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Preface

Recently in the engineering field, genetic algorithms (GAs) have attracted a great deal

of attention as random search methods for optimization. In GAs, each design of an object

is typically coded in a gene-like bit sequence, and in imitation of biological evolution, the

optimal (or a close to optimal) design is searched for by operating evolutionary operations

(selection, mutation, and genetic recombination) on a population of those sequences.

Among these operations, the most characteristic operation of GAs is the genetic

recombination, or crossover operation. Since GAs without crossover are nothing more than

a parallel hill-climbing method, crossover is a key operation to achieve the optimal design

in the shortest number of trials. In most studies using GAs, however, the effectiveness of

GAs is questionable. There is a lot of literature on applying GAs to industrial problems;

and yet those papers report that the performance of GAs varies diversely depending upon

the genetic parameters such as the mutation rate, crossover rate, selection scheme, and

fitness landscape on the searching space represented by bit sequences.

Among these various schemes of GAs, I first focus on the fitness landscape. I propose a

conspicuously peaked landscape, which stemmed from a study of machine language

genetic programming system. When GAs are applied to optimization of a long bit sequence

coding a set of machine instructions, GAs must search for an appropriate set of bits which

composes some advantageous set of instructions. Mutations of one or few bits have no

influence on the final function of a program, and a program can enjoy highly functional

advantage only when all the component bits are present in the same program (individual).

This fitness model makes a population of programs evolve with an intermittent process

wherein drastic adaptive evolution occasionally punctuates long period of stases (neutral

evolution), making the evolutionary speed principally determined by the waiting time until

creation of an advantageous set of bits. To study this time, I here devise a fitness function

for only one advantageous function (which I call a Babel-like fitness landscape in Chapter

2) and study the rate of evolution, especially focusing on the acceleration rate by crossover.

Estimates are made using the following three different methods; the theoretical analysis

with mathematical formulas, the numerical method using the vector representation of a

population, and the direct simulation method with GAs operated on a population of bit

sequences. In Chapter 1, I first develop the second numerical method and simulate a
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generation cycle with recurrence formulas. It is shown from the result that at an

intermediate mutation rate crossover can greatly reduce the waiting time until an

advantageous set of bits dominates the population. A brief mathematical analysis is also

given in this chapter to explain the results. Chapter 2 is devoted to the analysis examining

how much crossover reduces that waiting time and accelerates evolution. I develop a more

detailed analytical methods and estimate the acceleration rate by crossover under different

values of genetic parameters. In order to make sure of the theoretical result, experiments

using the other two numerical methods are also presented in this chapter. From these

results it is concluded that crossover greatly enhances the rate of evolution when genetic

parameters are adjusted appropriately.

In the following, I explain the contents of these two chapters in more detail:

Chapter 1. The Optimum Recombination Rate that Realizes the Fastest Evolution of a

Novel Functional Combination of Many Genes

The effect of genetic recombination (or crossover) by sexual reproduction is studied on

the time until a novel set of genes performing a combined function appears, spreads, and

becomes fixed. First, we study a haploid finite population with many binary loci, in which

only one sequence (called a functional gene set) is significantly advantageous over the

others. The time for evolution of the function ( ) is defined as the mean number of

generations until the advantageous sequence dominates in an initially random population.

When the sequence diversity is initially stored sufficiently, the evolution time is roughly

the product of waiting time until the appearance of the advantageous sequence (creation

time ) and the average number of appearances of the advantageous sequence from its

absence until its fixation (destruction number ). Mutation and crossover reduce the

former but enlarge the latter. If the mutation rate is low, there is an intermediate optimal

rate of crossover that achieves the minimum . In contrast, if the mutation rate is

sufficiently high, is smallest without crossover. Second, the break-down of established

functions by recurrent deleterious mutation is examined in an infinite population. The

number of functional genes maintained monotonically decreases with the recurrent

deleterious mutation rate. Thus in higher organisms having many functional sets of genes

in the genome, the mutation rate must be kept very low to preserve them, and hence a high

crossover rate made possible by sexual reproduction is important in accelerating the
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evolution of novel functional sets of genes. Implication of this long-term advantage of

recombination in the maintenance of sexual reproduction in higher organisms is discussed.

Chapter 2. Crossover Accelerates Evolution in GAs with a Babel-like Fitness Land-

scape: Mathematical Analyses

The effectiveness of crossover in accelerating evolution in genetic algorithms (GAs) is

studied with a haploid finite population of bit sequences. A Babel-like fitness landscape is

assumed. There is a single bit sequence (schema) that is significantly more advantageous

than all the others. We study the time until domination of the advantageous schema ( ).

Evolution proceeds with appearance, spread, and domination of the advantageous schema.

The most important process determining is the appearance (creation) of the

advantageous schema, and crossover helps this creation process and enhance the rate of

evolution. To study this effect, we first establish an analytical method to estimate with

or without crossover. Then, we conduct a numerical analysis using the frequency vector

representation of the population with the recurrence relations formulated after GA

operations. Finally we carry out direct computer simulations with simple GAs operating on

a population of binary strings directly prepared in the computer memory to examine the

performance of the two analytical methods. It is shown that is reduced greatly by

crossover with a mildly high rate when the mutation rate is adjusted to a moderate value

and that an advantageous schema has a fairly large order (the number of bits). From these

observations, we can determine implementation criteria for GAs, which are useful when we

apply GAs to engineering problems having a conspicuously discontinuous fitness

landscape.
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CHAPTER 1

The Optimum Recombination Rate that Realizes the
Fastest Evolution of a Novel Functional Combination of

Many Genes

The paper was published in Theor. Pop. Biol. (51, 185-200) in 1997.
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Introduction

Questions on the evolution of sex and recombination have been among the major

unsolved issues in evolutionary biology over the decades. Various hypotheses have been

proposed to explain why sexual reproduction is maintained in most higher organisms in

spite of a high cost of maintaining it (Williams, 1975; Maynard-Smith, 1978; Lloyd,

1980; Michod and Levin, 1988). Recombination by sexual reproduction accelerates

evolution by making advantageous combinations of genes (Crow and Kimura, 1965;

Maynard-Smith, 1971; Felsenstein, 1974; Takahata, 1982), or by excluding deleterious

genes more effectively (Muller, 1964; Haigh, 1978; Kondrashov, 1988; Redfield, 1994;

Kondrashov, 1994). Genetic diversity arising from recombination is beneficial in the

continuously changing environment (Maynard-Smith, 1971; Sasaki and Iwasa, 1987) or

when subject to attack by pathogens or parasites (Hamilton, 1980; Hamilton et al., 1990).

Above all, the possibility that genetic recombination makes advantageous

combinations of genes and accelerates evolution, which was originally suggested by

Fisher (1930) and Muller (1932), has been examined extensively since the first

quantitative calculation by Crow and Kimura (1965). Various models have been studied,

and a number of statements have been made in different ways to describe this long term

advantage of recombination (Crow and Kimura, 1965, 1969; Bodmer, 1970; Eshel and

Feldman, 1970; Maynard-Smith, 1971; Karlin 1973; Felsenstein, 1974; Takahata, 1982).

The evolutionary acceleration mechanism asserted in these papers are summarized as

follows; recombination speeds the response to selection by disrupting inter-locus linkage

disequilibrium that is continually produced by random genetic drift. This inter-locus

linkage disequilibrium was first comprehensively studied by Hill and Robertson (1966)

and called “Hill-Robertson effect” by Felsenstein (1974). The latter author also pointed

out that the authors using the finite population models had found the advantage of

recombination whereas those using the infinite population models had found none.

The studies about advantage or disadvantage of sexual recombination from the

individual selection point of view was begun by Nei (1967, 1969). He introduced the

recombination-modifying locus (i.e., the special locus that controls the recombination

rate between the major selected loci) and studied what kind of allele can increase in this

modifying locus. This work had been generalized by Feldman and others using two
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major selected loci (Feldman 1972; Feldman et al., 1980; Feldman and Liberman, 1986;

Liberman and Feldman, 1986), and was established as “the Reduction Principle”

asserting that recombination is reduced on an appropriate initial condition. From the

work by Felsenstein and Yokoyama (1976), this approach was extended to the many

(more than two) major locus model. They assumed a multiplicative selection scheme

between twenty major loci and found an increase of recombination under an appropriate

condition, which extended the Fisher-Muller theory to the individual selection paradigm.

Since this work, a number of authors have studied many locus models with the

recombination modifier under different fitness schemes, recombination patterns, and so

on, and they have set forth various conditions for advantage or disadvantage of genetic

recombination (Maynard-Smith, 1980, 1988; Bergman and Feldman, 1990, 1992;

Zhivotovsky et al., 1994). In these studied, however, there are as many models that lead

to reduction of recombination as its increase.

Recently in the engineering field, genetic algorithms (GAs) have attracted a great deal

of attention as random search methods for optimization (Holland, 1992; Goldberg, 1989;

Mitchell et al., 1991; Forrest and Mitchell, 1993; Forrest, 1993; Otto et al., 1994; Vose

and Wright, 1995). In GAs, each design of an object is typically coded in a gene-like bit

sequence and a population of those sequences is prepared. The optimal (or a close to

optimal) design is searched for by evolutionary operations including reproduction and

competition between sequences over many generations, which imitates biological

evolution, such as natural selection, mutation, genetic recombination, and random drift

due to finite population size.

Among these operations, the most characteristic operation of GAs is the genetic

recombination, or crossover operation. Since GAs without crossover are nothing more

than a parallel hill-climbing method, crossover is a key operation to achieve the optimal

design in the shortest number of trials. From this intuitive reasoning, it immediately

follows that the theoretical study about the role of crossover in GAs should be closely

related to the biological theory asserting that recombination accelerates evolution. Otto et

al. (1994) studied the advantage (or disadvantage) of sexual recombination from this

point of view. They adopted the specific fitness function in the twenty locus model and

examined the waiting time until the creation and the domination of the most



Page 9 of 105

advantageous sequence of genes. In spite of such a work, however, there are no general

theories on the “optimal” rates of crossover and mutation established in GAs. A general

theoretical study on the role of crossover in the rate of adaptive evolution is of large

practical importance.

The primary aim of this chapter is to present a biological theory explaining the

maintenance of sex from the viewpoint of the long range advantage of recombination.

The inspiration was given from the study of GAs. We consider the case in which the

novel function is advantageous only if a large number of genes are combined. A novel

function achieved by a combination of a large number of genes enjoys a very high

selective advantage only when all component genes are present in the same individual,

and most single mutations are supposed to be neutral if they occur separately. This very

epistatic fitness scheme was devised by analogy to the fitness landscape of MUNCs, the

evolutionary programming system, proposed by Suzuki (1996). In this system, a novel

advantageous function is achieved by a subroutine composed of a consecutive bit

sequence in the memory. Driven by GAs, MUNCs evolve functional subroutines one by

one, and eventually establish a very advantageous function in program memories. Fig.

1.1 symbolically illustrates the evolutionary picture with which MUNCs proceed. In this

figure, each individual is a haploid genome that is a sequence of binary (0-1) alleles and

is represented in a row of binary matrix. A part of this bit sequence may correspond to a

set of genes with a combined function, and through the processes shown in Fig. 1.1(b),

those functional sets of genes appear and dominate the population. As a consequence,

evolution proceeds as long neutral evolutionary phases (Kimura, 1983) and intermittent

short adaptive evolutionary phases, making a resultant stairs-like growth curve of the

mean population fitness. See Suzuki (1996) for more detailed explanation of this picture.

Based upon this evolutionary picture, we conduct two computer simulations to

examine the two key parameters; the interval time between steps of the fitness growth

curve which determines the evolutionary speed and maximum number of steps which

determines how many functions can be stored in the genome. In the following, to

examine the effect of genetic recombination on the evolutionary speed, I first introduce a

many-locus finite-population model and study the time until a novel function comes to

predominate. Then some mathematical analysis is given to explain the simulation result

and to estimate the maximum crossover rate for the fastest evolution to occur. Although
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this first simulation is executed using the vector representation of a population,

evolutionary procedures operated on that vector are models of GA operations, so that the

derived result showing the crossover’s acceleration effect of evolution is immediately true

of GAs used for a population of bit sequences. After that, I study the number of

functional gene sets maintained against deleterious mutation pressure in an infinite

population. Finally, various implications of the model are discussed, including the

effectiveness and limitation of GAs.
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Evolution of a Novel Function and Optimal Recombination

Here I examine a model for the evolution of a single novel function and study the

optimal crossover rate that achieves the fastest evolution. The evolutionary speed is

measured by the average number of generations until the advantageous combination of

genes dominates the population which is called domination time, . (Here the term

‘domination’ does not mean that one chromosome reaches 100%. The precise definition

of domination will be given later). Note that in the finite population, first several

advantageous haplotypes might disappear by chance and the final domination of the

advantageous haplotype is generally occasioned not by its first appearance but by the

later one. Accordingly, as a very rough estimation, is the product of the average

number of generations until the occurrence of a haplotype (combination of genes) having

an advantageous combination of genes (creation time, ) and the average number of

occurrences of the advantageous haplotype from its absence until its fixation in the

population (destruction number, );

. (1.1)

Although both and are average values of random variables and (the average

value of the product of those random variables) cannot be precisely formulated by the

product of the average values, we here considered creation and destruction to be

independent processes and neglected the correlation term between them. Moreover, we

neglected the time needed for accumulation of the population diversity on the assumption

that the initial distribution is completely random, and also neglected the time needed for

the advantageous haplotype to spread through the population because its relative

advantage over the others is assumed to be significantly large. Since crossover is the

randomization process in the nonfunctional region shown in Fig. 1.1, decreases and

increases with the crossover rate. This makes minimum at an intermediate

crossover rate, which is estimated in the finite population.

Basic assumptions of the model are as follows:

¶Individuals are haploid and its genome is represented by a string of a large number of

binary (0-1) bits.

¶Among all sets of genes, a single sequence, denoted by , has fitness by far

larger than the others, and all the other sequences are the same in fitness.
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¶Mating pair is randomly chosen from the sufficiently large population so that the

correlation between the bit distributions of the mating pair is negligible.

Owing to this second assumption, creation time is a very important random variable,

which eventually determines evolutionary performance.

Let

population size;

number of loci in which the state is “1”;

frequency of the population of sets of genes with of bit ’s;

total number of bits in the set of genes, or

number of genes necessary to realize a novel advantageous function

(we hereafter call this ‘functional order’);

selection coefficient of the advantageous set of genes ( ) relative to the

others ( ) ( can be large);

mutation rate (probability of bit flipping) per locus (bit position) per

generation;

probability of the crossover point (chiasma) to occur between neighboring

binary loci;

ratio of the fraction of population which participate in the genetic

recombination.

