 = 16): 1100, 1101, 1110, and 1111. Since

the total number of Pareto-optimal solutions, nopt = 2md , by controlling the number of competing

substructures, we implicitly control the total number of Pareto-optimal solutions.

The growth-rate of the competing substructures should be such that the effect of model accuracy,

decision making, and building-block supply on the population sizing is dominant over the effect of

niching on the population size. The effect of model accuracy, decision making and substructure

supply on the population sizing of eCGA is given by (Pelikan, Sastry & Goldberg, 2003; Sastry &
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Goldberg, 2004a):

neCGA ∝ c1 · 2k · m log m, (8.7)

where c1 is a constant. The effect of niching method on the population-sizing of GAs was modeled

by Mahfoud (Mahfoud, 1994) and is reproduced below:

nniching ∝
log

[(
1 − γ1/t

)
/nopt

]
log [(nopt − 1) /nopt]

≈ c2 · 2md , (8.8)

where γ is the probability of maintaining at least one copy of all the Pareto-optimal solutions, t is

the number of generations we need to maintain all the niches, and c2 is a constant. While Mahfoud

derived the population-sizing estimate for fitness-sharing method, it is generally applicable to other

niching methods and MOGAs as well (Khan, 2002; Reed, 2002).

In order to restrict the number of Pareto-optimal solutions, and thereby to circumvent the

niching method from being overwhelmed we require neCGA ≥ nniching. That is,

c2 · 2md ≥ c1 · 2k · m log m. (8.9)

The above equation can be approximated 1 to obtain a conservative estimate of the maximum num-

ber of competing substructures that circumvent the niching mechanism from being overwhelmed,

which is given by:

md ≈ k + log2(m) (8.10)

To reiterate, MOEDAs can solve additively separable problems in polynomial time if the number

of building blocks that differ between two objectives is less than that predicted in the above

equation. We verify this assertion with empirical results for the OneMax-ZeroMax problem in

Figure 8.4. Specifically, for the m − md building blocks shared by both objectives we consider

the OneMax function, and for the md differing building blocks, we consider the OneMax-ZeroMax

problem. The particular building blocks that differ between the two objectives are randomly chosen

for a particular problem instance. As shown in Figure 8.4, the results indicate that when the limit

1Since log2

(
c1 log m

c2

)
∼ 1, we neglect the term
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Figure 8.4: Scalability of meCGA with the crowding mechanism of NSGA-II and RTS niching for
both OneMax-ZeroMax and m-3 deceptive trap and inverse trap problems. The growth rate of
number of substructures that compete in the two objectives for a given problem size is controlled
as given by Equation 8.10.

on the growth-rate of competing substructures is satisfied, the MOEDAs scale-up polynomially

with the problem size.

8.8 Summary

In this chapter, we studied the scalability of multiobjective genetic algorithms, specifically multiob-

jective extended compact genetic algorithm (meCGA), on a class of boundedly-difficult additively

separable problems. We observed that even when the linkages were correctly identified, the mul-

tiobjective genetic algorithms scaled-up exponentially with problem size due to the combinatorial

growth in the number of Pareto-optimal solutions. The results demonstrated that even if the

linkage is correctly identified, massive multimodality of the search problems can easily overwhelm

the nicher and lead to exponential scale-up. That is, in decomposable problems, if majority or

all the substructures compete in different objectives, then the number of Pareto-optimal solutions
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increases exponentially. This exponential increase overwhelms the nicher and causes significant

problems in maintaining a good coverage of the Pareto-optimal front. This combinatorial ex-

plosion of Pareto-optimal solutions introduces a fundamental limit on the number of competing

substructures between multiple objectives. Using facetwise models that incorporate the combined

effects of model accuracy, decision making, and substructure supply, and the effect of niching on the

population sizing, we predict this limit on the growth rate of maximum number of substructures

that can compete in the two objectives to circumvent the failure of the niching method. If the

number of competing substructures between the multiple objectives is less than the proposed limit,

MOGAs scale-up polynomially with the problem size on boundedly-difficult problems.

The results suggest that even though the multiple objectives are conflicting, they have to share

common building blocks and have a limited number of building blocks that are different in order

for multiobjective GAs to scale polynomially with problem size. This study also demonstrated

that while each of the objectives is tractable with single-objective GA, when considered under

multiobjective optimization, they become intractable. However, as demonstrated in chapter 5,

multiobjective optimizers can also render problems tractable that are intractable via a single-

objective optimizer. Therefore, we need further investigation to fully understand what other facets

of multiobjective problem difficulty are, and, where multiobjective approaches excel. While most

competent multiobjective GAs assume that even though the building blocks differ for different

objectives, the underlying substructures are the same for different objectives. However, this need

not be the case and further studies are required to analyze the scalability of multiobjective GAs

on problems where different objectives have different substructures (or neighborhoods).
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Chapter 9

Summary and Conclusions

Effective multiscale modeling and simulation methods are essential in advancing both the science

and synthesis in a wide array of fields including physics, chemistry, materials science, biology,

biotechnology and pharmacology, where many phenomena span several orders in time and space.

