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Preface

Recently in the engineering field, genetic algorithms (GAS) have attracted a great deal
of attention as random search methods for optimization. In GAs, each design of an object
is typically coded in a gene-like bit sequence, and in imitation of biological evolution, the
optimal (or a close to optimal) design is searched for by operating evolutionary operations
(selection, mutation, and genetic recombination) on a population of those sequences.
Among these operations, the most characteristic operation of GAs is the genetic
recombination, or crossover operation. Since GAs without crossover are nothing more than
a parallel hill-climbing method, crossover is a key operation to achieve the optimal design
in the shortest number of trials. In most studies using GAs, however, the effectiveness of
GAs is questionable. There is a lot of literature on applying GAs to industrial problems,
and yet those papers report that the performance of GAs varies diversely depending upon
the genetic parameters such as the mutation rate, crossover rate, selection scheme, and
fitness landscape on the searching space represented by bit sequences.

Among these various schemes of GAs, | first focus on the fitness landscape. | propose a
conspicuously peaked landscape, which stemmed from a study of machine language
genetic programming system. When GAs are applied to optimization of a long bit sequence
coding a set of machine instructions, GAs must search for an appropriate set of bits which
composes some advantageous set of instructions. Mutations of one or few bits have no
influence on the final function of a program, and a program can enjoy highly functional
advantage only when al the component bits are present in the same program (individual).
This fitness model makes a population of programs evolve with an intermittent process
wherein drastic adaptive evolution occasionally punctuates long period of stases (neutral
evolution), making the evolutionary speed principally determined by the waiting time until
creation of an advantageous set of bits. To study this time, | here devise a fitness function
for only one advantageous function (which | call a Babel-like fitness landscape in Chapter
2) and study the rate of evolution, especialy focusing on the acceleration rate by crossover.

Estimates are made using the following three different methods; the theoretical analysis
with mathematical formulas, the numerical method using the vector representation of a
population, and the direct simulation method with GAs operated on a population of bit

sequences. In Chapter 1, | first develop the second numerica method and simulate a
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generation cycle with recurrence formulas. It is shown from the result that at an
intermediate mutation rate crossover can greatly reduce the waiting time until an
advantageous set of bits dominates the population. A brief mathematical anaysis is aso
given in this chapter to explain the results. Chapter 2 is devoted to the analysis examining
how much crossover reduces that waiting time and accelerates evolution. | develop a more
detailed analytical methods and estimate the acceleration rate by crossover under different
values of genetic parameters. In order to make sure of the theoretical result, experiments
using the other two numerical methods are aso presented in this chapter. From these
results it is concluded that crossover greatly enhances the rate of evolution when genetic
parameters are adjusted appropriately.

In the following, | explain the contents of these two chapters in more detail:

Chapter 1. The Optimum Recombination Rate that Realizes the Fastest Evolution of a
Novel Functional Combination of Many Genes

The effect of genetic recombination (or crossover) by sexual reproduction is studied on
the time until a novel set of genes performing a combined function appears, spreads, and
becomes fixed. First, we study a haploid finite population with many binary loci, in which
only one sequence (called a functional gene set) is significantly advantageous over the
others. The time for evolution of the function (T,) is defined as the mean number of
generations until the advantageous sequence dominates in an initially random population.
When the sequence diversity is initially stored sufficiently, the evolution time T is roughly
the product of waiting time until the appearance of the advantageous sequence (creation
time T.) and the average number of appearances of the advantageous sequence from its
absence until its fixation (destruction number N,). Mutation and crossover reduce the
former but enlarge the latter. If the mutation rate is low, there is an intermediate optimal
rate of crossover that achieves the minimum T,. In contrast, if the mutation rate is
sufficiently high, T is smallest without crossover. Second, the break-down of established
functions by recurrent deleterious mutation is examined in an infinite population. The
number of functional genes maintained monotonically decreases with the recurrent
deleterious mutation rate. Thus in higher organisms having many functional sets of genes
in the genome, the mutation rate must be kept very low to preserve them, and hence a high

crossover rate made possible by sexual reproduction is important in accelerating the
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evolution of novel functional sets of genes. Implication of this long-term advantage of

recombination in the maintenance of sexual reproduction in higher organisms is discussed.

Chapter 2. Crossover Accelerates Evolution in GAs with a Babel-like Fitness Land-
scape: Mathematical Analyses

The effectiveness of crossover in accelerating evolution in genetic algorithms (GAS) is
studied with a haploid finite population of bit sequences. A Babel-like fitness landscape is
assumed. There is a single bit sequence (schema) that is significantly more advantageous
than all the others. We study the time until domination of the advantageous schema (T ).
Evolution proceeds with appearance, spread, and domination of the advantageous schema.
The most important process determining T, is the appearance (creation) of the
advantageous schema, and crossover helps this creation process and enhance the rate of
evolution. To study this effect, we first establish an analytical method to estimate T with
or without crossover. Then, we conduct a numerical analysis using the frequency vector
representation of the population with the recurrence relations formulated after GA
operations. Finally we carry out direct computer simulations with smple GAs operating on
a population of binary strings directly prepared in the computer memory to examine the
performance of the two analytica methods. It is shown that T, is reduced greatly by
crossover with a mildly high rate when the mutation rate is adjusted to a moderate value
and that an advantageous schema has a fairly large order (the number of bits). From these
observations, we can determine implementation criteria for GAs, which are useful when we
apply GAs to engineering problems having a conspicuously discontinuous fitness

landscape.
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CHAPTER 1

The Optimum Recombination Rate that Realizesthe
Fastest Evolution of a Novel Functional Combination of
Many Genes

The paper was published in Theor. Pop. Biol. (51, 185-200) in 1997.
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I ntroduction

Questions on the evolution of sex and recombination have been among the major
unsolved issues in evolutionary biology over the decades. Various hypotheses have been
proposed to explain why sexual reproduction is maintained in most higher organisms in
spite of a high cost of maintaining it (Williams, 1975; Maynard-Smith, 1978; Lloyd,
1980; Michod and Levin, 1988). Recombination by sexual reproduction accelerates
evolution by making advantageous combinations of genes (Crow and Kimura, 1965;
Maynard-Smith, 1971; Felsenstein, 1974; Takahata, 1982), or by excluding deleterious
genes more effectively (Muller, 1964; Haigh, 1978; Kondrashov, 1988; Redfield, 1994;
Kondrashov, 1994). Genetic diversity arising from recombination is beneficial in the
continuously changing environment (Maynard-Smith, 1971; Sasaki and Iwasa, 1987) or
when subject to attack by pathogens or parasites (Hamilton, 1980; Hamilton et al., 1990).