Two parameters, and , specify crossover rate. When , the whole population is

divided into two parts, the recombining subpopulation and the non-recombining

subpopulation. At this time the random mating assumption, which does not literally hold

true, is considered to be approximately valid in that participants of the genetic

recombination is randomly chosen from the population at each generation. The state of a

population is described by frequency vector . The next generation vector

is calculated by the recursion formulas for selection, mutation, crossover, and

random drift operation as follows:

, (1.2)

, (1.3)

T c

N =

i =

xi = i 1

I =

s = i I=

i I< s

u =

c =

r =

c r r 1<

x0 x1 … xI, , ,( )

xi( )

xi

sel.
xi 1 sδIi+( ) 1 sxI+( )⁄( )→

xi

mut.
x jM ji

j 0=

I

∑→
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, (1.4)

(number of choices of th state in times roulettes), (1.5)

where is the mutation rate from to , and is the transition probability from

to after recombining with . (Detailed expressions of and are given in

Appendix A and Appendix B respectively.) The probability for th state to be chosen at

roulette in Eq. (1.5) is determined to be proportional to . The initial state is assumed to

be a binomial distribution , indicating that an allele at each locus is

chosen randomly (fifty-fifty) from binary bits in an infinite population. Starting from this

initial state, vector is calculated recursively with above four formulas until the

frequency of the advantageous set of genes exceeds . (The reason for the choice of

the threshold value of will be discussed later.) Though takes small positive values

after operation with Eqs. (1.3) and (1.4), those values are by far smaller than so

that becomes zero after operation with Eq. (1.5) in almost all generations. The term

“occurrence” of the advantageous set of genes which was used at defining and

means that jumps up to or more, after operation with Eq. (1.5). Computer

simulations are run on SPARC station 10 model 51 (50MHz). For each set of parameters,

numerical trials are executed ten times and the mean value of is calculated.

Figs. 1.2 and 1.4 show the results about -dependence at (all individuals

participate in crossover) and Figs. 1.3 and 1.5 show the results about -dependence at

(the occurrence rate of crossover points is high enough to make each locus

independent of the others). The population size is taken to be 10000 through all

results. These four figures show that when mutation rate is low, domination time is

the shortest at certain intermediate values of and , and larger or smaller than this

optimal value makes larger. This implies that evolution is the fastest for an

intermediate recombination rate. When is high, on the other hand, is small enough

even at or (Figs. 1.2 and 1.3). Therefore optimum value of or is

minimum if the mutation rate is sufficiently high, implying that the evolution of a novel

function is fastest if there is no recombination.

Figs. 1.4 and 1.5 show the results about -dependence. Note that in both figures

domination time grows geometrically with functional order . (It took about one

xi

cross.
1 r–( )xi r x jxkC jki
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month on SPARC station 10 to make Figs. 1.4(a) and 1.5(a) for .) The upper

limit of above which becomes extremely large decrease with (Fig 1.4), but the

upper limit of is independent of (Fig 1.5).

Analysis lumping neutral sets of genes:

The above simulation result can be more clearly understood by the following

argument in which neutral sets of genes are lumped together according to the number of

1’s. Let be the frequency of the advantageous set of genes. The recursion relations for

under selection, mutation, and crossover are:

, (1.6)

, (1.7)

, (1.8)

where is the frequency of allele ’s at each locus and is the probability that an

advantageous set of genes is present after crossover between an advantageous set of

genes and a neutral set of genes. Eqs. (1.7) or (1.8) hold true around the stationary

distribution for mutation or crossover which we assumed in the derivation of those

equations respectively (see Appendix C).

is a function sensitive to , and increases abruptly during the spreading

process of the advantageous set of genes. We here, however, are interested in the state of

the population before or immediately after occurrences of advantageous sets of genes so

that we give the expression around the random population denoted by ;

. (1.9)

For the derivation of this equation see Appendix D, where we assumed that is large

and that 0-1 distribution is independently determined by at each locus. From

this equation, we can obtain two approximate equations;

if is very small ( ), (1.10)

and

I 24=

c T d I

r I

xI

xI

xI

sel.
1 s+( )xI( ) 1 sxI+( )⁄→
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xI Iu xI

1
2
---⎝ ⎠

⎛ ⎞ I
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1 qI–
-------------- xI qI–( )–→
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1 2c– 9c2+
----------------------------------+⎝ ⎠

⎛ ⎞ 3
4
--- 1 c–( ) 1

4
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if is maximum ( ). (1.11)

See Appendix D for the derivation of Eq. (1.10).

According to Eqs. (1.6)~(1.8), selection increases , but mutation and crossover

increase or decrease depending upon whether is smaller or larger than threshold

values. Threshold values are in Eq. (1.7) and in Eq. (1.8). An increase of

below these threshold values decreases creation time and makes smaller in lower

mutation or crossover rates, and a decrease of above these values increases destruction

number and makes larger in higher mutation or crossover rates. I consider these

two situations subsequently.

(i) Creation time: From Eqs. (1.7) and (1.8), we can see that around the random

distribution mutation increases from zero to , and crossover increases

from zero to . Here was substituted because on the

present assumption, bit 0 and bit 1 are evenly distributed in the absence of the

advantageous set of genes. The sum of these terms is

, (1.12)

which is roughly the value of after the transition by Eqs. (1.3) and (1.4). Although

this term is small, it is very important as it causes the creation of novel advantageous

sets of genes after operation with Eq. (1.5). We can get the theoretical formula of the

creation time , noting that the expected creation time is the reciprocal of the creation

probability that is given by Eq. (1.12) divided by ;

. (1.13)

Substituting Eqs. (1.10) or (1.11) into Eq. (1.13), we can get at as a

function of low or at as a function of respectively. These dependences

are illustrated in Figs. 1.2~1.5 which show that agrees qualitatively well with the

dependence of for lower or . Although is proportional to and causes very

large values of at large (Figs. 1.4(a) and 1.5(a)), genetic recombination which

randomizes nucleotides quickens the appearance of an advantageous set of genes and

reduces considerably at low .

(ii) Destruction number: From Eqs. (1.7) and (1.8), the destruction by mutation and
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that by crossover are and , respectively. By

substituting for in these terms, we can see the difference between mutation

and crossover as to destruction; when , the former is positive but the latter is zero.

(Here we extended Eqs. (1.7) and (1.8) which accurately hold true only around stationary

distribution of each process.) This implies that mutation destroys the advantageous set of

genes even when it is fixed in the population but crossover does not destroy the

advantageous set of genes once it has been fixed. To create a new advantageous set of

genes without destroying old functional sets of genes is possible by crossover, but not by

mutation.

In the present simulation, the relative fitness advantage of the functional gene set is

assumed to be so large that advantageous sequences which could escape from the initial

danger of extinction can almost always dominate the population. The created

advantageous set of genes is most easily eliminated immediately after its occurrence so

that the destruction number is crucially dependent upon whether or not selection can

overcome the destruction by mutation and crossover at and . This

state hardly differs from the stationary state of mutation and crossover and we can use

Eqs. (1.7) and (1.8) for analysis. Assigning in Eq. (1.8) and multiplying Eqs.

(1.6), (1.7), and (1.8) with approximation , we obtain the condition for

the spread of the advantageous set of genes;

. (1.14)

Substituting in Eq. (1.14) by Eq. (1.9) gives the condition for the spread,

which is illustrated in Fig. 1.6 for different values of and . For the two special cases

of or , we substitute Eqs. (1.10) or (1.11) for in Eq. (1.14)

and get the following spread conditions;

if and , (1.15)

and

if . (1.16)

Approximation was used in derivation of Eq. (1.16). These conditions agree

with the values of or above which becomes extremely large in Figs. 1.2~1.5.
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Even if advantageous sets of genes are created by mutation or crossover, if its fitness

is not so large as to satisfy above inequalities, the destruction number becomes very

large, which brings about a very large value of .

(iii) Upper limit of : Because mutation destroys the sets of genes that have already

spread through the population, the occupation by the advantageous set of genes cannot

be complete, namely, cannot reach 1. With approximation , we can give the

upper limit of as follows. When and , neutral sets of genes have so many

bit 1’s that the probability that an advantageous set of genes remains intact after

crossover with a neutral set of genes is nearly equal to one (namely, );

therefore is kept unchanged through Eq. (1.8). So, multiplying Eqs. (1.6) and (1.7)

and requiring that becomes stationary under the approximation , we can

get

. (1.17)

This says that, for example, when , , and , cannot exceed .

Even if the advantageous set of genes is created and spread, its frequency is limited by

the value of Eq. (1.17). This is the reason why the threshold value of domination was

chosen to be in this simulation.
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Number of Functional Gene Sets Maintained against Mutation

Here I study the number of functional sets of genes maintained against the pressure of

recurrent deleterious mutations. Basic assumptions of the model are as follows:

¶All functional sets of genes in the genome are ordered and numbered (indicated by

). A functional set of genes (e.g. ) is effective only when all earlier

functional sets (numbered ) exist in the same genome, and is neutral

(nonfunctional) otherwise.

¶Fitness grows in geometric progression with the number of functional sets of genes.

¶Crossover is neglected.

¶Population size is infinitely large.

Crossover was neglected because it no longer breaks down the sets of genes which have

already been fixed in the population and hence has no direct effect on the number of

stable sets of genes. The maximum number of advantageous sets of genes which can

exist stably in the genome is estimated by the simulation based upon standard population

genetics.

I use the following notations:

frequency in the population of individuals with functional sets of genes

numbered but not functional set of genes numbered ;

fitness of individual which has functional sets of genes

numbered but not ;

frequency threshold determining domination (namely, some gene set is

regarded as dominating the population when its frequency exceeds this

value);

probability of destruction of the functional gene set by mutation per gene

set per generation;

probability of creation of the functional gene set by mutation per generation.

Here we consider assuming that in number of sequences functional sets of genes

are far fewer than the neutral ones. Population is described by the frequency vector

.

Generally speaking, frequency may include individuals which have some of the

functional gene sets numbered , but gene set number is not

j 1 2 3 …, , ,= j

1 2 … j 1–, , ,

y j =

1 2 … j, , , j 1+

w j 1 s+( ) j= =

1 2 … j, , , j 1+

f t =

pd =

pc =

pc pd«

y0 y1 y2 …, , ,( )

y j
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functional. Those cases are eliminated quickly because recurrent mutation pressure

makes those later gene sets nonfunctional. I therefore assume that individuals of have

none of those later gene sets. Then , which is defined as the frequency in the

population of individuals with functional set of genes numbered , is given by

,

and satisfies

.

I calculate , defined by

,

in the stationary vector in the simulation. With this definition, means the maximum

number of functional sets of genes which can be occupied by the fraction of population

whose ratio exceeds , or in other words the number of functional sets of genes which

can dominate the population.

The transformations of through selection and mutation are formulated as

follows:

, (1.18)

. (1.19)

The initial vector is representing a population of individuals with no

functional set of genes.

Fig. 1.7(a) shows the result of simulations under frequency threshold . As far

as is satisfied, is insensitive to and changes only with and . As is

evident from Fig. 1.7(a), the lower is and the larger is, the larger is. However for

larger , especially when , becomes saturated and insensitive to . These

saturated values of are plotted with marked points in Fig. 1.7(b), which shows

decreases roughly in inverse proportion to .

This result is explained as follows. According to Eq. (1.17), the parameters , , and

must satisfy the following condition for domination;

,
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where was substituted. Though this inequality is derived for the single gene set

model, this can be used for the multiple gene set model by substituting with .

Thus the condition for functional gene sets to be able to predominate is given by

, (1.20)

or when ,

. (1.21)

as a function of given by Eq. (1.21) is also illustrated in Fig. 1.7(b) with a solid

line, which agrees well with marked points by simulation.

According to Eqs. (1.20) or (1.21), no matter how advantageous the functional gene

set may be, , the maximum number of those gene sets which can dominate the

population decreases in inverse proportion to (the mutation rate). This relation between

and is the same as what Eigen et al. (1981) mathematically derived with an “error

catastrophe” argument about genetic information. It is concluded from this simulation

that the lower the mutation rate is, the more functional sets of genes can be

maintained. In other words, must be low in order for many functional sets of genes to

be maintained.

Iu pd∼
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Discussion

From the study of the evolutionary speed, i.e., the mean number of

generations until occurrence and domination of the advantageous set of

genes, it was concluded that when the mutation rate is very low, fairly

frequent crossover can greatly reduce the time until the domination of a

functional set of genes, but when the mutation rate is high, crossover does

not enhance the rate of evolution. On the other hand, it was also shown

from the second simulation that a high mutation rate causes problems. The

mutation rate needs to be low to keep many functional sets of genes stable

in the genome. Thus it has become evident that in the evolutionary model

wherein the unit of fixation is not one gene but many genes with a

combined function, crossover can be a process promoting faster evolution.

We now discuss some implications of these results.

Evolutionary Maintenance of Sexual Reproduction: As is shown by the second

simulation, once a species has stored many functional genes in the genome, the mutation

rate must be low to preserve them. In higher organisms this requirement is met by a very

low error rate in DNA replication, made possible by molecular machinery for

proof-reading. Consequently in those species, the mutation rate is kept very low

(typically about per locus per generation), and evolution without crossover is very

slow in creating a novel function. In Figs. 1.2~1.5, is very large for low and (or

). Hence, in order that such a species might create a novel advantageous function (by

accumulating a new advantageous set of genes) and evolve, crossover is indispensible.

in Figs. 1.2~1.5 comes to decrease quickly as or increases. The rate of this

acceleration is known from the ratio of without crossover to with crossover. When

, this ratio is written using Eq. (1.10) and (1.13) approximately as follows;

. (1.22)

This formula can be very large when the mutation rate is kept very low as is typical for

higher organisms. Higher organisms which had stored many functional genes in their

genome could have evolved quickly only through this acceleration effect by crossover.

This gives a group selection explanation for why sexual reproduction has been
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T d u c
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maintained in higher organisms but not in viruses or bacteria. When thinking of the unit

of genetic fixation as a set of genes which has a combined function, the destruction

process by crossover is overcome by the large fitness of advantageous sets of genes, and

crossover can be a beneficial process for fast evolution.

Comparison with Previous Models: The present argument explaining the evolutionary

advantage of sexual reproduction is due to the capability of genetic recombination to

shorten the waiting time until the occurrence of an individual having an advantageous

combination of genes (i.e., the creation time of a ‘hopeful monster’). This creation

process is enhanced by disruption of the random linkage disequilibrium referred to as the

Hill-Robertson effect, so that the theory presented in this chapter might safely be called

the Fisher-Muller theory that has been extended to the many-locus model. In this

subsection I note the fitness landscape assumed in the many-locus models and argue the

difference between the previous models and the present one.

Because the conventional Fisher-Muller theory is essentially based upon the

recombination’s ability to disrupt linkage between advantageous mutant alleles to create

a double mutant chromosome, many authors who had examined the Fisher-Muller effect

in the many-locus models had adopted the multiplicative fitness scheme, i.e., the scheme

in which fitness of a whole chromosome was given by , where is the

selection coefficient of a single advantageous mutant allele and is the number of

advantageous alleles included in the chromosome (Crow and Kimura, 1965;

Maynard-Smith, 1971; Felsenstein, 1974; Felsenstein and Yokoyama, 1976). In the

individual selection paradigm, many other different schemes have been studied.

Maynard-Smith (1980, 1988) introduced the gaussian fitness scheme between major loci,

and found that directional selection favors recombination whereas stabilizing selection or

frequent changes in the direction of selection diminishes recombination. Bergman and

Feldman (1990) examined the similar model not only in gaussian but also in sigmoidal

or exponential fitness scheme. Bergman and Feldman (1992) took a more general fitness

scheme which is constituted by sine curves of different frequencies. Zhivotovsky et al.