This thesis demonstrated the potential of using genetic algorithms (GAs)—search, optimization,

and machine-learning methods based on natural selection and genetics—and genetic programming

(GP)—GAs that evolve computer programs—for multiscale modeling with the help of two case

studies in materials science and chemistry. In essence, genetic algorithms and genetic programming

are used as effective methods for coupling modeling methods from different scales and are applicable

in various multiscaling areas, for example, modeling multi-timescale kinetics, obtaining constitutive

rules and finding chemical reaction pathways. This study demonstrated that GAs and GP enable

modeling of more complex systems up to realistic timescales which are 2-15 orders of magnitude

greater than that possible from current methods, and they do so by using 2–5 orders of magnitude

less CPU time. The results show that GA- and GP-enabled multiscale modeling approach holds

promise and has the potential to radically transform the way complex multiscale phenomena are

modeled and analyzed and materials, chemicals and pharmaceuticals are designed and synthesized.

The first application dealt with multi-timescaling alloy kinetics, which is critical for designing

functional nanomaterials. Specifically, GP was used to bridge molecular dynamics (MD) and kinetic

Monte Carlo (KMC) to span simulations by orders-of-magnitude in time. On a non-trivial example

of vacancy-assisted migration on a surface of a face centered cubic copper-cobalt alloy, GP predicts

all barriers with 0.1% error from calculations for less than 3% of active configurations, independent

of the type of potentials used to obtain the learning set of barriers via molecular dynamics. The

genetic programming-based KMC approach avoids the need or expense of calculating the entire

potential-energy surface, is highly accurate, and leads to a significant scale-up in real simulation
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time for complex cases as it enables use of KMC and, more importantly, leads to a significant

reduction in CPU time needed for KMC (> 7-orders of magnitude for quantum-based calculations),

not possible from any other current means.

The second case study addressed multiscaling quantum chemistry simulation, with particular

focus on photochemical reactions, which are fundamental in many settings such as biological (for

example, photosynthesis and vision) and technological (for example, solar cells and LEDs). Multi-

objective genetic algorithms were used to bridge high-level quantum chemistry and semiempirical

methods to provide accurate representation of complex molecular excited-state and ground-state

behavior, well beyond previous attempts, or expectation of human experts, and 2-3 orders reduc-

tion in computational cost. Rapid reparameterization of semiempirical methods not only eliminates

the need for a full-fledged ab initio dynamics simulation, which is prohibitively expensive for large

molecules, but also eliminates drawbacks of semiempirical methods that use standard parameter

sets and can yield unphysical dynamics. The results show that the evolutionary approach provides

significantly better results—with up to 384% lower error in the energy and 86.5% lower error in the

energy gradient—than those reported in literature. Moreover multiobjective GAs yield multiple

high-quality semiempirical parameter sets that (1) are stable to random perturbations, (2) yield

accurate configurational energies on untested and key excited-state configurations, and (3) yield

excited-state dynamics simulation results with ab initio accuracy. Even more surprising and po-

tentially groundbreaking, our MOGA results produce transferable potentials—that is, parameters

from one molecular system can be used for similar systems.

While the applications part of the thesis used a fairly straightforward flavor of genetic program-

ming and multiobjective genetic algorithms, in order to address more complex systems, we need

to have a better understanding of the scalability and the limits of these algorithms. Therefore,

along with applications, the thesis also addressed and analyzed the scalability of such methods,

in particular genetic programming and multiobjective genetic algorithms. It should be noted that

although the scalability studies were motivated with the specific application of GAs and GP to

multiscaling problems, the models developed and the lessons learned are not just limited to the

multiscaling domain, but are broadly applicable to a wide range of problems of interest to both

theoreticians and practitioners in genetic and evolutionary computation field.
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Facetwise models of (i) population sizing required for adequate supply of raw subsolutions

required to obtain optimal solutions, and (ii) population sizing required to ensure accurate de-

cision making between competing subsolutions were presented. The building-block supply based

population-sizing model indicates that there is a minimum tree size dependent on the problem size.

Furthermore, the models suggest that when the tree size is greater than the problem size, the pop-

ulation size required on BB supply grounds is 2k (k ln χ + ln m), where k is the order of the building

block, χ is the alphabet cardinality, and m is the number of building blocks. The population-sizing

model based on accurate decision-making shows that, to ensure correct decision making within an

error tolerance, population size must go up as the probability of error decreases, noise increases,

alphabet cardinality increases, the signal-to-noise ratio decreases and tree size decreases and bloat

frequency increases.

While simple genetic programming scales cubically on easy problems, it scales exponentially on

hard problems. Therefore, this study developed a scalable design of GP, called extended compact

genetic programming (eCGP), which is based on the extended compact genetic algorithm (eCGA).

The proposed algorithm adaptively identifies, propagates, and exchanges important subsolutions

of a search problem. The proposed competent GP solves a broad class of adversarially designed

boundedly difficult problems using only polynomial (cubic) number of function evaluations. This

is in contrast to standard GP with fixed recombination operators that scale exponentially on GP-

hard problems. The extended compact GP design and subsequent work on scalable GP by other

researchers clearly demonstrate that, as with GAs, it is possible to design scalable GP in a principled

manner. Moreover, this study also demonstrated that competent GP designs can be advantageous

over standard GP with fixed recombination operators.

Finally, this thesis also addressed the limits on the scalability of multiobjective GAs in reliably

maintaining a diverse set of optimal solutions—also known as Pareto-optimal solutions. Along the

way, based on the multiobjective Bayesian optimization algorithm, a competent MOGA design—

the multiobjective extended compact genetic algorithm (meCGA)—was proposed that can solve

boundedly-difficult problems using only a polynomial (quadratic) number of function evaluations.