Above al, the possbhility that genetic recombination makes advantageous
combinations of genes and accelerates evolution, which was originally suggested by
Fisher (1930) and Muller (1932), has been examined extensively since the first
guantitative calculation by Crow and Kimura (1965). Various models have been studied,
and a number of statements have been made in different ways to describe this long term
advantage of recombination (Crow and Kimura, 1965, 1969; Bodmer, 1970; Eshel and
Feldman, 1970; Maynard-Smith, 1971; Karlin 1973; Felsenstein, 1974; Takahata, 1982).
The evolutionary acceleration mechanism asserted in these papers are summarized as
follows, recombination speeds the response to selection by disrupting inter-locus linkage
disequilibrium that is continually produced by random genetic drift. This inter-locus
linkage disequilibrium was first comprehensively studied by Hill and Robertson (1966)
and called “Hill-Robertson effect” by Felsenstein (1974). The latter author also pointed
out that the authors using the finite population models had found the advantage of
recombination whereas those using the infinite population models had found none.

The studies about advantage or disadvantage of sexual recombination from the
individual selection point of view was begun by Nei (1967, 1969). He introduced the
recombination-modifying locus (i.e., the special locus that controls the recombination
rate between the major selected loci) and studied what kind of allele can increase in this

modifying locus. This work had been generalized by Feldman and others using two
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major selected loci (Feldman 1972; Feldman et al., 1980; Feldman and Liberman, 1986;
Liberman and Feldman, 1986), and was established as “the Reduction Principle’
asserting that recombination is reduced on an appropriate initial condition. From the
work by Felsenstein and Yokoyama (1976), this approach was extended to the many
(more than two) maor locus model. They assumed a multiplicative selection scheme
between twenty major loci and found an increase of recombination under an appropriate
condition, which extended the Fisher-Muller theory to the individual selection paradigm.
Since this work, a number of authors have studied many locus models with the
recombination modifier under different fitness schemes, recombination patterns, and so
on, and they have set forth various conditions for advantage or disadvantage of genetic
recombination (Maynard-Smith, 1980, 1988; Bergman and Feldman, 1990, 1992;
Zhivotovsky et al., 1994). In these studied, however, there are as many models that |ead
to reduction of recombination as its increase.

Recently in the engineering field, genetic algorithms (GAs) have attracted a great deal
of attention as random search methods for optimization (Holland, 1992; Goldberg, 1989;
Mitchell et al., 1991; Forrest and Mitchell, 1993; Forrest, 1993; Otto et al., 1994; Vose
and Wright, 1995). In GAs, each design of an object is typically coded in a gene-like bit
sequence and a population of those sequences is prepared. The optimal (or a close to
optimal) design is searched for by evolutionary operations including reproduction and
competition between sequences over many generations, which imitates biological
evolution, such as natural selection, mutation, genetic recombination, and random drift
due to finite population size.

Among these operations, the most characteristic operation of GAs is the genetic
recombination, or crossover operation. Since GAs without crossover are nothing more
than a parallel hill-climbing method, crossover is a key operation to achieve the optimal
design in the shortest number of trials. From this intuitive reasoning, it immediately
follows that the theoretical study about the role of crossover in GAs should be closely
related to the biological theory asserting that recombination accelerates evolution. Otto et
al. (1994) studied the advantage (or disadvantage) of sexual recombination from this
point of view. They adopted the specific fitness function in the twenty locus model and

examined the waiting time until the creation and the domination of the most
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advantageous sequence of genes. In spite of such a work, however, there are no general
theories on the “optimal” rates of crossover and mutation established in GAs. A general
theoretical study on the role of crossover in the rate of adaptive evolution is of large
practical importance.

The primary aim of this chapter is to present a biological theory explaining the
maintenance of sex from the viewpoint of the long range advantage of recombination.
The inspiration was given from the study of GAs. We consider the case in which the
novel function is advantageous only if a large number of genes are combined. A novel
function achieved by a combination of a large number of genes enjoys a very high
selective advantage only when all component genes are present in the same individual,
and most single mutations are supposed to be neutral if they occur separately. This very
epistatic fithess scheme was devised by analogy to the fitness landscape of MUNCSs, the
evolutionary programming system, proposed by Suzuki (1996). In this system, a novel
advantageous function is achieved by a subroutine composed of a consecutive bit
sequence in the memory. Driven by GAs, MUNCSs evolve functional subroutines one by
one, and eventualy establish a very advantageous function in program memories. Fig.
1.1 symbolically illustrates the evolutionary picture with which MUNCSs proceed. In this
figure, each individual is a haploid genome that is a sequence of binary (0-1) aleles and
is represented in a row of binary matrix. A part of this bit sequence may correspond to a
set of genes with a combined function, and through the processes shown in Fig. 1.1(b),
those functional sets of genes appear and dominate the population. As a consequence,
evolution proceeds as long neutral evolutionary phases (Kimura, 1983) and intermittent
short adaptive evolutionary phases, making a resultant stairs-like growth curve of the
mean population fitness. See Suzuki (1996) for more detailed explanation of this picture.

Based upon this evolutionary picture, we conduct two computer simulations to
examine the two key parameters; the interval time between steps of the fitness growth
curve which determines the evolutionary speed and maximum number of steps which
determines how many functions can be stored in the genome. In the following, to
examine the effect of genetic recombination on the evolutionary speed, | first introduce a
many-locus finite-population model and study the time until a novel function comes to
predominate. Then some mathematical analysis is given to explain the simulation result

and to estimate the maximum crossover rate for the fastest evolution to occur. Although
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this first simulation is executed using the vector representation of a population,
evolutionary procedures operated on that vector are models of GA operations, so that the
derived result showing the crossover’s acceleration effect of evolution is immediately true
of GAs used for a population of bit sequences. After that, | study the number of
functional gene sets maintained against deleterious mutation pressure in an infinite
population. Finally, various implications of the model are discussed, including the

effectiveness and limitation of GAS.
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Evolution of a Novel Function and Optimal Recombination

Here | examine a model for the evolution of a single novel function and study the
optimal crossover rate that achieves the fastest evolution. The evolutionary speed is
measured by the average number of generations until the advantageous combination of
genes dominates the population which is called domination time, T,. (Here the term
‘domination’ does not mean that one chromosome reaches 100%. The precise definition
of domination will be given later). Note that in the finite population, first several
advantageous haplotypes might disappear by chance and the final domination of the
advantageous haplotype is generally occasioned not by its first appearance but by the
later one. Accordingly, as a very rough estimation, T, is the product of the average
number of generations until the occurrence of a haplotype (combination of genes) having
an advantageous combination of genes (creation time, T_.) and the average number of
occurrences of the advantageous haplotype from its absence until its fixation in the
population (destruction number, N);

Ty = T. Ny (L1)
Although both T. and N, are average values of random variables and T (the average
value of the product of those random variables) cannot be precisely formulated by the
product of the average values, we here considered creation and destruction to be
independent processes and neglected the correlation term between them. Moreover, we
neglected the time needed for accumulation of the population diversity on the assumption
that the initial distribution is completely random, and also neglected the time needed for
the advantageous haplotype to spread through the population because its relative
advantage over the others is assumed to be significantly large. Since crossover is the
randomization process in the nonfunctional region shown in Fig. 1.1, T, decreases and
N4 increases with the crossover rate. This makes T, minimum at an intermediate
crossover rate, which is estimated in the finite population.