(1994) calculated using some weak additive-by-additive epistatic selection. Otto et al.

(1994), whose study is not an individual selection approach, assumed a specific

continuous fitness function on twenty major loci and examined the condition under

which recombination is an advantageous process.

w 1 s+( )i= s

i
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All these fitness functions are a continuous or quasi-continuous function of the

number of advantageous mutant alleles in the chromosome, . This is because these

previous arguments are essentially based upon the notion that evolution proceeded with

substitutions by single advantageous (or deleterious) mutant alleles or that a single

mutant allele causes a phenotype change and more or less changes the fitness value of

the whole chromosome. In the basic evolutionary picture of the present model, however,

adaptive evolution is considered to proceed with occurrences and fixations of not single

mutant genes but the advantageous combination of many genes. Since the single mutant

alleles are assumed to be neutral in fitness, the fitness function of a whole chromosome

is a strikingly discontinuous function of , being flat except its maximum value at .

The present argument, that asserts the recombination’s ability to disrupt linkage to create

an advantageous combination of many genes, is different from the conventional

Fisher-Muller theory that is essentially based upon the recombination’s ability to create

an advantageous combination of two genes.

The present model considers evolution to be a process going forward with

accumulation of blocks, i.e., the advantageous (coadapted) sets of genes. For evolutionary

genetics, this begs the question of most difficulty, namely, what selective regimes favor

formation of such blocks in the first place. It is true the present argument cannot answer

all the important problems of evolution, and yet we can think of many examples in living

organisms which might correspond to such a block; a set of enzymes constituting a

metabolic cycle, a set of structural proteins composing a novel advantageous organ, a set

of genes causing some advantageous behavior, morphology, mimicry, and so on. A single

component gene constituting such a coadapted gene set cannot be advantageous by itself,

but can execute advantageous function when all component genes are present in the same

individual.

Evolutionary Discontinuity: According to Figs. 1.2~1.5, recombination shortens or

lengthens the time until the domination of an advantageous set of genes depending upon

whether the spread condition holds or not. When , this condition is given by Eq.

(1.15), which can be transformed approximately as follows;

. (1.23)

This equation states that recombination at a constant rate of chiasma probability allows

i
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the spread of a strongly advantageous set of genes only, whose ratio of fitness as

compared to the number of component genes ( ) is large. In contrast recombination

eliminates mildly advantageous set of genes whose is small. Therefore, once

recombination is programmed at a constant rate within the genetic structure of

organisms, it functions to select only the gene combinations performing strongly

advantageous function. When considering the evolution of the function achieved by a

large number of genes, recombination makes evolution a discontinuous process.

According to the paleontologic studies examining fossils, the morphology of species

seems to have changed discontinuously at intervals of millions of years, and between

those drastic changes, morphology seems to stay unchanged (Williamson, 1981;

Malmgren et al., 1983). The drastic adaptive evolution coming from the creation of very

advantageous combinations of genes might make a new advantageous organ like an eye

and bring about the dramatic morphological change of species. This might explain the

observed evolutionary discontinuity.

Genetic Algorithms: As described before, the basic evolutionary model assumed in

this chapter is given from the study of GAs driving MUNCs (Suzuki, 1996). In this

subsection, I discuss the performance and the implementation of GAs in the light of the

derived results. The basic assumption of GAs, the “building block hypothesis” (Holland,

1992), says that an optimum solution of the problem is created through combinations of

good subsolutions by the aid of crossover. Such good subsolutions (disconnected bit

sequences) are called “schemas” and are considered to spread with “implicit parallelism”

(Goldberg, 1989). In the biological context, on the other hand, the many-locus

Fisher-Muller theory assuming the multiplicative fitness scheme is based upon the notion

that recombination combines advantageous mutations which arose simultaneously and

separately in different individuals into a single individual. Both theories insist on the

parallel spread of good (advantageous) sub-solutions, hence make the same point about

evolutionary acceleration.

This implicit parallelism was first doubted by Mitchell et al. (1991). They assumed

the discontinuous fitness function similar to the present one (they called it ‘the royal road

function’), studied the GA performance, and found that hitchhiking (they called this

‘premature convergence’; see for biological citations Maynard-Smith and Haigh, 1974;

Kaplan et al., 1989) drops the GA performance. Although this result made them cast

s I⁄

s I⁄
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doubt on the implicit parallelism, they had a notion that crossover is useful in combining

good schemas so that they only studied the GA performance taking notice of the time

necessary for lower-order schemas to combine to form the higher-order schema and did

not examined the crossover’s influence on the creation time of those schemas.

If the evolutionary acceleration by crossover is due to the mechanism shown in this

chapter, however, crossover is useful not because it can spread good schemas parallel at

the same time and combine them, but because it can randomize and create a new good

schema while preserving old good schemas that are completely held in common within a

population. This randomization process is nothing more than that by mutation, hence

when only one good schema is searched for in one sequence of bit string, mutation

suffices. Although building block hypothesis is right if a schema exactly corresponds to a

set of genes with a novel function treated here, the present evolutionary picture says that

such component schemas occurs and dominates the population not in parallel but serially

(one by one) by the aid of crossover which can selectively randomize the sequences.

These roles and limitations of crossover might be the key point in our understanding

of GAs. Though in current researches GAs are applied to various optimization problems

with various fitness functions, when we focus the application of GAs on optimization of

bit sequences with a discontinuous fitness function as was treated here, we can

implement genetic parameters of GAs according to the following prescriptions:

¶When the mutation rate is sufficiently high, crossover cannot accelerate

optimization.

¶When the mutation rate is low, the crossover rate ( and ) has an intermediate

optimum value which is bounded by Eq. (1.14) or Fig. 1.6.

¶When crossover is operated with the “few-points major-participants” (FPAP) (

and ) mode, fitness coefficient of the optimum solution normalized by the

functional order ( ) needs to be sufficiently larger than the others so that r.h.s. of

Eq. (1.23) might be large.

¶When crossover is operated with the “many-points minor-participants” (MPIP)

( and ) mode, fitness of the optimum solution needs to be sufficiently

larger than the others so that r.h.s. of Eq. (1.16) might be large.

As was described above, the optimal rate of crossover is simpler for than for

u

u c r
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because can be determined regardless of the functional order . Therefore for such an

engineering tool as GAs, the MPIP mode of crossover is easier to use though it is less

likely for real organisms. The above criteria make GAs a profitable optimization strategy

of a bit string with a discontinuous fitness function as was described in this chapter.

Finally I finish this discussion by pointing out the negative aspect of GAs. GAs are

never a dreamy method which can optimize a bit string with large functional order .

According to Figs. 1.4 and 1.5, domination time grows geometrically with an

increase of functional order . This comes from the divergence of creation time

which is proportional to the combinational number as was shown in Eq. (1.13). It is

true crossover considerably quickens the appearance of the advantageous set of genes by

the rate given in Eq. (1.22), but the domination time minimized by crossover still grows

geometrically with . GAs, a successful strategy as they are, cannot avoid the problem of

combinational explosion occurring in the optimization of a long bit sequence.
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Appendix A: CALCULATION OF IN EQ. (1.3)

is the transition probability from a gene set with of bit 1’s to a gene set with

of bit 1’s by mutation. When we focus on the situation in which of bit 1’s and of bit

1’s have pairs of same positional bit 1’s, the probability of such a transition’s

occurring is given by

(the probability that of bit 1’s are preserved and of bit 1’s are flipped by

mutation)fl(the probability that of bit 1’s are preserved and of

bit 1’s are flipped by mutation)

.

is given by the summation of this term about .

. (A1)

The range of the summation was determined so that , , and

are satisfied.

Though accurately is given by Eq. (A1), we used simpler formula described

below in the simulation. If , matrix is approximately given by

defined by

. (A2)

Using a large integer that satisfies , we calculated for higher by

. (A3)
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Appendix B: CALCULATION OF IN EQ. (1.4)

Tensor is calculated with the recursion formula. Crossover between a bit string

pair is the operation proceeded with the following three steps:

Step 1: Read the -th bits of original strings of and and put them in the

-th cells for the operation.

Step 2: Make chiasma occur between the -th cells and the -th cells with the

occurrence probability .

Step 3: Exchange the bit pair of bits in the -th cells if -th pair had been

exchanged and chiasma does not occur or -th pair had not been exchanged and chiasma

occurs.

In Step 1, the probability of the -th bit of original string being is given by

, (B1)

where is the number of bit ’s in earlier bits in the original string .

Let be the probability that exchange of the -th bit pair is in the

state of ( means exchanged and means unexchanged), the number of

bit ’s in earlier bits in the original string is , the number of bit ’s in earlier

bits in the original string is , and the number of bit ’s in earlier bits of the -side

string is after crossover.

Since is the number of bits in -length string, . And since is the

number of bit ’s chosen from bits of in the original string, .

Combining these two conditions and reasoning similarly for and , the intervals of

parameters wherein can be positive are specified as follows;

,

,

and

.

satisfies the following recursion formula;

,

(B2)
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where operation of is the summation of and , that of is the

summation of and , that of is the summation of and

, and that of is the summation of and . Considering Step

1~3, transition probability is given by

,

where

if ,

if ;

if ,

if ;

if ,

if ;

if and and

or and and

or and and

or and and ,

otherwise.

The initial condition is

if ,

otherwise. (B3)

We can calculate one by one increasing , until comes to be equal to

. , the transition probability from to by combining with , is then given by

.
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Appendix C: DERIVATION OF EQS. (1.7) AND (1.8)

Let

probability of destruction of the advantageous gene set by

mutation per gene set per generation;

probability of creation of the advantageous gene set from the neutral gene

set by mutation per generation.

Though destruction probability can be specified by a constant depending upon ,

creation probability is strictly a variable which changes with the number of bit 1’s in

the neutral gene set. However, we here lump all neutral gene sets and represent the

creation probability from those gene sets by one effective parameter . Therefore is

a parameter that changes with the bit distribution in the population. Using and ,

through mutation is written as follows;

. (C1)

We here focus on deriving the expression of around the stationary distribution

for mutation. Since mutation is an equal process about exchange between bit 0 and bit 1,

the stationary state for mutation is a binomial distribution in which bit 0 and bit 1 are

equally distributed at each locus. Requiring at this state (namely,

) and approximating , we get the relation . The

transition formula through mutation around the stationary state is given with this relation

and assumption (which gives the approximation ) as

follows;

. (C2)

Thus Eq. (1.7) was derived.

For crossover, the following definition is necessary:

probability that the advantageous set of genes is created after crossover

in the pair of neutral sets of genes.
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Like defined above, and are effective parameters and varies depending

upon the bit distribution in the population. Using and , through crossover

is written as follows:

. (C3)

We also focus on deriving the expression of around the stationary distribution

for crossover. Since crossover is a process making a bit distribution at each locus

independent of the others, the stationary state for crossover is a binomial distribution in

which bit 1’s are distributed at each locus with frequency independently. Requiring

at this state (namely ), we get the relation

. The transition formula through crossover around the

stationary state is given with this relation as follows;

(C4)

Thus Eq. (1.8) was derived.
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1 qI–
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Appendix D: DERIVATION OF EQS. (1.9) AND (1.10)

With the comparison between Eq. (1.4) and (C3), the accurate equation defining

is

.

In this appendix we focus on the state before or immediately after the occurrence of an

individual with the advantageous combination of genes, hence this equation can be

rewritten with approximation as follows;

, (D1)

where is the probability that an advantageous gene set is preserved

after crossover with a neutral gene set and is the probability that a

neutral gene set is transferred to an advantageous gene set after crossover with an

advantageous gene set.

In order to calculate and , we assume that the 0-1 distribution of neutral

gene sets is specified only by the parameter at each locus independently. With this

assumption, we can get the recursion formula by considering Step 1~3 as was described

in Appendix B. Let be the probability that exchange of the -th bit pair is in the

state of ( means exchanged and means unexchanged) and all earlier

bits in the string on the ‘advantageous after crossover’ side are after crossover.

satisfies

, (D2)

where

if ,

if ;

if ,

if .

(or ) is the probability that the -th bit of original string on the ‘advantageous

after crossover’ side (or the other side) is 1 respectively, and given by

and for ,
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or

and for .

This simultaneous recurrence equation can be solved under the initial condition,

and . (D3)

With the solution, we can get the probability that all bits on the ‘advantageous after

crossover’ side are 1 after crossover as follows;

, (D4)

where operation of is the summation of expressions using or within formula

respectively. are solutions of the characteristic equation and given by

(respectively).

Therefore, is given as follows;

, (D5)

where

(respectively).

Now we substitute to study around the random population, then

, (D6)

where

(respectively).

In the domain of , and move within and

respectively; hence, if is so large that , can be neglected

and Eq. (1.9) is derived.

Eq. (1.9) can be transformed with approximation as follows;
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,

which gives Eq. (1.10).
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Figure 1.2
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Figure 1.4
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Figure 1.5

T d

0

2000

4000

6000

8000

10000

0

200

400

600

100000

200000

300000

0

(a)

(b)

(c)

12000

0 0.1 0.2 0.3 0.4 0.5 r



Page 40 of 105

Figure 1.6
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Figure Legend

Fig. 1.1. General evolutionary picture. (a) The genetic diversity, the number of

functional genes, and mean population fitness as a function of time. (b) Genome sketch

of the population at each stage of evolution. Shading represents the region wherein genes

(or nucleotides) are diverse among individuals.

Fig. 1.2. Mean number of generations required for the advantageous set of genes to

dominate the population (domination time ) as a function of the occurrence

probability of crossover points under the condition of all individuals participating in

crossover ( ). The values of the other parameters are , ,

(a) or (b) , and ( ), ( ), or ( ). Here

and in the subsequent figures in Chapter 1 (Figs. 1.3~1.5), marked points and line

segments connecting between them are the results of simulation, curved lines in lower

or are given by Eqs. (1.10)~(1.13), and vertical lines in higher or are

maximum values given by Eq. (1.15) or (1.16).

Fig. 1.3. Domination time as a function of the population ratio of crossover under

the condition of high occurrence probability of crossover points ( ). The values of

the other parameters are , , (a) or (b) , and

( ), ( ), or ( ).

Fig. 1.4. Domination time as a function of under the condition of . The

values of the other parameters are , , , and (a) ,

(b) , or (c) .

Fig. 1.5. Domination time as a function of under the condition of . The

values of the other parameters are , , , and (a) ,
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(b) , or (c) .

Fig. 1.6. Upper limitations of general and given by Eqs. (1.9) and (1.14), with

, (a) or (b) , and different .

FIG. 1.7. (a) The number of dominant functional sets of genes as a function of fitness

coefficient under different destruction probabilities . The plotted values are the

results of simulation assuming . (b) The maximum value of at large , as a

function of . Marked points are the simulation results and the solid line are the

hyperbolic curve given by Eq. (1.21).
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CHAPTER 2

Crossover Accelerates Evolution in GAs with a Babel-like
Fitness Landscape: Mathematical Analyses

This chapter was done in collaboration with Prof. Yoh Iwasa, Kyushu University.