The results show that even when the building blocks are correctly identified, massive multimodality

of the search problems can easily overwhelm the nicher and lead to exponential scale-up. Facetwise
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models that incorporate the combined effects of model accuracy, decision making, and sub-structure

supply, and the effect of niching on the population sizing, predict a limit on the growth rate of

maximum number of building blocks that can compete among multiple objectives to circumvent

the failure of the niching method. If the number of competing building blocks between the multiple

objectives is less than the proposed limit, MOGAs scale-up polynomially with the problem size

on boundedly-difficult problems. The results suggest that even though the multiple objectives are

conflicting, they have to share common building blocks and have a limited number of building

blocks that are different in order for multiobjective GAs to scale polynomially with problem size.

This study shows that genetic algorithms and genetic programming are indeed valuable tools for

bridging lower-level and higher-level models and enabling practical multiscale modeling of materials,

chemical, physical, and biological phenomena. GAs and GP are scalable, robust, and efficient

procedures that solve hard problems quickly, reliably, and accurately. The multiscale modeling

approaches developed here can be applied readily to other systems similar to those addressed in

this thesis. The proposed work can be enhanced in a number of ways to enable fast and accurate

modeling, design and analysis of more complex materials and reaction-chemistry systems.

To extend multiscale kinetics modeling via GP for more complex, cooperative effects, such

as island diffusion via surface dislocations, GP could be interfaced with temperature accelerated

dynamics and/or pattern-recognition methods. For systems with long-range fields, GP could be

coupled with phase field methods. Moreover, the efficiency of the GP-based multiscale modeling

approach can be enhanced by coupling it with local cluster expansion methods.

To enable fast and accurate excited-state dynamics of more complex chemical systems, along

with multiobjective GAs for tuning semiempirical parameters, GP could be used to evolve domain-

specific potentials starting from scratch or from existing semiempirical methods. Also, the initial

evidence of transferability of MOGA optimized semiempirical methods is highly promising. More

systematic studies are needed to validate this initial evidence, however, this opens up the possibility

of accurate simulations of photochemistry in complex environments such as proteins and condensed

phases. If this pans out it will transform the way chemicals are modeled and designed radically.

Furthermore, the multiscale modeling approach proposed in this thesis should also carry over

to modeling multiscale phenomena in other domains. More work needs to be done to extend
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the proposed approach and while the underlying mathematics and systems will be different, the

methodology and the implementation should be similar to those described in this study.

For GP and MOGA researchers, this study clearly shows the power of facetwise and dimen-

sional modeling and suggests that both GP and MOGA community would benefit from paying

more attention to design-decomposition and facetwise thinking than they have so far. Similar to

GAs, facetwise models can be very useful in GP and MOGA domains not only yielding practical

performance bounds, but also is helping understand their limits and capabilities.

More work needs to be done to extend the population-sizing model for GP to be more broadly

applicable. A tighter population-sizing bound can be obtained by extending the models along the

lines of the gambler’s ruin model (Harik, Cantú-Paz, Goldberg, & Miller, 1999). Additionally, in

developing population sizing models for GP, we assumed a fairly straightforward representation

scheme, however, GP practitioners use fairly sophisticated and advanced representations, and the

population-sizing models need to be extended to handle other commonly used representations.

As with GAs, GP researchers can benefit from scalable and efficient GP designs as opposed

to using fixed search operators that don’t discover, exchange and explore key building blocks.

Work on designing scalable GP has already progressed and initial results show promise, and they

could be further enhanced by addressing, in a principled manner, scalability and model building

issues. An important and open question remains however, as to whether there are any GP-hard

problems that thwart the mechanism of selectorecombinative GP. This issue is also related to a

broader issue of problem difficulty in system identification. While addressing optimization prob-

lems, it is clear that there is premium on scalable recombination and mutation operators that

automatically identify and exploit good substructures (neighborhoods). However, when solving

system-identification problems, say symbolic regression via GP or model building in estimation of

distribution algorithms, we seem to get away with simple crossover methods or even hill-climbers.

Another follow-up question of critical importance to scalable genetic-programming design is, what

the principal dimensions of GP problem difficulty are? The answer to this question will also help

us design adversarial problems for estimation of distribution algorithms where probabilistic models

are typically built using a hill-climber.

For developing tractable multiobjective GA designs, MOGA researchers would benefit from de-
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signing scalable operators that yield representative coverage of the Pareto-optimal solution. Rather

than requiring to capture the entire Pareto-front, which in many cases might not be practical and

might even be unreasonable, relaxing the requirement and thinking in terms of approximate, but

representative, coverage of the Pareto-optimal solutions would lead to MOGA designs that solve

hard multiobjective problems quickly, reliably, and accurately.

In addressing scalability of MOGAs, we considered a class of problems where each of the

objectives is tractable with single-objective GA, when treated as multiple objectives, they can

become intractable. However, this is not the only possibility, and as demonstrated in chapter 5,

multiobjective GAs can be more efficient than single-objective GAs and we need more studies to

understand when and where multiobjective GAs excel. The scalable multiobjective GA developed in

this study assumes that different objectives share the same building-block structure and builds and

samples from a single probability model. However, this need not be the case and further studies are

required to design scalable multiobjective GAs and to analyze their scalability on problems where

different objectives have different sub-structures (or neighborhoods).