Basic assumptions of the model are as follows:

findividuals are haploid and its genome is represented by a string of a large number of

binary (0-1) bits.
fAmong all sets of genes, a single sequence, denoted by [11---1], has fitness by far

larger than the others, and al the other sequences are the same in fitness.
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IMating pair is randomly chosen from the sufficiently large population so that the
correlation between the bit distributions of the mating pair is negligible.
Owing to this second assumption, creation time T is a very important random variable,
which eventually determines evolutionary performance.
Let
N = population size;
i = number of loci in which the state is “1”;
x; = frequency of the population of sets of genes with i of bit 1’s;
| = total number of bits in the set of genes, or
number of genes necessary to realize a novel advantageous function
(we hereafter cal this ‘functional order’);
s = selection coefficient of the advantageous set of genes (i = |) relative to the
others (i < 1) (s can be large);
u = mutation rate (probability of bit flipping) per locus (bit position) per

generation;

O
I

probability of the crossover point (chiasma) to occur between neighboring
binary loci;

ratio of the fraction of population which participate in the genetic

_1
I

recombination.
Two parameters, ¢ and r, specify crossover rate. When r <1, the whole population is
divided into two parts, the recombining subpopulation and the non-recombining
subpopulation. At this time the random mating assumption, which does not literally hold
true, is considered to be approximately valid in that participants of the genetic
recombination is randomly chosen from the population at each generation. The state of a
population is described by frequency vector (X, Xy, -+, X;) . The next generation vector
(x;) is calculated by the recursion formulas for selection, mutation, crossover, and

random drift operation as follows:

sel.
— X ((1+5s08;)/(1+sX)) , (1.2

X = Y My, (1.3)
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Cross. ! !

X = @=0x+r Y Y x%C (1.9
j=0k=0
driftg . . . :
X; N -(number of choices of i th state in N times roulettes), (1.5)

is the transition probability from |

where M ;; is the mutation rate from j to i, and C;

are given in

to i after recombining with k. (Detailed expressions of M;; and C;

Appendix A and Appendix B respectively.) The probability for i th state to be chosen at
roulette in Eq. (1.5) is determined to be proportional to x;. The initial state is assumed to
be a binomial distribution x; = (:)-(1/2)' , indicating that an allele at each locus is
chosen randomly (fifty-fifty) from binary bits in an infinite population. Starting from this
initial state, vector (x;) is calculated recursively with above four formulas until the
frequency of the advantageous set of genes x; exceeds 0.5. (The reason for the choice of
the threshold value of 0.5 will be discussed later.) Though x, takes small positive values
after operation with Egs. (1.3) and (1.4), those values are by far smaller than 1/N so
that x, becomes zero after operation with Eq. (1.5) in amost al generations. The term
“occurrence” of the advantageous set of genes which was used at defining T, and N,
means that X, jumps up to 1/N or more, after operation with Eq. (1.5). Computer
simulations are run on SPARC station 10 model 51 (50MHz). For each set of parameters,
numerical trials are executed ten times and the mean value of T is calculated.

Figs. 1.2 and 1.4 show the results about c-dependence at r = 1 (al individuas
participate in crossover) and Figs. 1.3 and 1.5 show the results about r-dependence at
c = 0.5 (the occurrence rate of crossover points is high enough to make each locus
independent of the others). The population size N is taken to be 10000 through all
results. These four figures show that when mutation rate u is low, domination time T is
the shortest at certain intermediate values of ¢ and r, and larger or smaller than this
optimal value makes T, larger. This implies that evolution is the fastest for an
intermediate recombination rate. When u is high, on the other hand, T is small enough
even a c =0 orr =0 (Figs. 1.2 and 1.3). Therefore optimum value of ¢ or r is
minimum if the mutation rate is sufficiently high, implying that the evolution of a novel
function is fastest if there is no recombination.

Figs. 1.4 and 1.5 show the results about |-dependence. Note that in both figures

domination time T, grows geometrically with functional order |. (It took about one
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month on SPARC station 10 to make Figs. 1.4(a) and 1.5(a) for | = 24.) The upper
limit of ¢ above which T, becomes extremely large decrease with | (Fig 1.4), but the
upper limit of r isindependent of | (Fig 1.5).

Analysis lumping neutral sets of genes.

The above simulation result can be more clearly understood by the following
argument in which neutral sets of genes are lumped together according to the number of
1's. Let x, be the frequency of the advantageous set of genes. The recursion relations for

X, under selection, mutation, and crossover are:

l.
X Se—)((1+s)x,)/(1+sx|) , (1.6)
mut. I
X, =X —Iu(xI —(%) ) , (1.7)
Cross. 1-x
X =X —r(l—Phet(q))I—_—a(X. -q) (1.8)

where ¢ is the frequency of allele 1’s at each locus and P, () is the probability that an
advantageous set of genes is present after crossover between an advantageous set of
genes and a neutral set of genes. Egs. (1.7) or (1.8) hold true around the stationary
distribution for mutation or crossover which we assumed in the derivation of those
equations respectively (see Appendix C).

Pret(d) is a function sensitive to g, and q increases abruptly during the spreading
process of the advantageous set of genes. We here, however, are interested in the state of
the population before or immediately after occurrences of advantageous sets of genes so
that we give the expression around the random population denoted by q = 1/2;

1 3cC 3 1
P (—) = (1+—){—(1—c)+—A/1—20+9CZ}
net\2 J1-2c+9c?/ |4 4

For the derivation of this equation see Appendix D, where we assumed that | is large

(1.9)

and that O-1 distribution is independently determined by q = 1/2 at each locus. From
this equation, we can obtain two approximate equations,

Phet(%) = (1-c)!-3 if ¢ isvery smal (c«1), (1.10)

and
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phet(l) = 2(§)| if ¢ is maximum (c = Z). (1.12)

2 4
See Appendix D for the derivation of Eqg. (1.10).

NIk

According to Egs. (1.6)~(1.8), selection increases X, but mutation and crossover
increase or decrease x; depending upon whether X, is smaller or larger than threshold
values. Threshold values are 3.5' in Eq. (1.7) and g' in Eq. (1.8). An increase of X,
below these threshold values decreases creation time T, and makes T, smaller in lower
mutation or crossover rates, and a decrease of x; above these values increases destruction
number N, and makes T, larger in higher mutation or crossover rates. | consider these
two situations subsequently.