The paper is to be published in Evolutionary Computation Journal after minor

revision.



Page 45 of 105

Introduction

Recently in the engineering field, genetic algorithms (GAs) have attracted a great deal

of attention as optimization methods (Holland, 1992; Goldberg, 1989; Mitchell, Forrest,

& Holland, 1991; Forrest, 1993; Forrest & Mitchell, 1993, 1994; Otto, Feldman, &

Christiansen, 1994; Vose & Wright, 1995; Mitchell, 1996). In GAs, each design of an

object is typically coded in a gene-like bit sequence and a population of those sequences

is prepared in the computer memory. The optimal (or a close to optimal) design is

searched for by evolutionary operations including reproduction, natural selection,

mutation, and genetic recombination. Since GAs without genetic recombination, or

crossover, are nothing more than a parallel hill-climbing method, crossover is a key

operation to achieve the optimal design in the shortest number of trials. In previous

studies, however, the effectiveness of crossover in GAs has met with varying degrees of

success, depending upon the problem domain and the shape of fitness landscape. We are

still far from achieving a complete understanding of the role of crossover in GAs, which

is important not only for an engineering purpose but also from a biological point of view.

Recently, Suzuki (1996, 1997) proposed an evolutionary programming methodology,

Multiple von Neumann computers with machine language architecture (MUNCs).

MUNCs evolve and create a program that solves a problem prepared in an environmental

database. Suzuki used GAs for the evolution of MUNCs and found that crossover

contributed to the acceleration. A key point causing this result was the fitness function of

bit sequences optimized by GAs. In MUNCs, an advantageous function is achieved by a

particular combination of machine instructions, and without such sequence, no functional

advantage is conferred. A particular combination of instructions corresponds to a schema

with fairly large order; hence in MUNCs, bit sequences optimized by GAs have a highly

discontinuous fitness function.

Up to the present, a discontinuous fitness function has studied by many GA

researchers, exemplified by the royal road function (Mitchell et al., 1992; Jones, 1994;

Wu & Lindsay, 1996; Nimwegen, Crutchfield, & Mitchell, 1996, 1997). This function

takes discrete fitness values of the bit sequence, depending upon the number of ‘blocks’

(schemata) that is included in a haplotype. Recent work by Nimwegen et al. (1996,

1997) investigated the dynamics of GAs in this function theoretically and established a
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method to analyze GAs in a multiple block fitness function.

However, Nimwegen et al., inferred the role of crossover based only on the numerical

experiment, but did not make any quantitative estimate of the effectiveness of crossover.

This was done in Chapter 1 for the case with a much simpler fitness landscape. In order

to study the rate of evolution of a single advantageous function, Suzuki assumed a fitness

function with a single advantageous schema and examined the time until domination of

the advantageous schema by the simulation using the frequency vector representation of

the population.

We extend this study by assuming the same fitness function (we called this a

Babel-like fitness function) and examined the GA performance in both experimental and

theoretical ways. A preliminary result was reported in Suzuki & Iwasa (1997). In the

simulation, we used simple GAs (Goldberg, 1989) directly operating on the population of

bit sequences. Besides the theoretical study, we also estimated the time until domination

as a function of several genetic parameters. These results showed that crossover with a

mildly high rate can greatly enhance the evolution if genetic parameters are adjusted to

appropriate values.

Although the theoretical analysis by Suzuki & Iwasa (1997) were more accurate than

the analysis in Chapter 1, their analyses were still unsatisfactory in the following points.

First, their theoretical estimation of the time until creation of the advantageous schema

was based upon the simplifying assumption that the diversity of a population is so large

that the bit distribution does not depend upon the history of previous distribution of bit

sequences. Second, since they evaluated the final formula by the aid of the Monte Carlo

method, they could not estimate accurate values of the acceleration rate when the order

of an advantageous schema is large.

The aim of this chapter is to remedy these drawbacks and to present a more exact

estimation of the evolutionary rate by GAs. As in previous works, we focus on a single

advantageous function and assume a Babel-like fitness landscape (among a large number

of possible bit configurations, a single sequence is much more advantageous than the

others). The estimation of the evolutionary rate is made in three different ways. First, we

develop a mathematical estimation method. The second one, which was developed in

Chapter 1, is an analysis using recurrence formulas for a frequency vector expressing the

composition of the population. The third one is a straightforward computer simulation
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using simple GAs.

The organization of the chapter is as follows. In the next section, a basic fitness

model is presented and the evolutionary process under this function is described. Then

we explain the three methods one by one; first we present the analytical formulas for two

extreme cases, next we explain the simulation method using vector representation, and

then we describe the computer simulation method with GAs. Finally we compare results

of all three methods. We also discuss the mechanism of GAs and roles of crossover,

together with the implementation criteria for several genetic parameters.
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The Basic Fitness Model and the Evolutionary Picture

Here we present a basic fitness model for the evolution of a single advantageous

function. The assumptions of the model are as follows.

¶Individuals are haploid. The chromosome of each individual is represented by a string

of a number of binary (0-1) loci.

¶Among all sequences, a single sequence, denoted by , has fitness by far

larger than the others, and all the other sequences have the same fitness.

¶In the initial population, all individuals have the same haplotype which was chosen

randomly.

¶Mating pair is randomly chosen in the population which is sufficiently large.

Evolution under this fitness function proceeds with the following steps.

Step (i) [Diversification]: Mutation stores diversity until the population reaches an

equilibrium state determined as the balance between mutation and genetic drift.

Step (ii) [Creation]: Mutation and crossover search for and create an advantageous

sequence. Due to the finiteness of the population size, a newly created advanta-

geous sequence may be lost by chance, and the cycles of creation and extinction

of the advantageous sequence are repeated several times until the advantageous

sequence begins to spread through the population.

Step (iii) [Spread]: The advantageous sequence spreads and dominates the population.

Here the term ‘domination’ does not mean that one chromosome completely occupies the

whole population but it implies that the frequency exceeds of the whole

population.

We designate the average number of generations from the initial setting until some

domination criterion is satisfied the domination time . Based on the above

evolutionary process, is the sum of three parts;

, (2.1)

where

: the diversification time, defined as the average number of generations taken for

the population to store sufficient diversity starting from the initial homogeneous

distribution;

11…1[ ]

50Û

T d

T d

T d T v T cNc T s+ +=

T v
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: the creation time, defined as the average number of generations between an

appearance of the advantageous sequence followed by the extinction of its

descendants and the next appearance in a sufficiently diverse population;

: the creation number, defined as the average number of appearances of the

advantageous sequence from its absence until it begins to spread;

: the spread time, defined as the average number of generations for a novel

advantageous sequence to spread through the population.

Note that is the same as the destruction number defined in Chapter 1. For the

second term, we neglected the correlation between and , or in other words, we

assumed that one appearance of the advantageous sequence does not affect next creation

of the advantageous sequence.

As pointed out in Chapter 1, crossover randomizes diverse regions of the genome and

helps to create novel sequences, and hence decreases and increases with the

crossover rate, which realizes minimum at an intermediate crossover rate. This

dependence was estimated in Chapter 1 with some crude approximations. In Chapter 2,

we estimate more accurately by the use of Eq. (2.1). In addition, we here pay a

particular attention to the evolutionary acceleration effect by crossover. In order to

estimate this effect quantitatively, we define the acceleration rate of crossover as

(2.2)

and evaluate this under various values of genetic parameters. The genetic parameters

used in this chapter are as follows.

: total number of bits in the sequence, or the number of bits necessary to realize a

novel advantageous function (we hereafter call this “epistatic number”);

: population size;

: effective population size;

: selection coefficient of the advantageous sequence relative to the others;

: mutation rate (probability of bit flipping) per locus (bit position) per generation;

: probability of a crossover point (chiasma) occurring per pair of neighboring binary

loci;

: fraction of the sequences which participates in crossover.

T c

Nc

T s

Nc Nd

T c Nc
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Throughout this chapter, the value of is taken to be 1. The crossover rate is specified

by two parameters, and . In the following, we consider two modes of crossover

designated as FPAP-mode (few-points major-participants mode, namely and

) and MPIP-mode (many-points minor-participants mode, namely and

). For MPIP-mode, the population is divided into two parts, the recombining

subpopulation and the non-recombining subpopulation.

s

c r

c 0.5<

r 1= c 0.5=

r 1<
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Mathematical Analyses

Here we describe the mathematical analyses and present the estimation method of the

domination time and the acceleration rate . Let be the frequency of bit 1s at

the i-th locus. We first give the following simplifying assumptions.

¶The 0-1 distribution at the i-th locus is determined only by the frequency parameter

and is independent of the other loci.

¶The spread time is neglected.

Strictly speaking in the simulation model of finite population size, some linkage

disequilibrium (non-zero correlation) automatically develops between loci due to less

than complete recombination. However, as an approximation, we here neglect correlation

between loci and express the state of the population using the -dimensional frequency

vector . The second approximation is acceptable because the

selection coefficient is large enough to make the advantageous sequence, once

escaped from the initial danger of extinction, spread rapidly until its final domination.

In the following, we give the formulas for , , and one by one.

Diversification Time: Diversification is a process promoted by mutation. Although

crossover facilitates creation of novel sequences, the creation process is based upon

currently stored diversity, and crossover itself cannot increase the diversity at each locus.

Therefore, , that is, heterozygosity at each locus at generation t, is determined only

by mutation and random genetic drift, and is given by the following equation.

. (2.3)

In deriving of this equation, approximations and are used (see Kimura

(1983) chap. 8). According to this equation, the value of , which is initially 0,

gradually increases and approaches the value of with relaxation time

. Hence, the diversification time is roughly estimated as

. (2.4)

General Strategies for calculating Creation Time and Creation Number : We

T d Across qi

qi

T s
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present in this subsection a general strategy to evaluate and . According to

population genetics theory (Crow & Kimura, 1970; Ewens, 1979, p.155), after the lapse

of (namely after the population have stored sufficient diversity at a given parameter

condition) and without selection, distribution at each locus reaches an equilibrium state

in which s obey the beta distribution described by

, . (2.5)

This formula states that when , is likely to have some intermediate value around

0.5, but when , allele frequency tends to either near 0 or near 1 even after

has elapsed.

Here we introduce a parameter defined as the total number of bit 1’s for a haplotype

(a bit sequence). represents the distance of a haplotype to the advantageous one, and its

population average value, denoted by , is rewritten as

,

where is an allele value parameter at the i-th locus. Because for a finite population the

frequency vector fluctuates every generation, the value of also fluctuates

satisfying some probability distribution. We express this distribution by and

calculate it using Eq. (2.5) as

. (2.6)

This equilibrium distribution is illustrated in Fig. 2.1 for different values of . According

to this figure, when is large, has a continuous distribution with a single peak,

whereas when is much smaller than one, the value of is discretized and is most

likely to have a value around an integer.

Hence in the following, we formulate and in two extreme cases, large

( ) and small ( ). When , the vector fluctuates so fast that a

population reaches the quasi-equilibrium state (the state of the population before creation

of the advantageous sequence) in a time much shorter than the creation time . We can

calculate in this case the creation rate of the advantageous sequence by using the

weighted average for the quasi-equilibrium state. When , on the other hand, the
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value of strongly depends upon previous values and the waiting time until a

population reaches the quasi-equilibrium state is much larger than . In this case, we

need another approximation method to evaluate and .

Creation Time for large : Since creation of the advantageous sequence results from

randomization processes caused by mutation and crossover, the creation time is

calculated as

(the probability per generation for the advantageous sequence to be created

from absence in the population)

, (2.7)

where and are the probabilities of an arbitrary sequence becoming

advantageous by mutation or by crossover respectively. Symbol denotes the

expected value of a quantity ‘Before Creation’ of the advantageous sequence. See

Appendix E for detailed formulas of and .

The averaging operation is calculated as follows. When is large, the vector

is continuously distributed (Fig. 2.1a). Under this circumstances, the vector

fluctuates so fast that we can calculate with a weighted average formulated as

. (2.8)

is the weight for the quasi-equilibrium state before creation of the advantageous

sequence and the normalization factor is a constant determined by the requirement

. If the value of does not depend upon the history, is the product

of two factors: the probability in the equilibrium and the probability of the absence of

the advantageous sequence. The probability distribution in the equilibrium is proportional

to the product given by where Eq. (2.5) is used. The second factor is calculated

using Poisson distribution. Since the probability of a randomly chosen sequence being

advantageous is very small, the number of the advantageous sequence in the population

(denoted by ) obeys the Poisson distribution with average ,

. (2.9)

Then the second factor is . Thus is written as
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. (2.10)

We can calculate and by using Eqs. (2.8) and (2.10). See

Appendix E for the detailed method for the numerical evaluation.

Creation Number for large : Although both mutation and crossover help creating

the advantageous sequence, once the creation has achieved, both operate to destroy the

newly created sequence. The creation number is determined from the balance

between these destructive forces and the selective advantage of the created sequence. Let

be the extinction probability of a newly created advantageous sequence becoming

extinct rather than spreading. The number of times of the appearances of the

advantageous sequence from absence until the final domination obeys a geometric

distribution ( ). is the average of this distribution:

. (2.11)

In order to calculate , we use the technique of branching processes. When the sequence

is created, there is only one copy in the population. Assume that the number of offspring

of the advantageous sequence has a Poisson distribution with a mean value . Then, the

standard population genetic calculation (see Appendix G) gives the relation

. (2.12)

is the expected value of the ratio of the frequency of the advantageous sequence at the

next generation compared to the current frequency, and can be approximately formulated

as the product of the frequency ratios by selection, mutation, and crossover;

, (2.13)

where and are the probabilities of a newly created advantageous

sequence being destroyed by mutation and crossover respectively. denotes the

expected value of a quantity immediately ‘After Creation’ of the advantageous

sequence. See Appendix E for the formulas for and .

is calculated in the similar way to that for :

. (2.14)

is the weight for the quasi-equilibrium state immediately after creation of the
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advantageous sequence and is formulated as the product of and the probability

of there existing only one advantageous sequence in the population. The latter factor is

given by (see Eq. (2.9)), so that omitting a constant

coefficient, we get

. (2.15)

and are calculated from the combination of Eqs. (2.14) and

(2.10). See also Appendix E for the evaluation method.

Creation Time and Creation Number for small : As was shown in Figs. 2.1b and

1c, the value of tends to be near 0 or 1 and the value of is discretized

when is much smaller than one. For a small , the state transition of the population

cannot be approximated by a random sampling for all the probabilities. Rather the

population makes Markovian jumps between “partial distributions” which are centered

around integers. Within a partial distribution the vector is chosen anew every

generation. We express the state of the population at generation using the

-dimensional probability vector whose -th entry

denotes the probability that the population at generation is in the -th partial

distribution ( ) and that no advantageous sequence has ever been created. On this

vector representation, we formulate the generation cycle with the recursion formulas for

mutation and creation. As we focus on the history before the first creation of the

advantageous sequence, we need not formulate selection. Crossover is considered only in

the creation step because crossover itself does not change the value of .