We hope that this work encourages other researchers to apply, analyze, and design genetic

algorithms and genetic programming for the multiscale modeling of complex phenomena in physics,

chemistry, materials science, biology and pharmacology. Such an endeavor holds promise in yielding

scalable and robust multiscale modeling approaches that will be beneficial for the design, analysis,

and modeling of complex systems.
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Appendix A

GP Regressed Inline Barrier Function

The inline barrier function fbarrier symbolically regressed via GP for 2nd n.n. jumps considering

only seven surface 1st n.n. environmental atoms (our initial simple case) is given by

fbarrier (�x) = x1 − 2x2 + x3 + x4 − 2x5 + x7

− x7

x6
− g1 − g2 + g3 (A.1)

where �x = {x1, x2, x3, x4, x5, x6, x7}, and xi is either 0 or 1 denoting a Cu or Co atom, and

g1 =
1
x5

[
x4 +

x5

(x1 + x4 + 2x5 + 40x7)

]0.025

(A.2)

g2 =
−g4 · [x2 + 0.25x5]

(
g7x

g6(1+x3)
2

)
[x1 + x3 + x4 + 0.945 · x4x6/x7]

g3 = 40x2

[
x

(1+x2+2x3+x5+g5)
2

]

The functions gi(�x) are highly non-linear functions of the configurations, that is,

g4 = g8

⎡
⎢⎣ 0.473 · x3x5

(
x

(x7/x4)
2

)2x3

0.177 · x1x6g9(x1 + x4)(x2 + x5)

⎤
⎥⎦ (A.3)

g5 =
(x2 + 0.025x5)g10 · g11

x2 + x3 + x4 + g12

g6 = x2 +
x5

[
2(x2 + x5) + x7

x6
+ 40

]
x5 + x3

[
2(x2 + x5) + x7

x6
+ 40

]
g7 = (g13 + g14)

[
x

(x2+x5/(x2+x5+x4))
2

]
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g8 =
[
(xg14

2 + g17)
(
x

(x2+g18)
2 + g17

)]0.025
(A.4)

g9 =
x6(0.473 + x6)

x4(xg19
2 )

x5
x7

g10 = g15x
g20(2x2x5+x2x4x6+x5)
2

g11 =
3x3x5x

(2x2)
2

g21

[
x3 − 1 − x6

x7
+ (0.59 − x1)(x5 − x6)

]
g12 = x1 + x2 + 3x3 + x4 + x5 + x

2(x2+x5)
2

+ 0.95
x4x6

x7
+ (0.59 − x1)(x5 − x6)

+
x7

x6 − 0.23

g13 = x2 +
x5

0.473 + x1 + x3 + x4 + xg22
2

(A.5)

g14 = x2 +
x5 [0.473 + xg23

2 ]
x5 + x2 [0.473 + xg23

2 ]

g15 = 1 + x2 + x5 +
x5

x6
+

x7

x4
+

x5

x1 + x4

+ g
(x5/x7)
16 + x

(
x3−1+

x6
x5

−x6
x7

+
x6
x2

)
2

g16 = x

(
−1−x1+x3−x4+

x6
x7

+
x6
x5

−g24

)
2

g17 =
x5 [0.473 + 40x7]

x5 + x2 [0.473 + 40x7]

g18 =
x5

[
0.473 + x

(x2+x5)
2

]
x5 + (x2 + x5)

[
0.473 + x

(x2+x5)
2

] (A.6)

g19 =
[
−x1 + x3 − x4 +

x6

x5
− g24

](x5/x7)

g20 =
[x5 + x7/x6](x2+x5)

x2x5 + x5 + x4x6

g21 = x6 (x2 + x5)

[
x3 +

x5

x2 + x5 + x7
x6

+ g25

]
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g22 =
x6

x7
+

x6

x5
− x1 − x3 − x4 (A.7)

−
(

x2

x1

)(
x6
x3

−0.47(x2+x5)

)

g23 =
[
x3 +

x6

x5

](3x3+x7/x6)

g24 =
(

x2

x1

)(
x6
x3

+0.473(x2+x5)

)

g25 = 0.47 +
x5

x2 + x5 + x7
x6

+ 1
x2+x5

+ x4
0.473+x6
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Appendix B

Semiempirical Parameter Interactions
for Ethylene Symbolically Regressed
via Genetic Programming
As described in chapter 5, the multiobjective genetic algorithms yields 61 Pareto-optimal semiem-

pirical parameter sets that are (1) stable to small perturbations, (2) yield accurate configurational

energies, and (3) yield ab initio quality excited-state dynamics are selected. The data is normalized

using a z-score and the normalized data is used to evolve relationships between the semiempirical

parameters via GP. In all GP runs, a population size of 1000 and a run duration of 100 generations

were used. For each of the semiempirical parameter, over 100 independent GP runs were computed.

The best evolved regression function for each of the independent runs are then simplified using the

symbolic math toolbox in matlab. The coefficients are then optimized using either linear or non-

linear regression methods. The best evolved solutions for each of the semiempirical parameters

along with the RMS error values and the number of independent GP runs that yield the functional

form are given in the following tables.
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Cantú-Paz, E. (2000b). Selection intensity in genetic algorithms with generation gaps. Proceed-
ings of the 2000 Genetic and Evolutionary Computation Conference, 911–918.
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Awards & Grants

• Best paper award (with D. E. Goldberg and X. Llorà), estimation of distribution algorithms
track, Genetic and Evolutionary Computation Conference, 2007.

• Bronze “Humies” award (with J. Bacardit, M. Stout, J. D. Hirst, X. Llorà, and N. Krasno-
gor), Human Competitive Results at the Genetic and Evolutionary Computation Conference
(ACM SIG conference), 2007.

• Best paper award nominee (with M. Pelikan and D. E. Goldberg), genetic algorithms
track, Genetic and Evolutionary Computation Conference, 2007.

• Best paper award nominee (with T.-L. Yu, D. E. Goldberg and M. Pelikan), estimation
of distribution algorithms track, Genetic and Evolutionary Computation Conference, 2007.