(i) Creation time: From Egs. (1.7) and (1.8), we can see that around the random
distribution mutation increases x, from zero to (1/2)'lu, and crossover increases X,
from zero to (1/2)'r(1—P,(1/2)) . Here g = 1/2 was substituted because on the
present assumption, bit O and bit 1 are evenly distributed in the absence of the

advantageous set of genes. The sum of these terms is
(L/2)!{lu+r(1 =P, (1/2)} (1.12)

which is roughly the value of x, after the transition by Egs. (1.3) and (1.4). Although
this term is small, it is very important as it causes the creation of novel advantageous
sets of genes after operation with Eq. (1.5). We can get the theoretica formula of the
creation time T, noting that the expected creation time is the reciprocal of the creation
probability that is given by Eq. (1.12) divided by 1/N;

T, = [N(%)I{ lu+ r(l—Phet(%))H_l . (113)

Substituting Egs. (1.10) or (1.11) into Eq. (1.13), we can get T, atr =1 as a
function of low c or T, at ¢ = 1/2 as afunction of r respectively. These dependences
are illustrated in Figs. 1.2~1.5 which show that T. agrees qualitatively well with the
dependence of T for lower c or r. Although T, is proportional to 2! and causes very
large values of T, at large | (Figs. 1.4(a) and 1.5(a)), genetic recombination which
randomizes nucleotides quickens the appearance of an advantageous set of genes and
reduces T, considerably at low u.

(if) Destruction number: From Egs. (1.7) and (1.8), the destruction by mutation and
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that by crossover are lux, and r(1—P,.(@))((1—x,)/(1-q'))x, , respectively. By
substituting x; = 1 for X, in these terms, we can see the difference between mutation
and crossover as to destruction; when x; = 1, the former is positive but the latter is zero.
(Here we extended Egs. (1.7) and (1.8) which accurately hold true only around stationary
distribution of each process.) This implies that mutation destroys the advantageous set of
genes even when it is fixed in the population but crossover does not destroy the
advantageous set of genes once it has been fixed. To create a new advantageous set of
genes without destroying old functional sets of genes is possible by crossover, but not by
mutation.

In the present simulation, the relative fitness advantage of the functional gene set is
assumed to be so large that advantageous sequences which could escape from the initia
danger of extinction can amost aways dominate the population. The created
advantageous set of genes is most easily eliminated immediately after its occurrence so
that the destruction number N is crucialy dependent upon whether or not selection can
overcome the destruction by mutation and crossover at x, ~1/N and q = 1/2. This
state hardly differs from the stationary state of mutation and crossover and we can use
Egs. (1.7) and (1.8) for analysis. Assigning q = 1/2 in Eg. (1.8) and multiplying Egs.
(1.6), (1.7), and (1.8) with approximation (1/2)' «x, «1, we obtain the condition for
the spread of the advantageous set of genes;

(1+s)(1—|u){1—r(1—Phet(%))%>l . (1.14)

Substituting P.(1/2) in Eq. (1.14) by Eq. (1.9) gives the condition for the spread,
which is illustrated in Fig. 1.6 for different values of s and |. For the two special cases
of r =1 orc = 0.5, we substitute Egs. (1.10) or (1.11) for P,.(1/2) in Eq. (1.14)
and get the following spread conditions;

1

c<l-{(l+s)(1—Iu)} -3 ifc«l andr =1, (1.15)
and
r<l—{(1+s)(1-lw}L  ifc= % (1.16)

Approximation (3/4)! «1 was used in derivation of Eg. (1.16). These conditions agree

with the values of ¢ or r above which T, becomes extremely large in Figs. 1.2~1.5.
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Even if advantageous sets of genes are created by mutation or crossover, if its fitness
is not so large as to satisfy above inequalities, the destruction number N, becomes very
large, which brings about a very large value of T .

(iii) Upper limit of x,: Because mutation destroys the sets of genes that have aready
spread through the population, the occupation by the advantageous set of genes cannot
be complete, namely, x; cannot reach 1. With approximation x; ~1, we can give the
upper limit of x, as follows. When x, ~1 and q~ 1, neutral sets of genes have so many
bit 1's that the probability that an advantageous set of genes remains intact after
crossover with a neutral set of genes is nearly equa to one (namely, Pp..(q) ~1);
therefore x, is kept unchanged through Eq. (1.8). So, multiplying Egs. (1.6) and (1.7)
and requiring that x, becomes stationary under the approximation (1/2)! «1, we can
get

X, = l—(1+%)lu. (1.17)

This says that, for example, when | = 20, u = 0.01, and s = 1, x; cannot exceed 0.6.
Even if the advantageous set of genes is created and spread, its frequency is limited by
the value of Eq. (1.17). This is the reason why the threshold value of domination was

chosen to be 0.5 in this ssimulation.
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Number of Functional Gene Sets Maintained against Mutation

Here | study the number of functional sets of genes maintained against the pressure of
recurrent deleterious mutations. Basic assumptions of the model are as follows:

TAIl functional sets of genes in the genome are ordered and numbered (indicated by
j =1,2,3,---). A functional set of genes (e.g. j) is effective only when all earlier

functional sets (numbered 1, 2, ---, j —1) exist in the same genome, and is neutral
(nonfunctional) otherwise.
fIFitness grows in geometric progression with the number of functional sets of genes.
fiCrossover is neglected.
fPopulation size is infinitely large.
Crossover was neglected because it no longer breaks down the sets of genes which have
already been fixed in the population and hence has no direct effect on the number of
stable sets of genes. The maximum number of advantageous sets of genes which can
exist stably in the genome is estimated by the simulation based upon standard population
genetics.
| use the following notations:

yj = frequency in the population of individuals with functional sets of genes
numbered 1, 2, ---, | but not functional set of genes numbered j + 1;

w; = (1+s)) = fitness of individual which has functional sets of genes
numbered 1, 2, ---, j but not | +1;

f, = frequency threshold determining domination (namely, some gene set is
regarded as dominating the population when its frequency exceeds this
value);

py = probability of destruction of the functional gene set by mutation per gene
Set per generation;

p. = probability of creation of the functional gene set by mutation per generation.

Here we consider p, « py assuming that in number of sequences functional sets of genes
are far fewer than the neutral ones. Population is described by the frequency vector
(Yo Y15 Y25 =) -

Generaly speaking, frequency y; may include individuals which have some of the

functiona gene sets numbered j+2,)j+3,---, but gene set number j+1 is not
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functional. Those cases are eliminated quickly because recurrent mutation pressure
makes those later gene sets nonfunctional. | therefore assume that individuals of Y have
none of those later gene sets. Then zj, which is defined as the frequency in the

population of individuals with functional set of genes numbered j, is given by

G YT a2t

| calculate J, defined by
732 f:225, 4
in the stationary vector in the ssimulation. With this definition, J means the maximum
number of functional sets of genes which can be occupied by the fraction of population
whose ratio exceeds f, or in other words the number of functional sets of genes which
can dominate the population.
The transformations of (y)) through selection and mutation are formulated as

follows:

sel.
yj — (ijj)/(Zyj,wj,
K

N

(1.18)

y, "5 i L-p)l Pl (A —py; +(L-ppipg Yy (1.19)
i’=0 ir=j+1

The initial vector is (1,0,0,---) representing a population of individuals with no

functional set of genes.