Transition formulas for mutation and creation are

, (2.16a)

, (2.16b)

where is the probability of the population in the -th partial distribution shifting to

the -th partial distribution by mutation. To formulate this matrix, we consider the

probability of the allele distribution concentrating ( ) shifting to the

distribution concentrating ( ). Since this probability is the product of the

probability of a mutation occurring in the whole population and the probability of its

fixation, it is . This is the same as the
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mutation rate itself so that is the same as the probability of transition from a

sequence with 1 bits to a sequence with 1 bits by mutation. See Appendix A for the

detailed formula of . To calculate , we use a similar argument as that used in the

derivation of Eq. (2.7). Since an advantageous sequence is created through mutation and

crossover, is formulated as

if , (2.17a)

, (2.17b)

where and are the creation probabilities by mutation and crossover

given by Eqs. (E2) and (E8) respectively. means the expected value of quantity

under the -th partial distribution. See Appendix E for the evaluation of

and .

Starting from the initial binomial distribution ( ), we

simulate the generation cycle by the use of recurrence formulas (2.16a) and (2.16b). The

value of is initially equal to one, decreases, and gradually approaches zero.

Through the recursion, we calculate two quantities, the creation time and the creation

probability vector , using

,

.

The -th entry of the vector is the probability of creation of the advantageous

sequence occurring from the -th partial distribution, and from this vector, we can

calculate the creation number in the following way. is calculated from the

extinction probability (see Eq. (2.11)). Since the value of depends upon the partial

distribution from which the advantageous sequence is created, we estimate for

different and calculate the weighted average

. (2.18)
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, (2.19)

. (2.20)

The formulas for and are given in Appendix E (Eqs. (H1a) and (H1b)).

See Appendix E for and .
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Simulation using a Vector Representation of the Population

The second method we adopted is a simulation using a vector representation of the

population. This method is almost the same as that developed in Chapter 1, and here we

again adopt this method to show the validity of this method if some modifications are

made as to the initial condition and population diversity, and also to compare its

performance with a new method described in the next section.

The experimentation is as follows. We represented a population at generation by the

frequency vector whose -th entry represents the frequency of

sequences with of bit 1’s at generation . We started with initial frequency vector

(where is determined from the number of bit 1’s

in a bit sequence that is chosen randomly), and simulated the generation cycle by

operating recursion relations formulated for selection, mutation, crossover, and random

genetic drift. The recurrence formulas were the same as those given in Chapter 1, except

for a slight modification of the crossover tensor . Since crossover has no effect in

a perfectly homogeneous (monomorphic) population, the effectiveness of crossover

changes with heterozygosity . To incorporate this dependence, we changed the entries

of according to the theoretical value of calculated from Eq. (2.3). See

Appendix K for the modified method to calculate . The generation cycle with the

recurrence formulas was repeated until the frequency of the advantageous sequence ( )

exceeded , and then the final generation number was recorded as the domination time

. For each parameter set, 30 replicates of numerical trials were conducted and the

average value of was calculated.

t
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Simulation with GAs using a Direct Representation of the Population

The third method we adopted to estimate the evolutionary rate is the simple GA that

operated on the population of bit strings directly prepared in the computer memory. The

simulation procedure was as follows:

Step 0: [Initial setting] A binary number of bits is chosen by the random number

generator. All the sequences of bits in the population have the same binary

number (the population is homogeneous).

Step 1: [Selection] In proportion to fitness values ( for the advantageous

sequence and 1 for all the other sequences), select sequences randomly from

the whole population and create their copies, which compose a population of

sequences for next generation (the standard roulette selection).

Step 2: [Mutation] Choose a bit randomly out of all sequences and flip it. This modifi-

cation is repeated so that the number of binary loci subject to modifications

might be approximately equal to .

Step 3: [Crossover] Choose sequences out of the population and pair them ran-

domly. Between each pair, recombine binary strings at the rate that the probabil-

ity for cross-point to occur per interbit gap equal to . Then, return to Step 1.

Note that in this experiment owing to the standard roulette selection in Step

1. The generation cycle (recursion of Steps 1~3) was repeated until the mean population

fitness exceeded 1.5, i.e., until the frequency of the advantageous sequence exceeds 0.5.

(This is the definition of ‘domination’ in this experiment. See Chapter 1 for the

background of the choice of this threshold frequency.) The program for the simulation

was written in the ANSI-C language and run on a desk-top MIMD computer, Parsytec

XPLORER with sixteen PowerPC’s (80MHz). For each set of parameters, numerical

trials were conducted fifteen times and the mean value was calculated.
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Results

Figure 2.2a shows the results for and as a function of in FPAP mode,

and Fig. 2.2b shows those as a function of in MPIP mode. The other parameters were

, , and . The lines with dots are the results from the

simulation by GAs, and the curved solid lines are the results from the theoretical

estimation using the formula for large (note that is much larger

than one). The results obtained from the two different methods agree well with each

other. They are qualitatively the same as results of the simulation with the vector

representation, developed in Chapter 1. These results suggest that is the minimum at

an intermediate optimum crossover rate. This can be explained as follows. Since both

mutation and crossover are randomization processes to create novel sequences, when the

mutation rate is not as high as to completely randomize the population, crossover helps

to create novel sequences of bits and reduces . In Fig. 2.2 both and

decrease with (or ) in the region of low (or ). If (or ) is too high, on the other

hand, the created advantageous sequences are destroyed by crossover and cannot spread

in the population. This increases the creation number and brings about an

conspicuous increase in . In the region of higher (or ) in Fig. 2.2, does not

increase with (or ), whereas increases markedly.

Figures 2.3~2.9 show the acceleration rate by crossover defined by Eq. (2.2) as

a function of the mutation rate . The crossover rate were and for

FPAP-mode (Figs. 2.3, 2.4, 2.5, 2.6a, 2.7, 2.8a, and 2.9a), and and for

MPIP-mode (Figs. 2.6b, 2.8b, and 2.9b). In all these figures, the thick solid lines are the

results from the mathematical formulas for large , the fine solid lines are those from

the mathematical formulas for small , the lines with black dots are those from the GA

simulation, and the lines with white dots are those from the simulation using the vector

representation of the population.

In Figs. 2.3~2.5, the epistatic number was and the (effective) population size

was (Fig. 2.3), (Fig. 2.4), or (Fig.

2.5), respectively. In each figure, the results obtained from different methods are

qualitatively similar. The results from the simulation (shown in lines with dots in the

figures) are given only for larger , because for very low , the computational load of
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the simulation was so large that the experiments cannot be completed within a practical

simulation time. In Fig. 2.6, theoretical results are shown for different values of the

(effective) population sizes.

According to Figs. 2.3~2.6, we can conclude that is the maximum at an

intermediate mutation rate . This result is explained as follows. When is very low,

the genetic diversity is so small that crossover which can create novel sequences by

stored diversity cannot be effective. When is sufficiently high, on the other hand, the

population is fully randomized by mutation, and then crossover cannot enhance creation

of novel sequences further. This also decreases in the region of higher . Hence

there is an intermediate value of mutation that makes crossover the most effective.

According to Figs. 2.3, 2.4, 2.5, and 2.6, the analytical estimation assuming small

suggests that does not necessarily depend monotonically on for low and has a

second peak in the region of lower . Although we could not confirm this result with the

simulation (because of the limitation of computational time), this might be a real

phenomena by the following reason. The reduction of for a low is caused by the

reduction in randomization by crossover due to the reduction in the population diversity.

However, a low also reduces the randomization by direct effect of mutation itself.

Since is determined by the balance between randomization by mutation and

crossover, if the creation of the advantageous sequence by mutation is suppressed more

strongly than by crossover, this increases and can make the second peak of .

According to Fig. 2.6, when the population size is not very large, the theoretical

results obtained from the two different analyses (large- analysis and small- analysis)

are similar, but they differ considerably for larger ( or 50000). We can

explain this in the following way. As discussed above, the decrease in with in

the region of large comes from the reduced of , or in other words, because s tend

to near 0 or 1. In the analysis for large , however, continuous distribution of vector

is assumed and this effect is not fully considered. This causes the underestimation

of . Actually, the simulation results shown in Fig. 2.5 quantitatively agree with the

results from the small- analysis. When we use the value of estimated from the

large- analysis, we need to note this underestimation for low .

Figures 2.7~2.9 show the results for larger epistatic numbers ( for Figs. 2.7

and 2.8 and for Fig. 2.9). According to these figures, we can conclude that the
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value of geometrically increases with . Crossover greatly enhances the creation of

advantageous schemata when their orders are fairly large.

Finally we point out that two modes of crossover, FPAP-mode and MPIP-mode did

not differ much. According to the results shown in Figs. 2.6, 2.8, and 2.9, the two modes

of crossover did not make any significant difference in the acceleration effect and the

evolutionary outcome.

Across I
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Discussion

We studied the performance of GAs and the acceleration effect by crossover under a

conspicuously discontinuous (Babel-like) fitness function in which only one sequence is

much more advantageous than the others. The estimation was made with three different

methods, and the results obtained from those methods demonstrated that crossover

clearly accelerates evolution when its rate is not very high and the mutation rate u has an

intermediate optimum value. The key point responsible for this result is the fitness

landscape assumed in the model. In this landscape, evolutionary speed is primarily

determined by the creation rate of an advantageous schema. Both mutation and crossover

can enhance this creation process; and, especially when the mutation rate is not very

high, crossover can significantly promote the speed of evolution.

Traditionally the theory of GAs has been centered upon the ‘building block

hypothesis’ (BBH) (Holland, 1992) which states that the final solution is achieved

through the combination of good component schemata. Many good schemata which are

candidates for components of the final solution were considered to spread in ‘implicit

parallelism’ (Goldberg, 1989), and the crossover operation in GAs was regarded to help

to combine those component schemata into a single individual to create a more

advantageous sequence (Fig. 2.10a). However, when the fitness landscape is

discontinuous as assumed in the present chapter, evolution proceeds according to the

picture illustrated in Fig. 2.10b, rather than the one shown in Fig. 2.10a. The BBH is

valid, if it only asserts that the final solution is made of component good schemata.

However, in this picture, creation and domination of advantageous component schemata

take place not in parallel but serially (one by one), and the major roles of crossover are

not combining advantageous schemata but the following two:

¶[Creation]: randomizing sequences and helping to create a novel advantageous

schema,

¶[Preservation]: maintaining advantageous schemata which has already been fixed in

the population.

The effect of crossover on the creation of schemata is essential to the acceleration

effect. However this has often been overpassed in the GA studies. For example, a

discontinuous fitness landscape has been studied using the royal road function. Mitchell
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et al. (1991) studied the GA performance focusing on the time necessary for

smaller-order schemata to combine to form the larger-order schema, but they did not

examine the influence of crossover on the creation time of each schema. Although

hitchhiking (which they called ‘premature convergence’) made them doubt the implicit

parallelism, they sticked to the conventional notion about GAs (shown in Fig. 2.10a),

without examining the waiting time until creation of advantageous schemata. Recently,

however, Nimwegen et al. (1996, 1997) threw a new light on the royal road GA studies.

Inspired by the study by Shapiro et al. (Prugel-Bennett & Shapiro, 1994, 1996; Rattray

& Shapiro, 1996), Nimwegen et al. expressed a population using a fitness distribution

and analyzed the dynamics of the royal road GA. Their mathematical analysis was

restricted to GAs without crossover. However, by conducting a simulation incorporating

crossover, they conjectured the same mechanism of GAs as shown in Fig. 2.10b. The

Babel-like function is a special case of the royal road function, a case in which the

number of block is limited to one. The present study, which has quantitatively estimated

the advantage of crossover, can be considered an extension of Nimwegen et al. to the

case where GAs include crossover.

Crossover has a preservation function. Acceleration of creation process is achieved by

mutation as well as by crossover. The main difference between them comes from

preservation by crossover. Mutation, which is a blind substitution of bits, destroys the

established schemata, whereas crossover, which has no effect on the homogenous regions

of the sequence, can preserve advantageous schemata once they are fixed in the

population. Because of this blindness of mutation, the mutation rate must be kept very

low if a large number of good schemata are to be maintained in the population.

Destructive effect of mutation is called ‘error catastrophe’ problem (see Chapter 1 or

Eigen, Gardiner, Schuster, & Winkler, 1981), and it is concluded that the mutation rate

must be kept low, inversely proportional to the total order of good schemata. Crossover

can be a beneficial process in such a case. A population which has once accumulated

many functional schemata can evolve with creation by crossover which selectively

randomizes only nonfunctional regions of bit sequences without destroying functional

schemata.

These roles of crossover are the key points in application of GAs to the problem

domain with a discontinuous fitness landscape. The implementations for genetic
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parameters in these problems are summarized as follows:

¶The crossover rate should not be too high nor too low for fast evolution.

¶The mutation rate must be adjusted to a moderate value to enhance evolutionary

acceleration by crossover.

¶To achieve a large acceleration effect by crossover, the order of the advantageous

schemata to be created needs to be sufficiently large.

Although these rules are not applicable to all the engineering problems for which GAs

are used today, there exists an important class of problems which has a discontinuous

fitness function as assumed here. Genetic programming (GP) using machine language

architecture is one such problem. In machine language GP, a program is represented by a

very long bit sequence, and a functional set of machine codes corresponds to an

advantageous schema. As a consequence, evolution typically proceeds with the

discontinuous picture, and the use of GAs can be a powerful strategy for developing the

optimal program in such systems. In Suzuki (1996, 1997), GAs were used to create an

advantageous function in the program memory and crossover evidently contributed to the

acceleration of creation process. Figure 7 in Suzuki (1997) qualitatively agrees well with

Figs. 2.3~2.8.

We finish this discussion by pointing out the biological meaning of the above results.

In this chapter, we examined the advantage of crossover focusing on the waiting time

until creation and domination of a highly advantageous schema. In biology, this is

interpreted as the effect of genetic recombination which induces creation of an

advantageous combination of genes. In the living world, we can think of many examples

of coadaptive combinations of genes; an advantageous function such a metabolic cycle,

an advantageous anatomical structure such as eyes, and an advantageous behavior which

requires the improvements of many elements. Such functions enjoy highly selective

advantage when all component genes are present in the same individual, and the fitness

landscape is considered to be conspicuously discontinuous in the DNA regions coding

these functions. Recombination can promote creation of such a very advantageous

combination of genes which causes drastic adaptive evolution.

However, above argument is not directly applicable to the explanation of the

widespread occurrence of sexuality in real species. The shown advantage of
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recombination is a long term one and is easily overwhelmed by the two-fold cost of sex

when a mutation favoring parthenogenesis occurs in a population. In a biological context,

this problem has been an enigma over the decades and many evolutionary biologists have

made various arguments searching for a short term advantage of recombination (Crow &

Kimura, 1965; Williams, 1975; Maynard Smith, 1971, 1978; Lloyd, 1980; Michod &

Levin, 1988; Feldman, Otto, & Christiansen, 1997). Modern arguments on this problem

are made using modifier models which have a special locus controlling the recombination

rate between the major selected loci (Nei, 1967, 1969; Feldman, 1972; Felsenstein &

Yokoyama, 1976; Feldman, Christiansen, & Brooks, 1980; Zhivotovsky, Feldman, &

Christiansen, 1994; Bergman, Otto, & Feldman, 1995a, 1995b). Two different theories

have recently attracted a great deal of attention; the deleterious mutation theory (Muller,

1964; Haigh, 1978; Kondrashov, 1988, 1994; Redfield, 1994; Zeyl & Bell, 1997) and the

parasite theory (Jayakar, 1970; Jaenike, 1978; Hamilton, 1980; Bremermann, 1980;

Tooby, 1982; Bell & Maynard Smith, 1987; Hamilton, Axelrod, & Tanese, 1990).