• Finalist, Lemelson-Illinois student prize. Annual award for the most inventive student
at the University of Illinois, 2007.

• Silver “Humies” award (with D.D. Johnson, A. L. Thompson, D. E. Goldberg, T. J. Mar-
tinez, J. Leiding, and J. Owens), Human Competitive Results at the Genetic and Evolutionary
Computation Conference (ACM SIG conference), 2006.

• Best paper award (with D.D. Johnson, A. L. Thompson, D. E. Goldberg, T. J. Martinez, J.
Leiding, and J. Owens), real world applications track, Genetic and Evolutionary Computation
Conference (ACM SIG conference), 2006.

• Research Grant FA9550-06-1-0096 (with D. E. Goldberg and M. Pelikan). Air Force
Office of Scientific Research, Air Force Materiel Command, USAF.

• The paper “Genetic programming for multiscale modeling” co-authored with D. D. Johnson,
D. E. Goldberg, and P. Bellon was chosen by American Institute of Physics (AIP)
editors as a focused article of frontier research in the Virtual Journal of Nanoscale
Science and Technology, 12(9), 2005.

• Best paper award nominee (with H. A. Abbass, D. E. Goldberg, and D.D. Johnson), esti-
mation of distribution algorithms track, Genetic and Evolutionary Computation Conference,
2005.

• Best paper award nominee (with D. E. Goldberg), genetic algorithms track, Genetic and
Evolutionary Computation Conference, 2003.

• Best paper award (with M. V. Butz, and D. E. Goldberg), learning classifier systems track,
Genetic and Evolutionary Computation Conference, 2003.

• Computational Science and Engineering Fellow, University of Illinois, 2002-2003.

• William A. Chittenden Award for outstanding master of science graduate in
General Engineering, 2001.

• Best theme oriented model award. APOGEE, all India science exhibition, 1997.

• Best exhibition award, APOGEE, all India science exhibition, 1997.
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Patents

Methods for efficient solution to large-scale search and optimization problems.
Inventors: Sastry, K., Goldberg, D. E., Llorà, X.
Status: Filed invention disclosure to office of technology management.

Quantum chemistry simulations using optimization methods.
Inventors: Sastry, K., Thompson, A., Johnson, D.D., Martinez, T. J., Goldberg, D. E.
Status: Pending.

Methods and systems for interactive computing.
Inventors: Llorà, X., Sastry, K., Goldberg, D. E.
Status: Pending.

Adaptive optimization methods.
Inventors: Lima, C. F., Sastry, K., Goldberg, D. E., Lobo, F. G.
Status: Pending.

Methods for efficient solution set optimization.
Inventors: Sastry, K., Pelikan, M., Goldberg, D. E.
Status: Pending (US patent application 20060212279).

Current Research

• Practical understanding of genetic algorithms (GAs), genetic programming (GP), and
genetics-based machine learning algorithms (GBML).

• Design and analysis of competent Genetic and evolutionary algorithms that solve hard prob-
lems, quickly, reliably, and accurately.

– Extensions to non-binary problem domains such as integer, real, and program domains.

– Competent search methods for evolving rules in learning classifier systems

• Solving search, optimization, and machine-learning problems in material science and chem-
istry, especially in the area of multiscale modeling.

• Principled design of efficiency-enhancement techniques such as evaluation relaxation, time
continuation, parallelization, and hybridization.

• Solving large-scale optimization problems with millions to billion variables.

Professional Activities

• Chair Estimation of Distribution Algorithms Track, Genetic and Evolutionary Computation
Conference (ACM SIGEVO conference), 2008 (Atlanta).

• Co-Chair Genetic Algorithms Track, Genetic and Evolutionary Computation Conference
(ACM SIGEVO conference), 2007 (London).
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• Program committee member, Genetic and Evolutionary Computation Conference, 2002
(New York, NY), 2003 (Chicago, IL), 2004 (Seattle, WA), 2005 (Washington, DC), 2006
(Seattle, WA), 2007 (London).

• Co-organizer, Workshop on Optimization by Building & Using Probabilistic Models
(OBUPM), 2001 (San Francisco, CA), 2004 (Seattle, WA), 2005 (Washington, DC), 2006
(Seattle, WA), 2007 (London).

• Reviewer, Evolutionary Computation Journal

• Reviewer, IEEE Transactions on Evolutionary Computation

• Reviewer, IEEE Transactions on Systems, Man, and Cybernetics

• Reviewer, Journal of Heuristics

• Reviewer, Journal of Global Optimization

• Electronic publicity chair, Genetic and Evolutionary Computation Conference (GECCO-
2002), New York, NY.

• Project Coordinator, APOGEE-97, an all India science exhibition.

Professional Memberships

• Student Member, ACM SIGEVO, Special interest group for genetic and evolutionary com-
putation

Invited Talks & Tutorials

• A Billion Bits or Bust (with D. E. Goldberg). NCSA private sector program annual meeting,
May 2007.

• Efficiency Enhancement Techniques in Estimation of Distribution Algorithms. Grand open-
ing of Missouri estimation of distribution laboratory (MEDAL). University of Missouri St.
Louis, July 2006.

• Principled Efficiency Enhancement Techniques. Tutorial at Genetic and Evolutionary Com-
putation Conference. June 2005.

• Population Sizing for Genetic Programming Based On Decision Making . Workshop on Pa-
rameter Setting in Evolutionary Algorithms. Genetic and Evolutionary Computation Con-
ference. June 2005.