Fig. 1.7(a) shows the result of simulations under frequency threshold f, = 0.¢. As far
as 0 < p. « py is satisfied, J is insensitive to p, and changes only with p; and s. Asis
evident from Fig. 1.7(a), the lower p, is and the larger s is, the larger J is. However for
larger s, especially when s>0.3, J becomes saturated and insensitive to s. These
saturated values of J are plotted with marked points in Fig. 1.7(b), which shows J
decreases roughly in inverse proportion to py.

This result is explained as follows. According to Eq. (1.17), the parameters s, p,, and

f, must satisfy the following condition for domination;

1
1—(1+§)pd2 fe,
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where lu~ p; was substituted. Though this inequality is derived for the single gene set
model, this can be used for the multiple gene set model by substituting py with J- py.

Thus the condition for J functional gene sets to be able to predominate is given by

_S

J-pdS(l—ft)1+S, (1.20)
or when s = oo,
J-lu~J-pg<1-f, (1.21)

J as a function of p, given by Eq. (1.21) is also illustrated in Fig. 1.7(b) with a solid
line, which agrees well with marked points by simulation.

According to Egs. (1.20) or (1.21), no matter how advantageous the functional gene
set may be, J, the maximum number of those gene sets which can dominate the
population decreases in inverse proportion to u (the mutation rate). This relation between
J and u is the same as what Eigen et al. (1981) mathematically derived with an “error
catastrophe” argument about genetic information. It is concluded from this simulation
that the lower the mutation rate u is, the more functiona sets of genes can be
maintained. In other words, u must be low in order for many functional sets of genes to

be maintained.
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Discussion

From the study of the evolutionary speed, i.e., the mean number of
generations until occurrence and domination of the advantageous set of
genes, it was concluded that when the mutation rate is very low, fairly
frequent crossover can greatly reduce the time until the domination of a
functional set of genes, but when the mutation rate is high, crossover does
not enhance the rate of evolution. On the other hand, it was also shown
from the second simulation that a high mutation rate causes problems. The
mutation rate needs to be low to keep many functional sets of genes stable
in the genome. Thus it has become evident that in the evolutionary model
wherein the unit of fixation is not one gene but many genes with a
combined function, crossover can be a process promoting faster evolution.

We now discuss some implications of these results.

Evolutionary Maintenance of Sexual Reproduction: As is shown by the second
simulation, once a species has stored many functional genes in the genome, the mutation
rate must be low to preserve them. In higher organisms this requirement is met by a very
low error rate in DNA replication, made possible by molecular machinery for
proof-reading. Consequently in those species, the mutation rate is kept very low
(typically about 10—° per locus per generation), and evolution without crossover is very
slow in creating a novel function. In Figs. 1.2~1.5, T is very large for low u and ¢ (or
r). Hence, in order that such a species might create a novel advantageous function (by
accumulating a new advantageous set of genes) and evolve, crossover is indispensible.
T4 in Figs. 1.2~1.5 comes to decrease quickly as ¢ or r increases. The rate of this
acceleration is known from the ratio of T without crossover to T, with crossover. When
r = 1, thisratio is written using Eg. (1.10) and (1.13) approximately as follows;

C|Withoutcrossover _ |U+(1—(1—C)|_3)~U+C
lu u -

(1.22)

C|withcrossover

This formula can be very large when the mutation rate is kept very low as is typical for
higher organisms. Higher organisms which had stored many functional genes in their
genome could have evolved quickly only through this acceleration effect by crossover.

This gives a group selection explanation for why sexual reproduction has been
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maintained in higher organisms but not in viruses or bacteria. When thinking of the unit
of genetic fixation as a set of genes which has a combined function, the destruction
process by crossover is overcome by the large fitness of advantageous sets of genes, and
crossover can be a beneficial process for fast evolution.

Comparison with Previous Models: The present argument explaining the evolutionary
advantage of sexua reproduction is due to the capability of genetic recombination to
shorten the waiting time until the occurrence of an individual having an advantageous
combination of genes (i.e., the creation time of a ‘hopeful monster’). This creation
process is enhanced by disruption of the random linkage disequilibrium referred to as the
Hill-Robertson effect, so that the theory presented in this chapter might safely be called
the Fisher-Muller theory that has been extended to the many-locus model. In this
subsection | note the fitness landscape assumed in the many-locus models and argue the
difference between the previous models and the present one.

Because the conventional Fisher-Muller theory is essentially based upon the
recombination’s ability to disrupt linkage between advantageous mutant alleles to create
a double mutant chromosome, many authors who had examined the Fisher-Muller effect
in the many-locus models had adopted the multiplicative fitness scheme, i.e., the scheme
in which fitness of a whole chromosome was given by w = (1+s)!, where s is the
selection coefficient of a single advantageous mutant allele and i is the number of
advantageous dleles included in the chromosome (Crow and Kimura, 1965;
Maynard-Smith, 1971; Felsenstein, 1974; Felsenstein and Yokoyama, 1976). In the
individual selection paradigm, many other different schemes have been studied.
Maynard-Smith (1980, 1988) introduced the gaussian fitness scheme between major loci,
and found that directional selection favors recombination whereas stabilizing selection or
frequent changes in the direction of selection diminishes recombination. Bergman and
Feldman (1990) examined the similar model not only in gaussian but also in sigmoidal
or exponential fitness scheme. Bergman and Feldman (1992) took a more general fitness
scheme which is constituted by sine curves of different frequencies. Zhivotovsky et al.
(1994) calculated using some weak additive-by-additive epistatic selection. Otto et al.
(1994), whose study is not an individual selection approach, assumed a specific
continuous fitness function on twenty maor loci and examined the condition under

which recombination is an advantageous process.
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All these fitness functions are a continuous or quasi-continuous function of the
number of advantageous mutant aleles in the chromosome, i. This is because these
previous arguments are essentially based upon the notion that evolution proceeded with
substitutions by single advantageous (or deleterious) mutant alleles or that a single
mutant allele causes a phenotype change and more or less changes the fitness value of
the whole chromosome. In the basic evolutionary picture of the present model, however,
adaptive evolution is considered to proceed with occurrences and fixations of not single
mutant genes but the advantageous combination of many genes. Since the single mutant
alleles are assumed to be neutral in fitness, the fitness function of a whole chromosome
is a strikingly discontinuous function of i, being flat except its maximum valueati = I.
The present argument, that asserts the recombination’s ability to disrupt linkage to create
an advantageous combination of many genes, is different from the conventional
Fisher-Muller theory that is essentially based upon the recombination’s ability to create
an advantageous combination of two genes.