Among them, the parasite theory has close relation to the present study. Based upon the

Red Queen hypothesis, this theory states that sex is favored when a species is subject to

attack by pathogens or parasites and needs to evolve under the fluctuating environment

due to the host-parasite competition. This theory was tested by using the modifier models

with cyclic selection (Charlesworth, 1993; Andreasen & Christiansen, 1995), and it was

shown that advantage of recombination given by the host-parasite cycle is not decisive

but delicate. This theory remains controversial in the biological community. The creation

of an advantageous combination of genes which stands up to attack by parasites is

essentially the same as the creation of an advantageous schema causing drastic adaptive

evolution. The present quantitative result about the creation process by recombination

may be of use for examining the parasite theory.
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Appendix E: FORMULAS FOR AND

Let be the frequency of the advantageous sequence. To calculate , we first

estimate the expected value of , namely the differential of by mutation per

generation. In Chapter 1 was calculated assuming that all s have the same value

around the stationary distribution. Here we derive more general expressions with the

hope that the analyses holds for the situations wherein the heterozygosity is smaller

than 0.5.

We consider the elementary process of mutation to be divided into the following

steps: first we randomly choose a sequence from the population and substitute it for the

site A. Next, we flip bits in the sequence with the probability , and then we put the

sequence back into the population. Let be the event that a sequence chosen for site

A happens to be the unique advantageous sequence before mutation, and be the

event that the sequence at site A is advantageous after mutation. Hereafter we use the

following notations for probability; is the probability for event to occur, and

or are the conditional probability for event to occur on the condition of

event . Then, is written as

By substituting , (these are valid

due to the assumption of independent distribution at each locus), and

, we obtain the formula for as

pc
mut.( ) pc

cross.( )

xI pc
mut.( )

ΔxI
mut.( ) xI

ΔxI qi q

H

u

Abef

Aaft

P X( ) X

P X Y( ) PY X( ) X

Y ΔxI
mut.( )

ΔxI
mut.( ) P Aaft Abef( )xI P Aaft Abef( ) 1 xI–( )+[ ] xI–=

P Abef Aaft∧( )

P Abef( )
------------------------------------ 1 xI–( ) 1 P Aaft Abef( )–{ }xI–=

P Aaft( ) P Abef Aaft∧( )–

P Abef( )
------------------------------------------------------------ 1 xI–( ) 1 P Aaft Abef( )–{ }xI–=

P Aaft( ) P Abef( )P Aaft Abef( )–

1 P Abef( )–
--------------------------------------------------------------------------- 1 xI–( ) 1 P Aaft Abef( )–{ }xI–=

P Aaft( ) 1 u–( )qi u 1 qi–( )+{ }∏= P Abef( ) qi∏=

P Aaft Abef( ) 1 u–( )I= ΔxI
mut.( )

ΔxI
mut.( )

1 u–( )qi u 1 qi–( )+{ }∏ qi∏( ) 1 u–( )I–

1 qi∏–
----------------------------------------------------------------------------------------------------------- 1 xI–( ) 1 1 u–( )I–{ }xI–=



Page 68 of 105

. (E1)

Then , the creation probabilities by mutation, is formulated as

substituted with ;

, (E2)

where the denominator factor was neglected because holds true

before creation of the advantageous sequence.

The basic strategy to calculate is the same as the one for . We first

formulate the expected value of (i.e., the differential of by crossover per

generation). Let the elementary process of crossover be divided into the three steps: first

we randomly choose two sequences from the population and substitute them for sites A

and B, next we recombine these two sequences, and finally we put them back into the

population. Let and be the events that original sequences chosen for site A and

B are advantageous before crossover respectively, and and denote the events

that the sequences on site A and B are advantageous after crossover respectively. With

these symbols, we define the following probabilities:

,

,

.

Then, is written as

. (E3)

First we transform .

u 1 2u–( )qi+{ }∏ qi∏–( ) 1 xI–( ) 1 1 u–( )I–{ } qi∏ xI–( )+

1 qi∏–
----------------------------------------------------------------------------------------------------------------------------------------------------------------=

pc
mut.( ) ΔxI

mut.( )

xI 0=

pc
mut.( ) u 1 2u–( )qi+{ }∏ 1 u–( )I qi∏–≈

1 qi∏– 1 qi∏– 1≈

pc
cross.( ) pc

mut.( )

ΔxI
cross.( ) xI

Abef Bbef

Aaft Baft

Pan P Aaft Baft∧ Abef Bbef∧( )≡

Pna P Aaft Baft∧ Abef Bbef∧( )≡

Pnn P Aaft Baft∧ Abef Bbef∧( )≡

ΔxI
cross.( )

ΔxI
cross.( ) r xI

2 Pan Pna+( )xI 1 xI–( ) Pnn 1 xI–( )2+ +[ ] rxI–=

r 1 xI–( ) Pnn 1 xI–( ) 1 Pan– Pna–( )xI–[ ]=

Pnn

Pnn P Aaft Baft∧ Abef Bbef∧( )=

P Aaft Abef Bbef∧ ∧( )

P Abef Bbef∧( )
-----------------------------------------------------=
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.

Since crossover does not change the values of s which determines the probability of a

randomly chosen sequence being an advantageous one, .

Therefore,

, (E4)

where we defined

. (E5)

is the probability of an advantageous sequence being destroyed by crossover with a

randomly chosen sequence. Similarly, is transformed as

P Aaft Abef∧( ) P Aaft Abef Bbef∧ ∧( )–

P Abef( )P Bbef( )
-----------------------------------------------------------------------------------------------=

P Aaft( ) P Aaft Abef∧( )– P Aaft Bbef∧( )– P Aaft Abef Bbef∧ ∧(+

1 P Abef( )–( ) 1 P Bbef( )–( )
-----------------------------------------------------------------------------------------------------------------------------------------------------------------=

P Aaft( ) P Aaft Abef∧( )– P Baft Abef∧( )– P Abef Bbef∧( )+

1 P Abef( )–( ) 1 P Bbef( )–( )
-------------------------------------------------------------------------------------------------------------------------------------------------=

P Aaft( ) P Abef( )P Aaft Abef( )– P Abef( )P Baft Abef( )– P Abef( )P Bbef Abe(+

1 P Abef( )–( ) 1 P Bbef( )–( )
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=

qi

P Aaft( ) P Abef( ) qii 1=
I∏= =

Pnn
P Abef( ) 1 P Aaft Abef( )– P Baft Abef( )– P Aaft Baft∧ Abef( )+[

1 P Abef( )–( ) 1 P Bbef( )–( )
--------------------------------------------------------------------------------------------------------------------------------------------------------------=

P Abef( ) 1 P Aaft Baft∨ Abef( )–[ ]
1 P Abef( )–( ) 1 P Bbef( )–( )

----------------------------------------------------------------------------------=

P Abef( )P Aaft Baft∧ Abef( )

1 P Abef( )–( ) 1 P Bbef( )–( )
--------------------------------------------------------------------=

qi∏( )Pdes
1 qi∏–( )2

----------------------------=

Pdes P Aaft Baft∧ Abef( )≡

Pdes

1 Pan– Pna–

1 Pan– Pna– 1 P Aaft Baft∧ Abef Bbef∧( )– P Aaft Baft∧ Abef Bbef∧(–=

1 P Aaft Baft∧ Abef Bbef∧( )– P Aaft Baft∧ Abef Bbef∧(–=

P Aaft Baft∧ Abef Bbef∧( ) P Aaft Baft∧ Abef Bbe∧(+=

P Aaft Baft Abef Bbef∧ ∧ ∧( )

P Abef Bbef∧( )
----------------------------------------------------------------------=
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. (E6)

Substituting Eqs. (E4) and (E6) for Eq. (E3), the formula for is derived as

. (E7)

Then , the creation probabilities by crossover, is formulated as

substituted with ;

, (E8)

where the denominator factor was neglected as in the case of mutation.

The detailed formula for is derived as follows. From Eq. (E5),

Expressions for and can be derived from the recursion method

established in Appendix D. Let and denote the events that -th bit pair is

unexchanged and exchanged by crossover respectively, and and denote the events

that leftmost (earlier) bits on the site A and B are all after crossover respectively.

(Note that and coincide with and respectively.) On the assumption of

independent allele distribution at each locus, we can set up a recursion formula for the

vector as

P Aaft Baft Abef∧ ∧( ) P Aaft Baft Abef Bbef∧ ∧ ∧(–

P Abef( ) P Abef Bbef∧( )–
---------------------------------------------------------------------------------------------------------------------------------=

P Aaft Baft Abef∧ ∧( )

P Abef( ) 1 P Bbef( )–( )
-----------------------------------------------------=

P Aaft Baft∧ Abef( )

1 P Bbef( )–
-------------------------------------------------=

Pdes
1 qi∏–
---------------------=

ΔxI
cross.( )

ΔxI
cross.( )

r Pdes 1 xI–( ) qi∏ xI–( )⋅
1 qi∏–( )2

-----------------------------------------------------------------=

pc
cross.( ) ΔxI

cross.( )

xI 0=

pc
cross.( ) r Pdes qi∏⋅≈

1 qi∏–

Pdes

Pdes PAbef
Aaft Baft∧( )=

1 PAbef
Aaft Baft∨( )–=

1 PAbef
Aaft Baft∧( ) PAbef

Aaft( )– PAbef
Baft(–+=

1 PAbef
Bbef( ) PAbef

Aaft( )– PAbef
Baft( )–+=

PAbef
Aaft( ) PAbef

Baft( )

Ui Ei i

Ai Bi

i 1

Aaft Baft AI BI

PAbef
Ui Ai∧( ) PAbef

Ei Ai∧( )
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(E9)

Recursively using Eq. (E9) from the initial vector

, we can write down a straightforward expression

for and as

.

Similarly, the formula for the site B is derived as

.

By using these formulas, a detailed expression for is derived as

. (E10)

PAbef
Ui Ai∧( ) PAbef

Ei Ai∧( ) PAbef
Ui 1– Ai 1–∧( ) PAbef

Ei 1– Ai 1–∧( )
1 c– cqi

c 1 c–( )qi

=

PAbef
U0 A0∧( ) PAbef

E0 A0∧( ) 1 0=

PAbef
UI AI∧( ) PAbef

EI AI∧( )

PAbef
UI AI∧( ) PAbef

EI AI∧( ) 1 0
1 c– cq1

c 1 c–( )q1
… 1 c– cqI

c 1 c–( )qI

⋅ ⋅=

PAbef
UI BI∧( ) PAbef

EI BI∧( ) 1 0
1 c–( )q1 c

cq1 1 c–
… 1 c–( )qI c

cqI 1 c–
⋅ ⋅=

Pdes

Pdes 1 P Bbef( ) PAbef
AI( )– PAbef

BI( )–+=

1 qi∏ PAbef
UI AI∧( ) PAbef

EI AI∧( ) PAbef
UI BI∧( ) PAbef

EI BI∧( )+ + +( )–+=

1 qi∏ 1 0
1 c– cq1

c 1 c–( )q1
… 1 c– cqI

c 1 c–( )qI

1
1

–+=

1 0
1 c–( )q1 c

cq1 1 c–
… 1 c–( )qI c

cqI 1 c–

1
1

–
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Appendix F: NUMERICAL EVALUATION OF AND

In order to formulate in an appropriate form for evaluation, we first

derive a polynomial expression for . Hereafter, we express all s by a parameter .

Under this notation, we consider to be the product of different s because every

term in the right-hand side of Eq. (E10) includes only once (namely the degree of

is not larger than one). Although a polynomial expression for can be derived from

the solution of the recurrence equation (E9) as well (Chapter 1, Appendix D), here we

express , , , and by polynomial

formulas with a set of coefficient parameters and establish recurrence equations for those

parameters. This method enables us to express by a positive coefficient formula that

is numerically evaluated without occurrence of cancellation.

Since in all terms of polynomial expressions for and the

sum of degrees of and is always , we can write these probabilities as

, (F1a)

. (F1b)

Substituting these formulas for Eq. (E9),

.

Comparing terms of the same degrees of , , and , we can get the following

recurrence equations for and ;

pc
mut.( )〈 〉BC pc

cross.( )〈 〉BC

pc
cross.( )〈 〉BC

Pdes qi q

qk k qi

qi qi

Pdes

PAbef
UI AI∧( ) PAbef

EI AI∧( ) PAbef
UI BI∧( ) PAbef

EI BI∧( )

Pdes

PAbef
UI AI∧( ) PAbef

EI AI∧( )

1 c– c I

PAbef
UI AI∧( ) gI i j, ,

UA( ) 1 c–( ) jcI j– qi

j 0=

I

∑
i 0=

I

∑=

PAbef
EI AI∧( ) gI i j, ,

EA( ) 1 c–( ) jcI j– qi

j 0=

I

∑
i 0=

I

∑=

gI i j, ,
UA( ) 1 c–( ) jcI j– qi

j 0=

I

∑
i 0=

I

∑ gI i j, ,
EA( ) 1 c–( ) jcI j– qi

j 0=

I

∑
i 0=

I

∑,

gI 1– i j, ,
UA( ) 1 c–( ) jcI 1– j– qi

j 0=

I 1–

∑
i 0=

I 1–

∑ gI 1– i j, ,
EA( ) 1 c–( ) jcI 1– j– qi

j 0=

I 1–

∑
i 0=

I 1–

∑, 1 c– cq

c 1 c–( )q
=

gI 1– i j 1–, ,
UA( ) gI 1– i j, ,

EA( )+( ) 1 c–( ) jcI j– qi

j 0=

I

∑
i 0=

I

∑ ,=

gI 1– i 1– j, ,
UA( ) gI 1– i 1– j 1–, ,

EA( )+( ) 1 c–( ) jcI j– qi

j 0=

I

∑
i 0=

I

∑

1 c– c q

gI i j, ,
UA( ) gI i j, ,

EA( )
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, (F2a)

. (F2b)

From and , the initial values of and

are given by

for , otherwise, and (F3a)

for all ’s and ’s. (F3b)

To solve these simultaneous recurrence equations, we introduce dummy parameters

, , , and , and write Eqs. (F2a) and (F2b) as

(F4a)

. (F4b)

Recursively substituting Eqs. (F4a) and (F4b) and finally substituting Eqs. (F3a) and

(F3b), we can get

, (F5)

where is an integer coefficient denoting the number of terms with the

same degrees of ’s. First we focus on the relation between and .