• Understanding Complex Systems: A Design Decomposition Approach. Nonlinear Dynamics
and Complex Systems Seminar. Department of Physics. University of Illinois at Urbana-
Champaign. April 2005.

• Inducing Competent Neighborhood Operators: Probabilistic Model Building Approach. Annual
INFORMS meeting. Special session on Genetic Algorithms. October 2004.
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• Facetwise Understanding of Genetic Programming and Design of Competent Genetic Pro-
gramming . Department of Mathematics and Computer Science. University of Missouri at St.
Louis. March 2004.

• Genetic Programming for Multi-timescale Modeling. Understanding Complex Systems. Uni-
versity of Illinois at Urbana-Champaign. May 2003.

Collaborators

Hussein A. Abbass (CS, University of Canberra, Australia) • B. V. Babu (Chem. Eng., BITS Pilani,
India) • Jaume Bacardit (CSIT, University of Nottingham, UK) • L. Behera (ECE, IIT Kanpur,
India) • Pascal Bellon (MSE, University of Illinois, USA) • Martin Butz (Psychology, University of
Würzburg, Germany) • Erick Cantú-Paz (Yahoo! Inc., USA) • Chhanda Chakraborti (Philosophy,
IIT Kharagpur, India) • Jian-Hung Chen (CS, Chung Hua University, Taiwan) • Ying-ping Chen
(CS, National Chiao Tung University, Taiwan) • David E. Goldberg (IESE, University of Illinois,
USA) • Georges Harik • Duane D. Johnson (MSE, University of Illinois, USA) • Graham Kendall
(CSIT, University of Nottingham, UK) • Pier Luca Lanzi (CS, Politecnico di Milano, Italy) •
Claudio F. Lima (CS, University of Algarve, Portugal) • Fernando Lobo (CS, University of Algarve,
Portugal) • Xavier Llorà (NCSA, University of Illinois, USA) • Todd Martinez (Chem, University
of Illinois, USA) • I. J. Nagrath (ECE, BITS Pilani, India) • Kei Ohnishi (CSE, Kyushu Institute
of Technology, Japan) • Yukio Ohsawa (Systems Eng., University of Tokyo, Japan) • Una-May
O’Reilly (CSAIL, MIT, USA) • Albert Orriols-Puig (CS, Ramon Llull University, Spain) • Luis de
la Ossa (CS, University of Castilla la Mancha, Spain) • Martin Pelikan (Math & CS, University of
Missouri St. Louis, USA) • Alexis L. Thompson (Chem, University of Illinois, USA) • Shigeyoshi
Tsutsui (CS, Hannan University, Japan) • Noriko Imafuji Yasui (IESE, University of Illinois, USA)
• Tian-Li Yu (ECE, National Taiwan University, Taiwan).

Publications

Summary: h-index: 14 � Total citations: 595

Books

Goldberg, D. E., Sastry, K. Genetic algorithms: The design of innovation. (In preparation). 2nd
edition. Berlin: Springer.

Thierens, D., Beyer, H.-G., Birattari, M., Bongard, J., Branke, J., Clark, J. A., Cliff, D., Congdon,
C. B., Deb, K., Doerr, B., Kovacks, T., Kumar, S., Miller, J. F., Moore, J., Neumann, F.,
Pelikan, M., Poli, R., Sastry, K., Stanley, K. O., Stützle, T., Watson, R. A., Wegener, I. (2007).
Proceedings of the 2007 Genetic and Evolutionary Computation Conference. New York: ACM
Press.

Pelikan, M., Sastry, K., Cantú-Paz, E. (Eds.). (2006) Scalable optimization via probabilistic mod-
eling: From algorithms to applications. Berlin: Springer.

Refereed Journal Papers

Goldberg, D. E., Sastry, K., Llorà, X. (2007). Toward routine billion-variable optimization using
genetic algorithms. Complexity , 12 (3), 27–29.
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Chen, Y.-p., Yu, T.-L., Sastry, K., Goldberg, D. E. (submitted). A Survey of linkage learning tech-
niques in genetic and evolutionary algorithms. Evolutionary Computation Journal . (Preprint:
IlliGAL report no. 2007014).

Pelikan, M., Sastry, K., Butz, M. V., Goldberg, D. E. (submitted). Genetic and evolutionary
algorithms on random additively decomposable problems. Evolutionary Computation Journal .

Pelikan, M., Sastry, K., Goldberg, D. E. (accepted). Sporadic model building for efficiency en-
hancement of the hierarchical BOA. Genetic Programming and Evolvable Machines.

Sastry, K., Johnson, D.D., Goldberg, D. E. (2007). Scalability of a hybrid extended compact
genetic algorithm for ground state optimization of clusters. Materials and Manufacturing Pro-
cesses, 22 (5), 570–576.

Sastry, K., Johnson, D.D., Thompson, A. L., Goldberg, D. E., Martinez, T. J., Leiding, J., Owens,
J. (2007). Optimization of Semiempirical Quantum Chemistry Methods via Multiobjective
Genetic Algorithms: Accurate Photochemistry for Larger Molecules and Longer Time Scales
Materials and Manufacturing Processes, 22 (5), 553–561.

Sastry, K., Pelikan, M., Goldberg, D. E. (submitted). Efficiency enhancement of genetic algorithms
by building an internal probabilistic model of fitness. Evolutionary Computation Journal .

Butz, M.V., Goldberg, D.E., Lanzi, P.L., Sastry, K. (2007) Problem Solution Sustenance in XCS:
Markov Chain Analysis of Niche Support Distributions and Consequent Computational Com-
plexity. Genetic Programming and Evolvable Machines, 8 (1), 5-57 (Preprint: IlliGAL report
no. 2004033).