The present model considers evolution to be a process going forward with
accumulation of blocks, i.e., the advantageous (coadapted) sets of genes. For evolutionary
genetics, this begs the question of most difficulty, namely, what selective regimes favor
formation of such blocks in the first place. It is true the present argument cannot answer
all the important problems of evolution, and yet we can think of many examples in living
organisms which might correspond to such a block; a set of enzymes constituting a
metabolic cycle, a set of structural proteins composing a novel advantageous organ, a set
of genes causing some advantageous behavior, morphology, mimicry, and so on. A single
component gene constituting such a coadapted gene set cannot be advantageous by itself,
but can execute advantageous function when all component genes are present in the same
individual .

Evolutionary Discontinuity: According to Figs. 1.2~1.5, recombination shortens or
lengthens the time until the domination of an advantageous set of genes depending upon
whether the spread condition holds or not. When r = 1, this condition is given by Eq.
(1.15), which can be transformed approximately as follows,

1
c<1—{(1+s,)(1—|u)}_m~sl‘T'3t‘~I§ . (1.23)

This equation states that recombination at a constant rate of chiasma probability allows
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the spread of a strongly advantageous set of genes only, whose ratio of fitness as
compared to the number of component genes (s/1) is large. In contrast recombination
eliminates mildly advantageous set of genes whose s/I is small. Therefore, once
recombination is programmed at a constant rate within the genetic structure of
organisms, it functions to select only the gene combinations performing strongly
advantageous function. When considering the evolution of the function achieved by a
large number of genes, recombination makes evolution a discontinuous process.

According to the paleontologic studies examining fossils, the morphology of species
seems to have changed discontinuoudly at intervals of millions of years, and between
those drastic changes, morphology seems to stay unchanged (Williamson, 1981,
Malmgren et al., 1983). The drastic adaptive evolution coming from the creation of very
advantageous combinations of genes might make a new advantageous organ like an eye
and bring about the dramatic morphological change of species. This might explain the
observed evolutionary discontinuity.

Genetic Algorithms. As described before, the basic evolutionary model assumed in
this chapter is given from the study of GAs driving MUNCs (Suzuki, 1996). In this
subsection, | discuss the performance and the implementation of GAs in the light of the
derived results. The basic assumption of GAs, the “building block hypothesis’ (Holland,
1992), says that an optimum solution of the problem is created through combinations of
good subsolutions by the aid of crossover. Such good subsolutions (disconnected bit
sequences) are called “schemas’ and are considered to spread with “implicit parallelism”
(Goldberg, 1989). In the biological context, on the other hand, the many-locus
Fisher-Muller theory assuming the multiplicative fitness scheme is based upon the notion
that recombination combines advantageous mutations which arose simultaneously and
separately in different individuals into a single individual. Both theories insist on the
parallel spread of good (advantageous) sub-solutions, hence make the same point about
evolutionary acceleration.

This implicit parallelism was first doubted by Mitchell et al. (1991). They assumed
the discontinuous fitness function similar to the present one (they called it ‘the royal road
function’), studied the GA performance, and found that hitchhiking (they called this
‘premature convergence'; see for biological citations Maynard-Smith and Haigh, 1974;
Kaplan et al., 1989) drops the GA performance. Although this result made them cast
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doubt on the implicit parallelism, they had a notion that crossover is useful in combining
good schemas so that they only studied the GA performance taking notice of the time
necessary for lower-order schemas to combine to form the higher-order schema and did
not examined the crossover’s influence on the creation time of those schemas.

If the evolutionary acceleration by crossover is due to the mechanism shown in this
chapter, however, crossover is useful not because it can spread good schemas parallel at
the same time and combine them, but because it can randomize and create a new good
schema while preserving old good schemas that are completely held in common within a
population. This randomization process is nothing more than that by mutation, hence
when only one good schema is searched for in one sequence of bit string, mutation
suffices. Although building block hypothesis is right if a schema exactly corresponds to a
set of genes with a novel function treated here, the present evolutionary picture says that
such component schemas occurs and dominates the population not in paralel but serially
(one by one) by the aid of crossover which can selectively randomize the sequences.

These roles and limitations of crossover might be the key point in our understanding
of GAs. Though in current researches GAs are applied to various optimization problems
with various fitness functions, when we focus the application of GAs on optimization of
bit sequences with a discontinuous fitness function as was treated here, we can
implement genetic parameters of GAs according to the following prescriptions:

fWhen the mutation rate u is sufficiently high, crossover cannot accelerate
optimization.

When the mutation rate u is low, the crossover rate (¢ and r) has an intermediate
optimum value which is bounded by Eq. (1.14) or Fig. 1.6.

When crossover is operated with the “few-points major-participants’ (FPAP) (c« 1
and r = 1) mode, fitness coefficient of the optimum solution normalized by the
functiona order (s/1) needs to be sufficiently larger than the others so that r.h.s. of
Eg. (1.23) might be large.

When crossover is operated with the “many-points minor-participants’ (MPIP)
(c = 0.5 and r <1) mode, fitness of the optimum solution needs to be sufficiently
larger than the others so that r.h.s. of Eqg. (1.16) might be large.

As was described above, the optimal rate of crossover is simpler for r than for ¢
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because r can be determined regardless of the functional order |. Therefore for such an
engineering tool as GAs, the MPIP mode of crossover is easier to use though it is less
likely for real organisms. The above criteria make GAs a profitable optimization strategy
of a hit string with a discontinuous fitness function as was described in this chapter.
Finally | finish this discussion by pointing out the negative aspect of GAs. GAs are
never a dreamy method which can optimize a bit string with large functional order 1.
According to Figs. 1.4 and 1.5, domination time T, grows geometrically with an
increase of functional order |. This comes from the divergence of creation time T,
which is proportional to the combinational number 2! as was shown in Eq. (1.13). It is
true crossover considerably quickens the appearance of the advantageous set of genes by
the rate given in Eq. (1.22), but the domination time minimized by crossover still grows
geometrically with 1. GAs, a successful strategy as they are, cannot avoid the problem of

combinational explosion occurring in the optimization of a long bit sequence.
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Appendix A: CALCULATION OF M;; IN EQ. (1.3)

M;;i Is the transition probability from a gene set with j of bit 1's to a gene set with i
of bit 1's by mutation. When we focus on the situation in which j of bit I'sand i of bit
1's have k pairs of same positional bit 1's, the probability of such a transition's
occurring is given by

(the probability that k of bit 1's are preserved and j —k of bit 1's are flipped by
mutation)fl (the probability that | —j —i + k of bit 1's are preserved and i —k of
bit 1's are flipped by mutation)

- (H()(l_u)kuj-kx(: :lj()(l—U)' —j—itkyi—k

= (IJ()(: :li)(l —u)! —i-i+2kyi+j-2k

M;;i is given by the summation of this term about k.
min(i?j) J .
Mj; = 2 (k)(::lj()(l_u)l—i—j+2kui+j—2k _ (A1)

k = max(0,i+j—1)
The range of the summation was determined so that i—k>0, j—k>0, and
| —j—1+k>0 are satisfied.