, and satisfying Eq. (F5) are not free parameters but should satisfy relations

, (F6a)

, (F6b)

, and (F6c)

. (F6d)

The Eq. (F6a) is obvious. Eq. (F6b)/(F6c) is due to the fact that when using Eqs. (F4a)

or (F4b), / is decreased by the term including or / or . To derive Eq. (F6d)

we consider the order of dummy parameters ’s. Although in Eq. (F5) we assumed the

gI i j, ,
UA( ) gI 1– i j 1–, ,

UA( ) gI 1– i j, ,
EA( )+=

gI i j, ,
EA( ) gI 1– i 1– j, ,

UA( ) gI 1– i 1– j 1–, ,
EA( )+=

PAbef
U0 A0∧( ) 1= PAbef

E0 A0∧( ) 0= g0 i j, ,
UA( ) g0 i j, ,

EA( )

g0 i j, ,
UA( ) 1= i j 0= = g0 i j, ,

UA( ) 0=

g0 i j, ,
EA( ) 0= i j

ka kb kc kd

gI i j, ,
UA( ) gI 1– i j 1–, ,

UA( ) ka gI 1– i j, ,
EA( ) kb+=

gI i j, ,
EA( ) gI 1– i 1– j, ,

UA( ) kc gI 1– i 1– j 1–, ,
EA( ) kd+=

gI i j, ,
UA( ) gI 1– i j 1–, ,

UA( ) ka gI 1– i j, ,
EA( ) kb+=

gI 2– i j 2–, ,
UA( ) ka gI 2– i j 1–, ,

EA( ) kb+( )ka gI 2– i 1– j, ,
UA( ) kc gI 2– i 1– j 1–, ,

EA( ) kd+( )kb+=

…=

f na nb nc nd, , ,( )g0 0 0, ,
UA( ) ka

nakb
nbkc

nckd
nd=

f na nb nc nd, , ,( )

k i j,( ) na nb nc nd, , ,( )

na nb nc, , nd

na nb nc nd+ + + I=

nc nd+ i=

na nd+ j=

nb nc=

i j kc kd ka kd

k
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commutative law about the product of ’s, if we had not allowed that law, the term

should be substituted with the term

, (F7)

where the symbol ‘*’ denotes any nonnegative integer. Eq. (F7) includes the same

number of ’s and ’s so that Eq. (F6d) must be satisfied. From Eqs. (F6a)~(F6d), we

can represent , and by , and ;

, , .

Next we formulate the coefficient . Since is the number

of the disposition of ’s and ’s in Eq. (F7), if (i.e., ), we can formulate

that by the product of the repeated combinations;

.

If (i.e., ), on the other hand, the number of the disposition of ’s and

’s in Eq. (F7) is 1 if and 0 if . Hence, combining them,

is written as

. (F8)

The formula for is given by Eqs. (F5) substituted with (F3a), (F8), and

;

. (F9a)

Similarly, the formula for is derived as

k

ka
nakb

nbkc
nckd

nd

ka∗kckd∗kbka∗…ka∗kckd∗kbka∗ ka∗ kckd∗kbka∗( )nb=

kb kc

na nb nc, , nd I i j

na
I j+
2

----------- i–= nb nc
I j–
2

----------= = nd
I– j+
2

--------------- i+=

f na nb nc nd, , ,( ) f na nb nc nd, , ,( )

ka kd nb 0> j I<

f na nb nc nd, , ,( ) Hnb 1+ na
Hnb nd

⋅=

nb na+
na⎝ ⎠

⎛ ⎞ nb nd 1–+
nd⎝ ⎠

⎛ ⎞=

I i–
I j+
2

----------- i–⎝ ⎠
⎛ ⎞

i 1–
I– j+
2

--------------- i+⎝ ⎠
⎛ ⎞=

I i–
I j–
2

----------⎝ ⎠
⎛ ⎞

i 1–
I j–
2

---------- 1–⎝ ⎠
⎛ ⎞=

nb 0= j I= ka

kd nd i 0= = nd i 0>=

f na nb nc nd, , ,( )

f na nb nc nd, , ,( )
I i–
I j–
2

----------⎝ ⎠
⎛ ⎞

i 1–
I j–
2

---------- 1–⎝ ⎠
⎛ ⎞ δi 0, δ j I,+=

gI i j, ,
UA( )

ka kb kc kd 1= = = =

gI i j, ,
UA( )

I i–
I j–
2

----------⎝ ⎠
⎛ ⎞

i 1–
I j–
2

---------- 1–⎝ ⎠
⎛ ⎞ δi 0, δ j I,+=

gI i j, ,
EA( )
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. (F9b)

Now that solutions of the recurrence equations were obtained, we can write

polynomial formulas for and . Substituting Eqs. (F9a) and

(F9b) for Eqs. (F1a) and (F1b), we get

, (F10a)

. (F10b)

For derivation of polynomial expressions for and , we can

make a similar argument. The results are

, (F10c)

. (F10d)

Then the final polynomial formula for is derived from Eq. (E10) substituted with

Eqs. (F10a)~(F10d);

, (F11a)

gI i j, ,
EA( )

I i–
I j– 1–
2

-------------------⎝ ⎠
⎛ ⎞

i 1–
I j– 1–
2

-------------------⎝ ⎠
⎛ ⎞=

PAbef
UI AI∧( ) PAbef

EI AI∧( )

PAbef
UI AI∧( )

I i–
I j–
2

----------⎝ ⎠
⎛ ⎞

i 1–
I j–
2

---------- 1–⎝ ⎠
⎛ ⎞ 1 c–( ) jcI j– qi

j 0=

I

∑
i 0=

I

∑ 1 c–( )I+=

PAbef
EI AI∧( )

I i–
I j– 1–
2

-------------------⎝ ⎠
⎛ ⎞

i 1–
I j– 1–
2

-------------------⎝ ⎠
⎛ ⎞ 1 c–( ) jcI j– qi

j 0=

I

∑
i 0=

I

∑=

PAbef
UI BI∧( ) PAbef

EI BI∧( )

PAbef
UI BI∧( )

i
I j–
2

----------⎝ ⎠
⎛ ⎞

I i– 1–
I j–
2

---------- 1–⎝ ⎠
⎛ ⎞ 1 c–( ) jcI j– qi

j 0=

I

∑
i 0=

I

∑ 1 c–( )IqI+=

PAbef
EI BI∧( )

i
I j– 1–
2

-------------------⎝ ⎠
⎛ ⎞

I i– 1–
I j– 1–
2

-------------------⎝ ⎠
⎛ ⎞ 1 c–( ) jcI j– qi

j 0=

I

∑
i 0=

I

∑=

Pdes

Pdes 1 1 c–( )I–{ } 1 qI+( )=

I i–
I j–
2

----------⎝ ⎠
⎛ ⎞

i 1–
I j–
2

---------- 1–⎝ ⎠
⎛ ⎞

I i–
I j– 1–
2

-------------------⎝ ⎠
⎛ ⎞

i 1–
I j– 1–
2

-------------------⎝ ⎠
⎛ ⎞+

j 0=

I

∑
i 0=

I

∑–

i
I j–
2

----------⎝ ⎠
⎛ ⎞

I i– 1–
I j–
2

---------- 1–⎝ ⎠
⎛ ⎞

i
I j– 1–
2

-------------------⎝ ⎠
⎛ ⎞

I i– 1–
I j– 1–
2

-------------------⎝ ⎠
⎛ ⎞+ + 1 c–( ) jcI j– qi

1 1 c–( )I–{ } 1 qI+( )=

I i–
I j–
2

----------⎝ ⎠
⎛ ⎞

i 1–
I j–
2

---------- 1–⎝ ⎠
⎛ ⎞

I i–
I j– 1–
2

-------------------⎝ ⎠
⎛ ⎞

i 1–
I j– 1–
2

-------------------⎝ ⎠
⎛ ⎞+ 1 c–( ) jcI j– qi qI i–+( )

j 0=

I

∑
i 0=

I

∑–

1 1 c–( )I–{ } 1 qI+( ) ΩI i j, , c( ) qi qI i–+( )
i j=

I j–

∑
j 0=

I 2⁄[ ]

∑–=



Page 76 of 105

where

. (F11b)

To derive the last formula, parameter conversions (for the former term) or

(for the latter term) were used. in means the Gauss’s notation.

With this formula and Eqs. (E2) and (E8), and are

formulated as

, (F12a)

.

(F12b)

and in Eqs. (F12a) are also considered to be the product of and different s

respectively because in the expansion of there is no term which

includes with degrees larger than 1.

or in Eqs. (F12a) and (F12b) are calculated as follows. From Eqs.

(2.8) and (2.10), the formula for and is written as

, . (F13)

Hence, to evaluate , we have to calculate

ΩI i j, , c( ) i 1–
j 1–⎝ ⎠

⎛ ⎞ i 1–
j⎝ ⎠

⎛ ⎞ c
1 c–
-----------+ I i–

j⎝ ⎠
⎛ ⎞ 1 c–( )I 2 j– c2 j≡

j I 2 j–→

j I 2 j– 1–→ [ ] I 2⁄[ ]

pc
mut.( )〈 〉BC pc

cross.( )〈 〉BC

pc
mut.( )〈 〉BC u 1 2u–( )qi+{ }∏ 1 u–( )I qi∏–〈 〉BC=

u 1 2u–( )q+{ }I 1 u–( )IqI–〈 〉BC=

I
i⎝ ⎠

⎛ ⎞ uI i– 1 2u–( )i qi〈 〉BC
i 0=

I

∑ 1 u–( )I qI〈 〉BC–=

pc
cross.( )〈 〉BC r Pdes qi∏⋅〈 〉BC=

r 1 1 c–( )I–{ } 1 qI+( ) ΩI i j, , c( ) qi qI i–+( )
i j=

I j–

∑
j 0=

I 2⁄[ ]

∑– qI⋅〈 〉
BC

=

r 1 1 c–( )I–{ } qI〈 〉BC qIqI〈 〉BC+( ) r ΩI i j, , c( ) qiqI〈 〉BC qI i– qI〈 〉BC+( )
i j=

I j–

∑
j 0=

I 2⁄[ ]

∑–=

qi qI i I qi

u 1 2u–( )qi+{ }∏
qi

qi〈 〉BC qiqI〈 〉BC
qi〈 〉BC qiqI〈 〉BC

qi qI( )ν〈 〉BC

… exp N qi∏–( )qi qI( )ν h qi( )dqi
i

∏
0

1

∫
0

1

∫

… exp N qi∏–( ) h qi( )dqi
i

∏
0

1

∫
0

1

∫
--------------------------------------------------------------------------------------------= ν 0 or 1=

qi qI( )ν〈 〉BC
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, (F14)

where is an integer parameter whose value is . is transformed as

. (F15)

is the Pochhammer symbol defined by

.

Since the direct summation of the series in Eq. (F15) gives rise to cancellation, we

express Eq. (F15) with the modified generalized Hypergeometric Function and calculate

it in the complex plane. Using the complex parameter sets and , non-negative

integer parameter sets and , and a complex variable , the modified

generalized Hypergeometric Function is defined by

(F16)

where and are contracted notations interpreted as

and respectively.

Using this definition, is formulated as

. (F17)

To evaluate for a large negative variable, we transform Eq. (F16) into the

Mellin-Barnes type integral in the complex plane. Like standard theory for the

generalized Hypergeometric Function (Luke, 1969; Mathai & Saxena, 1973; Prudnikov &

J ν i,( ) … exp N qi∏–( )qi qI( )ν h qi( )dqi
i

∏
0

1

∫
0

1

∫≡

i i 0 1 … I, , ,= J ν i,( )

J ν i,( )
N–( )k

k!
-------------- … qi qi′

k ν+ h qi′( )dqi′
i′
∏

0

1

∫
0

1

∫
k 0=

∞

∑=

N–( )k

k!
-------------- qk ν+ h q( )dq

0

1

∫⎩ ⎭
⎨ ⎬
⎧ ⎫

I i–

qk ν 1+ + h q( )dq

0

1

∫⎩ ⎭
⎨ ⎬
⎧ ⎫

i

k 0=

∞

∑=

N–( )k

k!
--------------

2β( )k ν+

4β( )k ν+
--------------------⎝ ⎠

⎛ ⎞ I i– 2β( )k ν 1+ +

4β( )k ν 1+ +
----------------------------⎝ ⎠

⎛ ⎞ i

k 0=

∞

∑=

a( )n

a( )n a a 1+( )… a n 1–+( )≡ Γ a n+( ) Γ a( )⁄=

a j( ) b j( )

m j( ) n j( ) z

F̂p q
a m,( )p

b n,( )q
------------------ z

⎝ ⎠
⎜ ⎟
⎛ ⎞

a j( )k m j+
j 1=

p

∏

b j( )k n j+
j 1=

q

∏
-------------------------------zk

k!
----

k 0=

∞

∑≡

a m,( )p b n,( )q

a1 m1,( ) a2 m2,( ) … ap mp,( ), , ,( ) b1 n1,( ) b2 n2,( ) … bq nq,( ), , ,( )

J ν i,( )

J ν i,( ) F̂I I
2β ν,( )I i– 2β ν 1+,( )i

4β ν,( )I i– 4β ν 1+,( )i
------------------------------------------------------ N–( )

⎝ ⎠
⎜ ⎟
⎛ ⎞

=

F̂
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Marichev 1986), Eq. (F16) is transformed as

.

The path in the right-hand side of this formula is taken in such a manner that the

poles of are separated from those of for . We can

calculate with this formula by numerically integrate the complex integral.

F̂p q
a m,( )p

b n,( )q
------------------ z

⎝ ⎠
⎜ ⎟
⎛ ⎞

Γ b j( )
j 1=

q

∏

Γ a j( )
j 1=

p

∏
---------------------- 1

2πi
--------

Γ a j m j w–+( )
j 1=

p

∏

Γ b j n j w–+( )
j 1=

q

∏
---------------------------------------------Γ w( ) z–( ) w– dw

α i∞–( )

α i∞+( )

∫=

Γ w( ) Γ a j m j w–+( ) j 1 … p, ,=

J ν i,( )
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Appendix G: DERIVATION OF EQ. (2.12)

According to the standard population genetic method of branching process (Fisher,

1930; Ewens, 1979, p.22), the extinction probability satisfies

, (G1)

where is the probability that the advantageous sequence bears surviving offspring in

the next generation. If obeys the Poisson distribution given by

, (G2)

Eq. (G1) is transformed as

. (G3)

z

z p0 1⋅ p1 z⋅ …+ + pk zk⋅
k 0=

∞

∑= =

pk k

k

pk
μk

k!
-----e μ–=

z
μk

k!
-----e μ–

⎝ ⎠
⎛ ⎞ zk⋅

k 0=

∞

∑ exp μ 1 z–( )–( )= =
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Appendix H: EVALUATION OF AND

We first formulate the detailed expression for and . By using (the

frequency of the advantageous sequence), the destruction probability ( ) is

formulated as ( ) substituted with . Hence,

from Eqs. (E1) and (E7),

, (H1a)

, (H1b)

where the denominator factor was omitted because holds true

immediately after creation of the advantageous sequence.