Sastry, K., Johnson, D. D., Goldberg, D. E., Bellon, P. (2005). Genetic programming for multi-
timescale modeling. Physical Review B, 72 , 085438. [Selected by AIP editors as focused article
of frontier research in Virtual Journal of Nanoscale Science and Technology , 12 (9), 2005].

Butz, M. V., Sastry, K., Goldberg, D. E. (2005). Strong, stable, and reliable fitness pressure in
XCS due to tournament selection. Genetic Programming and Evolvable Machines, 6 (1), 53–77.
(Preprint: IlliGAL report no. 2003027).

Sastry, K., Johnson, D. D., Goldberg, D. E., Bellon, P. (2004). Genetic programming for multiscale
modeling. International Journal for Multiscale Computational Engineering , 2 (2), 239–256.

Pelikan, M., Sastry, K., Goldberg, D. E. (2002). Scalability of the Bayesian optimization algorithm.
International Journal of Approximate Reasoning , 31 (3), 221–258. (Preprint: IlliGAL report
no. 2001029).

Babu, B.V., Sastry, K. K. N. (1999). Estimation of heat transfer parameters using differential
evolution and orthogonal collocation. Computers and Chemical Engineering , 23 , 327–339.

Sastry, K. K. N., Behera, L., Nagrath, I. J. (1999). Differential evolution based fuzzy logic
controller for non-linear process control. Fundamenta Informaticae: Special Issue on Soft Com-
puting , 37 (1-2), 121–136.

Book Chapters

Yu, T.-L., Sastry, K., Goldberg, D. E. (2007). Population sizing to go: Online adaptation using
noise and substructural measurement. In Lobo, F., Lima, C., Michalewicz, Z. (Eds.), Parameter
Settings in Evolutionary Algorithms. Berlin: Springer.
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Pelikan, M., Sastry, K., Goldberg, D. E. (2006). Multiobjective estimation of distribution algo-
rithms. In Pelikan, M., Sastry, K., Cantú-Paz, E. (Eds.), Scalable Optimization via Probabilistic
Modeling: From Algorithms to Applications. Berlin: Springer.

Sastry, K., Pelikan, M., Goldberg, D. E. (2006). Efficiency enhancement of estimation of distri-
bution algorithms. In Pelikan, M., Sastry, K., Cantú-Paz, E. (Eds.), Scalable optimization via
Probabilistic Modeling: From Algorithms to Applications. Berlin: Springer.

Harik, G. R., Lobo, F. G., Sastry, K. (2006). Linkage learning via probabilistic modeling in the
ECGA. In Pelikan, M., Sastry, K., Cantú-Paz, E. (Eds.), Scalable Optimization via Probabilistic
Modeling: From Algorithms to Applications. Berlin: Springer.

Llorà, X., Sastry, K., Goldberg, D. E., de la Ossa, L. (in press). The χ-ary extended compact
classifier system: Linkage learning in Pittsburgh LCS. In Kovacs, T., Llorà, X., and Takadama,
K. (Eds.), Advances at the frontier of LCS . Berlin: Springer.

Llorà, X., Sastry, K., Goldberg, D. E. (2007). Binary Rule Encoding Schemes: A Study Using The
Compact Classifier System. In Kovacs, T., Llorà, X., Takadama, K., Lanzi, P. L., Stolzmann,
W., Wilson, S. W. (Eds.), Learning Classifier Systems, 41–60. Berlin: Springer.

Ondas, R., Pelikan, M., Sastry, K. (2006). Genetic programming, probabilistic incremental pro-
gram evolution, and scalability. In Tiwari, A., Knowles, J., Avineri, E., Dahal, K., Roy, R.
(Eds.) Applications of Soft Computing: Recent Trends. Berlin: Springer.

Sastry, K., Goldberg, D.E., Kendall, G. (2005). Genetic algorithms: A tutorial. In Burke, E.
and Kendall, G. (Eds), Introductory Tutorials in Optimization, Search and Decision Support
Methodologies. Berlin: Springer.Preprint.

Sastry, K., O’Reilly, U.-M., Goldberg, D. E., (2004). Population sizing for genetic programming
based upon decision making. In O’Reilly, U.-M., et al (Eds.), Genetic Programming Theory and
Practice II , 49–66. Boston, MA: Kluwer Academic Publishers. (Preprint: IlliGAL report no.
2004028).

Sastry, K., Goldberg, D. E. (2003). Probabilistic Model Building and Competent Genetic Pro-
gramming. In Riolo, R., Worzel, B. (Eds.), Genetic Programming Theory and Practice, 205–220.
Boston, MA: Kluwer Academic Publishers. (Preprint: IlliGAL report no. 2003013).

Sastry, K., O’Reilly, U.-M., Goldberg, D. E., Hill, D. (2003). Building-Block Supply in Genetic
Programming. In Riolo, R., Worzel, B. (Eds.), Genetic Programming Theory and Practice,
155–172. Boston, MA: Kluwer Academic Publishers. (Preprint: IlliGAL report no. 2003012).

Goldberg, D. E., Sastry, K., Ohsawa, Y. (2003). Discovering deep building blocks for competent
genetic algorithms using chance discovery via KeyGraphs. In Ohsawa, Y., McBurney, P. (Eds.),
Chance Discovery , 276–302. Berlin: Springer-Verlag. (Preprint: IlliGAL report no. 2002026).