Though accurately M;;i is given by Eg. (Al), we used ssmpler formula described
below in the simulation. If u«1, matrix M = (Mj;) is approximately given by M ()
defined by

Using a large integer L that satisfies u/L « 1, we calculated M for higher u by

L

M = [M“))(E)} (A3)
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Appendix B: CALCULATION OF Ciwi IN EQ. (1.4

Tensor (C;,;) is calculated with the recursion formula. Crossover between a bit string
pair is the operation proceeded with the following three steps:

Step 1. Read the h+ 1-th bits of origina strings of j and k and put them in the
h + 1-th cells for the operation.

Step 2: Make chiasma occur between the h-th cells and the h + 1-th cells with the
occurrence probability c.

Step 3: Exchange the bit pair of bits in the h+ 1-th cells if h-th pair had been
exchanged and chiasma does not occur or h-th pair had not been exchanged and chiasma
occurs.

In Step 1, the probability of the h + 1-th bit of original string j being 1 is given by
=i
| -h’

where j” is the number of bit 1’sin h earlier bits in the original string j.

Pin(i") = (B1)

Let P,(€, ]}, K,i") be the probability that exchange of the h-th bit pair is in the
state of € (¢ = 1 means exchanged and € = 0 means unexchanged), the number of
bit 1’sin h earlier bits in the origina string j is j’, the number of bit 1’sin h earlier
bits in the original string k is k’, and the number of bit 1’sin h earlier bits of the j-side
string is i’ after crossover.

Since j’ is the number of bits in h-length string, 0<j’<h. And since j’ is the
number of bit 1’s chosen from j bits of 1 in the original string, j—(I -h)<j <.
Combining these two conditions and reasoning similarly for k” and i’, the intervals of
parameters wherein P (€', j’, k’,1”) can be positive are specified as follows,

max(0, j +h—1) < j" <min(h, j),
max(0, k+h—1) <k’ <min(h, k) ,
and
max(0, j+k+h=21)<i"<min(h, j +K).

Pn(€, j’, K, i) satisfies the following recursion formula;
Ph+1(e’, j/’ k/’ I/) = ZZZZPh(en, j”, k”, i//)PrObh7 h+1(e”, j”, k”, i”|e’, j/’ k,, I/) ’
el/ j” k// i//

(B2)
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where Z operation of €” is the summation of € = 0 and €” = 1, that of j” is the
summation of j” = j—=1 and j” = |/, that of k” is the summation of k” = k"—1 and
k” = k’, and that of i” is the summation of i” = i"—1 and i” = i’. Considering Step
1~3, transition probability Probh, he1(€7, 17, K, 17)€, 7, K, i”) isgiven by

Proby 1, ,(€”, % K, i”|€, J",K’,i") = Prob(e”|€’) - Prob,(j”|j’)

x Probp(k”|K’) - Probg i iy o (i7]1%)

where

Prob(e”|e’) = 1-c if e” = ¢,
Prob(e”|e’) = ¢ if e”#¢€;
Proby(j”|i") = 1-p(i")  ifj” = J,
Prob,(j”1j") = Pju(J") ifj” =j -1
Prob, (k”|k’) = 1-p(K”) if kK" =K,

Prob, (k”|K") = py,(K”) if K = k=1;
Probe j» i e (i”1i") =1 ifj”=jJande =0andi” =i’
ork” =K ande =1andi” =i’
orj”=j-1lande =0andi” =i"-1
ork”m=k'-1lande =1andi” =i"-1,
Probg v - g e (i”i") = 0 otherwise.
The initial condition is
Po(€, ), K,i") =1 ife"=j =k =i"=0,
Po(€, ), K,i") =0 otherwise. (B3)
We can calculate P, (€', j’, K’,1”) one by one increasing h, until h comes to be equal to
l. Cjki, the transition probability from j to i by combining with k, is then given by
Cii = Pi(0, kD) +Pi(L, ], ki),
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Appendix C: DERIVATION OF EQs. (1.7) AND (1.8)

Let
pg = 1—(1—u)' = probability of destruction of the advantageous gene set by
mutation per gene set per generation;
p. = probability of creation of the advantageous gene set from the neutral gene
set by mutation per generation.

Though destruction probability can be specified by a constant p, depending upon u,
creation probability p. is strictly a variable which changes with the number of bit 1'sin
the neutral gene set. However, we here lump all neutral gene sets and represent the
creation probability from those gene sets by one effective parameter p.. Therefore p. is
a parameter that changes with the bit distribution in the population. Using py and p,,
AX, through mutation is written as follows;

AX{ME) = po(1=%) = PgX - (C1)
We here focus on deriving the expression of Ax{™t-) around the stationary distribution
for mutation. Since mutation is an equal process about exchange between bit 0 and bit 1,
the stationary state for mutation is a binomial distribution in which bit 0 and bit 1 are
equally distributed a each locus. Requiring Ax{™t-) = 0 at this state (namely,
X, = (1/2)") and approximating (1/2)' «1, we get the relation p,~ py(1/2)'. The
transition formula through mutation around the stationary state is given with this relation
and assumption u«1 (which gives the approximation py = 1—(1-u)'~Ilu) as
follows;

mut.
X X = PgX T P(l-X)

x - pd(xl _(%)I (1 —x.))
%, —Iu(x, —(%)I) . (C2)

Thus Eqg. (1.7) was derived.
For crossover, the following definition is necessary:
Pron = Probability that the advantageous set of genes is created after crossover

in the pair of neutral sets of genes.
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Like p. defined above, P, and P,,, are effective parameters and varies depending

upon the bit distribution in the population. Using Py, and Py, AX, through crossover
is written as follows:

AX(Cr0sS-) = r[X2 + Pp X (1= %) + Pon(1=X,)2] =X

= r(1=X)[Ppon(1=X%) = (1 =Ppep) X1 - (C3)

We also focus on deriving the expression of Ax(crss-) around the stationary distribution

for crossover. Since crossover is a process making a bit distribution at each locus

independent of the others, the stationary state for crossover is a binomial distribution in

which bit 1's are distributed at each locus with frequency q independently. Requiring

Ax{cross-) = 0 a this sate (namely x, =q'), we get the relation

Pron = (1-Pro)(@'/(1—=q')) . The transition formula through crossover around the

stationary state is given with this relation as follows;

Cross

X, =X + 1 (L=X)[Phon(L=%) = (L =Pyep) %]

|
= X, + r(l—xl)(l—Phet)[lﬁ—ql(l—xl)—x,}

1-x, |
= X —r(l—Phet)qul(xI -q') (C4)

Thus Eq. (1.8) was derived.
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Appendix D: DERIVATION OF EQs. (1.9) AND (1.10)

With the comparison between Eq. (1.4) and (C3), the accurate equation defining P,
is
“het(1—X) = Z XCiig + Z X;Cipp-
k| j#l
In this appendix we focus on the state before or immediately after the occurrence of an
individual with the advantageous combination of genes, hence this equation can be

rewritten with approximation x; « 1 as follows;

het = 2 XkCIkI + 2 XjCjII = I:)pres + F)tre’ (Dl)
k=1 j#=l
where P oo = 2 X C\q 1s the probability that an advantageous gene set is preserved

k#l. : -
after crossover with a neutral gene set and >y, = Y x;C;; is the probability that a
_ j#1 :
neutral gene set is transferred to an advantageousjéene set after crossover with an
advantageous gene Set.