By use of Eqs. (H1a), (H1b) and (F11a), we can derive the polynomial formulas for

and as

,

(H2a)

pd
mut.( )〈 〉AC pd

cross.( )〈 〉AC

pd
mut.( ) pd

cross.( ) xI

pd
mut.( ) pd

cross.( )

ΔxI
mut.( )–( ) xI⁄ ΔxI

cross.( )–( ) xI⁄ xI 1 N⁄=

pd
mut.( )

ΔxI
mut.( )

xI
--------------------–=

u 1 2u–( )qi+{ }∏ qi∏–( ) 1 N–( ) 1 1 u–( )I–{ } 1 N qi∏–( )+=

pd
cross.( )

ΔxI
cross.( )

xI
------------------------– r Pdes 1

1
N
----–⎝ ⎠

⎛ ⎞ 1 N qi∏–( )⋅= =

1 qi∏– 1 qi∏– 1≈

pd
mut.( )〈 〉AC pd

cross.( )〈 〉AC

pd
mut.( )〈 〉AC

u 1 2u–( )qi+{ }∏ qi∏–( ) 1 N–( ) 1 1 u–( )I–{ } 1 N qi∏–( )+〈 〉AC=

1 N–( ) I
i⎝ ⎠

⎛ ⎞ uI i– 1 2u–( )i qi〈 〉AC
i 0=

I

∑ 1 N 1 u–( )I–{ } qI〈 〉AC– 1 1 u–( )I–{ }+=

pd
cross.( )〈 〉AC

r Pdes 1 N qi∏–( )〈 〉AC⋅≈

r 1 1 c–( )I–{ } 1 qI+( ) ΩI i j, , c( ) qi qI i–+( )
i j=

I j–

∑
j 0=

I 2⁄[ ]

∑– 1 NqI–( )〈 〉
AC

⋅=

r 1 1 c–( )I–{ } 1 1 N–( ) qI〈 〉AC N qIqI〈 〉AC–+{ }=
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, (H2b)

As in Appendix E, in Eqs. (H2a) and (H2b) represents the product of different s.

The evaluation method for and is quite similar to that for and

respectively. Combining Eqs. (2.14) and (2.15), ( ) is

formulated as

. (H3)

The numerator and denominator factors are evaluated by calculating (defined in

Eq. (F14)) for , 1 and 2. Note that the numerical evaluation method for

(Appendix E) also holds true when .

r ΩI i j, , c( ) qi〈 〉AC qI i–〈 〉AC N qiqI〈 〉AC qI i– qI〈 〉AC+( )–+{ }
i j=

I j–

∑
j 0=

I 2⁄[ ]

∑–

qk k qi

qi〈 〉AC qiqI〈 〉AC qi〈 〉BC
qiqI〈 〉BC qi qI( )ν〈 〉AC ν 0 or 1=

qi qI( )ν〈 〉AC

… exp N qi∏–( )qi qI( )ν 1+ h qi( )dqi
i

∏
0

1

∫
0

1

∫

… exp N qi∏–( )qI h qi( )dqi
i

∏
0

1

∫
0

1

∫
---------------------------------------------------------------------------------------------------=

J ν i,( )

ν 0= J ν i,( )

ν 2=



Page 82 of 105

Appendix I: EVALUATION OF AND

Substituting Eqs. (E2), (E8), and (E10), and are

transformed as

,(I1a)

,

(I1b)

In above derivation, we used the assumption of independent distribution at each locus.

and mean the average under the partial distribution around and

respectively. These partial distributions are proportional to and

respectively (see the definition of in Eq. (2.5)), so that, considering the

normalization factor, and are calculated from

pc
mut.( )〈 〉Q i≈ pc

cross.( )〈 〉Q i≈

pc
mut.( )〈 〉Q i≈ pc

cross.( )〈 〉Q i≈

pc
mut.( )〈 〉Q i≈ u 1 2u–( )qi+{ }∏ 1 u–( )I qi∏–〈 〉Q i≈=

u 1 2u–( ) q〈 〉0+{ }I i– u 1 2u–( ) q〈 〉1+{ }i 1 u–( )I q〈 〉0I i– q〈 〉1i–=

pc
cross.( )〈 〉Q i≈ r Pdes qi∏〈 〉Q i≈⋅=

r qi∏〈 〉Q i≈ r qi
2∏〈 〉Q i≈+=

r 1 0
1 c– cq1

c 1 c–( )q1
… 1 c– cqI

c 1 c–( )qI

1
1

qi∏〈 〉
Q i≈

–

r 1 0
1 c–( )q1 c

cq1 1 c–
… 1 c–( )qI c

cqI 1 c–

1
1

qi∏〈 〉
Q i≈

–

r q〈 〉0I i– q〈 〉1i r q2〈 〉0I i– q2〈 〉1i+=

r 1 0
1 c–( ) q〈 〉σ1 c q2〈 〉σ1

c q〈 〉σ1 1 c–( ) q2〈 〉σ1

… 1 c–( ) q〈 〉σI
c q2〈 〉σI

c q〈 〉σI
1 c–( ) q2〈 〉σI

1
1

〈 〉
σ j∑ i=

–

r 1 0
1 c–( ) q2〈 〉σ1 c q〈 〉σ1

c q2〈 〉σ1 1 c–( ) q〈 〉σ1

… 1 c–( ) q2〈 〉σI
c q〈 〉σI

c q2〈 〉σI
1 c–( ) q〈 〉σI

1
1

〈 〉
σ j∑ i=

–

〈 〉0 〈 〉1 q 0≈ q 1≈

q2β 1– 1 q–( )2β 1–

h q( )

qk〈 〉0 qk〈 〉1
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,

.

’s in Eq. (I1b) are binary variables and means the average for various

s satisfying . Although when is large and has an

intermediate value around , the number of vectors satisfying the condition

becomes extraordinarily large, we calculate an average by using only one thousand

sampling vectors. We confirmed this limitation exerted no influence upon the results from

some numerical experiments.

qk〈 〉0

qk( )q2β 1– dq

0

1

∫

q2β 1– dq

0

1

∫
----------------------------------- 2β

2β k+
---------------= =

qk〈 〉1

qk( ) 1 q–( )2β 1– dq

0

1

∫

1 q–( )2β 1– dq

0

1

∫
------------------------------------------------- k!

2β 1+( )k
-----------------------= =

σi 〈 〉
σ j∑ i=

σ1 … σI, ,( ) σ jj 1=
I∑ i= I i

I 2⁄ σi{ }
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Appendix J: EVALUATION OF AND

Substituting Eqs. (H1a), (H1b), and (E10), and are

transformed as

, (J1a)

,

(J1b)

The definition of binary variables ’s, average operations , , and

pd
mut.( )〈 〉Q i≈ pd

cross.( )〈 〉Q i≈

pd
mut.( )〈 〉Q i≈ pd

cross.( )〈 〉Q i≈

pd
mut.( )〈 〉Q i≈

u 1 2u–( )qi+{ }∏ qi∏–( ) 1 N–( ) 1 1 u–( )I–{ } 1 N qi∏–( )+〈 〉Q i≈=

u 1 2u–( ) q〈 〉0+{ }I i– u 1 2u–( ) q〈 〉1+{ }i 1 N–( )=

1 N 1 u–( )I–{ } q〈 〉0I i– q〈 〉1i– 1 1 u–( )I–{ }+

pd
cross.( )〈 〉Q i≈

r Pdes 1 N qi∏–( )〈 〉Q i≈⋅≈

r 1 N 1–( ) q〈 〉0I i– q〈 〉1i– N q2〈 〉0I i– q2〈 〉1i–{ }=

r 1 0
1 c– c q〈 〉σ1

c 1 c–( ) q〈 〉σ1

… 1 c– c q〈 〉σI

c 1 c–( ) q〈 〉σI

1
1

〈 〉
σ j∑ i=

–

r 1 0
1 c–( ) q〈 〉σ1 c

c q〈 〉σ1 1 c–
… 1 c–( ) q〈 〉σI

c

c q〈 〉σI
1 c–

1
1

〈 〉
σ j∑ i=

–

rN 1 0
1 c–( ) q〈 〉σ1 c q2〈 〉σ1

c q〈 〉σ1 1 c–( ) q2〈 〉σ1

… 1 c–( ) q〈 〉σI
c q2〈 〉σI

c q〈 〉σI
1 c–( ) q2〈 〉σI

1
1

〈 〉
σ j∑ i=

+

rN 1 0
1 c–( ) q2〈 〉σ1 c q〈 〉σ1

c q2〈 〉σ1 1 c–( ) q〈 〉σ1

… 1 c–( ) q2〈 〉σI
c q〈 〉σI

c q2〈 〉σI
1 c–( ) q〈 〉σI

1
1

〈 〉
σ j∑ i=

+

σi 〈 〉0 〈 〉1 〈 〉
σ j∑ i=
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are the same as those in Appendix E. See Appendix E for detailed methods to evaluate

those quantities.
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Appendix K: MODIFIED METHOD TO CALCULATE CROSSOVER TENSOR

is the transition probability from -string to -string after recombining with

-string, and was calculated by use of the recursion formula in Chapter 1 (Appendix B).

We here only describe the modified point for calculating using the same notation as

in Chapter 1.

Let be the -th bit on the original -string and be the -th bit on the

original -string. In Chapter 1, the probability of being 1 was formulated as

. (K1)

Although this equation is right under the assumption that bits of 1’s are equally

distributed in remaining loci, when , this equation must be modified

considering the occurrence probability of bit pairs. If we consider as the probability of

the heterogenous bit pair occurring and as that of the homogeneous bit pair

occurring, the formula for is modified as

[the sum of occurrence probabilities of bit distributions which satisfy

] [the sum of occurrence probabilities of all bit distributions]

[ditto] , (K2)

where

[the sum of occurrence probabilities of all bit distributions in -loci

pair which includes 1’s on one side and 1’s on the other side]

. (K3)

The final expression in Eq. (K3) was derived by use of the parameter defined as the

number of pairs of bit 1’s positioned at the same locus.

In order to get the modified recursion formula for , it is convenient to

consider both -string and -string rather than only. Using binary parameters

and ,

[the sum of occurrence probabilities of bit distribu-

tions which satisfy and ]

C jki( )

C jki j i

k

C jki

b j h 1+ j bk h 1+

k b j

p jh j′( ) P b j 1=( )≡ j j′–
I h–
------------=

j j′–

I h– H 0.5<

H

1 H–

p jh j′( )

p jh j′( ) =

b j 1= ⁄

= p I h– j j′– k k′– H, , ,( )⁄

p x y z H, , ,( ) ≡ x

y z

x
l⎝ ⎠

⎛ ⎞ x l–
y l–⎝ ⎠

⎛ ⎞ x y–
z l–⎝ ⎠

⎛ ⎞ H y z 2l–+ 1 H–( )x y– z– 2l+

l max 0 y z x–+,( )=

min y z,( )

∑=

l

Ph e′ j′ k′ i′, , ,( )

j k p jh j′( ) α

β

P b j α=( ) bk β=( )∧( ) =

b j α= bk β= p I h– j j′– k k′– H, , ,( )⁄
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. (K4)

We can get the modified formula for by substituting

in Appendix B with Eq. (K4).

p I h– 1– j j′– α– k k′– β– H, , ,( ) H 1 δαβ– 1 H–( )δαβ⋅
p I h– j j′– k k′– H, , ,( )

--------------------------------------------------------------------------------------------------------------------------------------=

Probh h 1+, e″ j″ k″ i″, , , e′ j′ k′ i′, , ,( )

Probh j″ j′( ) Probh k″ k′( )⋅
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Figure 2.1
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Figure 2.2
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Figure 2.3
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Figure 2.4
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Figure 2.5

10 6– 10 5– 10 4– 10 3– 10 2– 10 1–

u

10 8– 10 7–

12

2

5

1

Across

10
7

3

0.5
10 9–



Page 93 of 105

Figure 2.6
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Figure 2.7

Across

10 6– 10 5– 10 4– 10 3– 10 2– 10 1–

u

10 9– 10 8– 10 7–

100

2

5

1

50
30

3

0.5

10

20



Page 95 of 105

Figure 2.8
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Figure 2.9
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Figure Legend

Fig. 2.1. Probability distribution defined by Eq. (2.6). The epistatic number is

, and is (a) 0.1, (b) 0.01, or (c) 0.001. The Monte Carlo method

(Suzuki & Iwasa, 1997) was adopted to calculate Eq. (2.6). Using the beta distribution,

Eq. (2.5), the sample vector was generated and the value of was

calculated. Each graph was made from the histogram created with one million sample

vectors.

Fig. 2.2. Mean number of generations until the advantageous sequence first appears in

the population ( ) or until the advantageous sequence dominates the population

( ). Horizontal axis is (a) for FPAP mode, or (b) for MPIP mode. The line with

open circles ( ) show the results for , and the line with solid circles ( ) show

the results for given by the direct GA simulation. The lines without circles are the

theoretical results given by the formula for large (the fine curved lines are for

and the thick ones are for ). The values of the other parameters are ,

(in the simulation) or 4000 (in theoretical estimation), and .

Fig. 2.3. The crossover’s acceleration rate for FPAP mode ( and

) as a function of the mutation rate . The values of the other parameters are

and (in the simulations) or 500 (in theoretical estimation). Here

and in the subsequent figures (Figs. 2.4~2.9), the open circles ( ) show the results

obtained from the vector representation simulation, the solid circles ( ) show the

results obtained from the GA simulation, thick curved lines show the theoretical results

obtained from the large- analysis, and fine curved lines show those obtained from the

small- analysis.

Fig. 2.4. The crossover’s acceleration rate for FPAP mode ( and

). Horizontal axis is the mutation rate . Parameters are and

(in the simulations) or 2000 (in theoretical estimation).

Fig. 2.5. The crossover’s acceleration rate for FPAP mode ( and

P Q( )

I 12= β Neu=

qi{ } Q qi∑=

T v T c+

T d c r

T v T c+

T d

β T v T c+

T d I 20=

N Ne 4096= = u 0.002=

Across c 0.015=

r 1= u

I 12= N Ne 512= =

β

β

Across c 0.015=

r 1= u I 12=

N Ne 2048= =

Across c 0.015=
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) as a function of the mutation rate . Parameters are and

.

Fig. 2.6. The crossover’s acceleration rate for (a) FPAP mode ( and

) or (b) MPIP mode ( and ). Horizontal axis is the mutation rate

. Numbers in figures are population sizes ( ). The epistatic number is .

Fig. 2.7. The crossover’s acceleration rate for FPAP mode ( and

) as a function of the mutation rate . Parameters are and

(in the simulation) or 2000 (in theoretical estimation).

Fig. 2.8. The crossover’s acceleration rate for (a) FPAP mode ( and

) or (b) MPIP mode ( and ). Horizontal axis is the mutation rate

. Numbers in figures are population sizes ( ). The epistatic number is .

Fig. 2.9. The crossover’s acceleration rate for (a) FPAP mode ( and

) or (b) MPIP mode ( and ). Horizontal axis is the mutation rate

. Numbers in figures are population sizes ( ). The epistatic number is .

The fluctuation of for low in the results obtained from the small- analysis is

caused by the numerical error which happens in calculating a product of matrices of a

large dimension ( ).

Fig. 2.10. Illustration of the roles of crossover in GAs. (a) Building block hypothesis

and implicit parallelism (Conventional). (b) Explicit serialism (Proposed).
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