Refereed Conference Papers

Fossati, L., Lanzi, P. L., Sastry, K., Goldberg, D. E., Gomez, O. (2007). A simple real-coded
extended compact genetic algorithm. Proceedings of the Congress on Evolutionary Computation
(CEC 2007).

Lima, C. F., Pelikan, M., Goldberg, D. E., Lobo, F. G., Sastry, K., Hauschild, M. (2007).
Influence of selection and replacement strategies on linkage learning in BOA. Proceedings of the
Congress on Evolutionary Computation (CEC 2007). (Preprint: IlliGAL report no. 2007013).

219

http://www.asap.cs.nott.ac.uk/publications/pdf/gxk_introsch4.pdf
http://www.illigal.uiuc.edu/pub/papers/IlliGALs/2004028.pdf
http://www.kumarasastry.com/wp-content/files/2003013.pdf
http://www.kumarasastry.com/wp-content/files/2003012.pdf
http://www.kumarasastry.com/wp-content/files/2002026.pdf
http://www.illigal.uiuc.edu/pub/papers/IlliGALs/2007013.pdf


Sastry, K., Goldberg, D. E. (2007). Let’s get ready to rumble redux: Crossover versus muta-
tion head to head on exponentially scaled problems. Genetic and Evolutionary Computation
Conference (GECCO 2007), 1380–1387. (Preprint: IlliGAL report no. 2007006).

Sastry, K., Goldberg, D. E., Llorà, X. (2007). Towards billion bit optimization via parallel esti-
mation of distribution algorithm. Genetic and Evolutionary Computation Conference (GECCO
2007), 577–584. (Preprint: IlliGAL report no. 2007007). [Best paper in Estimation of Distri-
bution Algorithms track].

Sastry, K., Pelikan, M., Goldberg, D. E. (2007). Empirical Analysis of ideal recombination on
random decomposable problems. Genetic and Evolutionary Computation Conference (GECCO
2007), 1388–1395. (Preprint: IlliGAL report no. 2006016). [Best paper award nominee in
Genetic Algorithms track].

Orriols-Puig, A., Sastry, K., Lanzi, P. L., Goldberg, D. E., Bernadó-Mansilla, E. (2007). Modeling
selection pressure in XCS for proportionate and tournament selection. Genetic and Evolutionary
Computation Conference (GECCO 2007), 1846–1853. (Preprint: IlliGAL report no. 2007004).

Llorà, X., Sastry, K., Yu, T.-L., Goldberg, D. E. (2007). Do not match, Inherit: Fitness surro-
gates for genetics-based machine learning techniques. Genetic and Evolutionary Computation
Conference (GECCO 2007), 1798–1805. (Preprint: IlliGAL report no. 2007011).

Orriols-Puig, A., Goldberg, D. E., Sastry, K., Bernadó-Mansilla, E. (2007). Modeling XCS in class
imbalances: Population sizing and parameter settings. Genetic and Evolutionary Computation
Conference (GECCO 2007), 1838–1845. (Preprint: IlliGAL report no. 2007001).

Bacardit, J., Stout, M., Hirst, J. D., Sastry, K., Llorà, X., Krasnogor, N. (2007). Automated al-
phabet reduction method with evolutionary algorithms for protein structure prediction. Genetic
and Evolutionary Computation Conference (GECCO 2007), 346–353. (Preprint: IlliGAL report
no. 2007015). [Bronze “Humies” award at the Human Competitive Results Competition].

Hauschild, M., Pelikan, M., Lima, C. F., Sastry, K. (2007). Analyzing probabilistic models in
hierarchical BOA on traps and spin glasses. Genetic and Evolutionary Computation Conference
(GECCO 2007), 523–530. (Preprint: Medal report no. 2007001).

Yu, T.-L., Sastry, K., Goldberg, D. E., Pelikan, M. (2007). Population sizing for entropy-
based model building in genetic algorithms. Genetic and Evolutionary Computation Conference
(GECCO 2007), 601–608. (Preprint: IlliGAL report no. 2006020). [Best paper award nominee
in Estimation of Distribution Algorithms track].

Pelikan, M., Hartmann, A. K., Sastry, K. (2006). Hierarchical BOA, Cluster Exact Approximation,
and Ising Spin Glasses. Parallel Problem Solving from Nature (PPSN IX), 121–131.

Lima, C. F., Pelikan, M., Sastry, K., Butz, M. V., Goldberg, D. E., Lobo, F. G. (2006). Substruc-
tural neighborhoods for local search in the Bayesian optimization algorithm. Parallel Problem
Solving from Nature (PPSN IX). 232–241. (Preprint: IlliGAL report no. 2006021).

Pelikan, M., Sastry, K., Butz, M. V., Goldberg, D. E. (2006). Performance of evolutionary algo-
rithms on random decomposable problems. Parallel Problem Solving from Nature (PPSN IX),
788–797. (Preprint: IlliGAL report no. 2006002).

Sastry, K., Johnson, D.D., Thompson, A. L., Goldberg, D. E., Martinez, T. J., Leiding, J., Owens,
J. (2006). Multiobjective genetic algorithms for multiscaling excited state direct dynamics in
photochemistry. Genetic and Evolutionary Computation Conference (GECCO 2006). 1745–
1752. (Preprint: IlliGAL report no. 2006005). [Best paper award in Real World Applications
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2006). 419–426. (Preprint: IlliGAL report no. 2006003).

Llorà, X., Sastry, K. (2006). Fast rule matching for learning classifier systems via vector in-
structions. Genetic and Evolutionary Computation Conference (GECCO 2006). 1513–1520.
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