In order to calculate P and P we assume that the 0-1 distribution of neutral

pres tran
gene sets is specified only by the parameter q at each locus independently. With this
assumption, we can get the recursion formula by considering Step 1~3 as was described
in Appendix B. Let P, (e’) be the probability that exchange of the h-th bit pair is in the
state of € (¢’ = 1 means exchanged and € = 0 means unexchanged) and al h earlier

bits in the string on the ‘ advantageous after crossover’ side are 1 after crossover. P, (€’)

satisfies
Ph+1(€) = D Py(€”) - Prob(e”|€’) - Probg(bit = 1) , (D2)
<
where
Prob(e”|e’) = 1-c if e = ¢,
Prob(e”|e’) = ¢ if e”#¢€;
Prob(bit=1) = q, if e =0,
Prob(bit=1) = q, if ¢ = 1.

g, (or q,) is the probability that the h+ 1-th bit of original string on the ‘advantageous
after crossover’ side (or the other side) is 1 respectively, and given by

g, =1andqg, =q for P

pres’
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or
0, =gqandq, =1 for Pyran-
This simultaneous recurrence equation can be solved under the initial condition,
Po(0) =1 and Py(1) = 0. (D3)
With the solution, we can get the probability that all |1 bits on the ‘advantageous after

crossover’ side are 1 after crossover as follows;

(D4)

1- - 2
P|(0)+P|(1)=2%(1i (1= O, — ) * 260 ]xu ,

»\/(1 - C)Z(qa _qn)2 + 4Czqaqn
where z operation of * is the summation of expressions using + or — within formula

respectively. A, are solutions of the characteristic equation and given by

Ao = 5(1-0)(dy +Gy) £ 5, [(T-0)2(d, 02+ 4c%q,0,  (respectively).
Therefore, P .(q) is given as follows;

2het () = Ppres(@) + Peran()

= (P (0)+Pi(1))

q+(P|(0)+P|(1))

=10, = G2 =00 =1

— c(1+09) |
= V(14 A D5
Z_,‘( «/(1—0)2(1—q)2+4c2q) B (9

where

A = 2(1-0)1+Q) £ 5 A1-0(1-a)?+4c2q  (respectively).

Now we substitute g = 1/2 to study around the random population, then

Phet@) = ;(11#”&)%; , (D6)

where

Ay = g(l—c)i%A/1—20+9c2 (respectively).

In the domain of 0<c<0.5 A, and A_ move within 0.75<A, <1 and
0<A_ <0.5 respectively; hence, if | is so large that (0.5)' «1, A! can be neglected
and Eq. (1.9) is derived.

Eq. (1.9) can be transformed with approximation c « 1 as follows;



Page 34 of 105

|
1 3c 3 1

P (—) = (1+—-—-—){—(1—c)+ﬂ/1—2c+9c2}
net\2 J1—2c+9c2/ |4 4

|
= (1+3c(1+ c))(g(l—c) + %1(1 —c))
= (1+3c)(1-c)!

=(1-0'"3,
which gives Eq. (1.10).
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16000
14000
12000 |
10000 ¢
8000 ¢
6000 |
4000 ¢
2000 ¢

0.001
u=0.0085 ¢

o | | " 0loog,
12000 | 0.0035

10000

8000 {
0.01

6000 { ‘%

4000 |

|

0.4 0.5



Page 38 of 105
Figurel.4

Ty

300000

200000

100000 ¢

(0)
10000

8000
6000 |
4000
2000 |

600

400 |

200

0.0l 0.02 0.03 0.04 0.05

o



Td
300000

200000

100000 }

12000 t

10000

8000 ¢
6000
4000 ¢
2000 ¢

600

400t

200 |

Figure 1.5

Page 39 of 105

(b)

0.1

0.2




Figure 1.6

| =70

0.1

0.2

0.3

0.4

0.5

Page 40 of 105



Figure 1.7

Page 41 of 105

J @
600 t Py=
500f—n—c O 0<«—0.0002
400
300
200 | = m<—0.0005 .
0.001
100 ‘/_\\ A/0.00Z
N N 0.005
2 3 4 5 7 g
J 1)
600}
500¢
400
300¢
200t
100+t
O . . 2 : @)
0 0.002 0.004 0.006 0.008 0.01 Py



Page 42 of 105

Figure Legend

Fig. 1.1. Genera evolutionary picture. (@) The genetic diversity, the number of
functional genes, and mean population fitness as a function of time. (b) Genome sketch
of the population at each stage of evolution. Shading represents the region wherein genes

(or nucleotides) are diverse among individuals.

Fig. 1.2. Mean number of generations required for the advantageous set of genes to
dominate the population (domination time T,) as a function of the occurrence
probability of crossover points ¢ under the condition of al individuals participating in
crossover (r = 1). The values of the other parameters are N = 10000, | = 20,
(@s=0.50r (b)s=1,andu = 0.001(0), u = 0.0035(@), or u = 0.01(A). Here
and in the subsequent figures in Chapter 1 (Figs. 1.3~1.5), marked points and line
segments connecting between them are the results of simulation, curved lines in lower ¢
or r are T, given by Egs. (1.10)~(1.13), and vertical lines in higher ¢ or r are
maximum values given by Eq. (1.15) or (1.16).

Fig. 1.3. Domination time T, as a function of the population ratio of crossover r under
the condition of high occurrence probability of crossover points (c = 0.5). The values of
the other parameters are N = 10000, | =20, (@s=0.5 or (b)s=1, and
u=0.001(0),u = 0.0035(@), oru = 0.01(A).

Fig. 1.4. Domination time T, as a function of ¢ under the condition of r = 1. The
values of the other parameters are N = 10000, s = 1, u = 0.001, and ()l = 24,
(b1 = 20, or (c)l = 16.

Fig. 1.5. Domination time T, as a function of r under the condition of ¢ = 0.5. The

values of the other parameters are N = 10000, s = 1, u = 0.001, and (a)l = 24,
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(b)I = 20, or (c)l = 16.

Fig. 1.6. Upper limitations of genera ¢ and r given by Egs. (1.9) and (1.14), with
u=20.001,@s=0.50r(b)s =1, and different I.

FIG. 1.7. (8) The number of dominant functional sets of genes J as a function of fitness
coefficient s under different destruction probabilities p,. The plotted values are the
results of simulation assuming f, = 0.¢ (b) The maximum value of J at large s, as a
function of p,. Marked points are the simulation results and the solid line are the

hyperbolic curve given by Eq. (1.21).
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CHAPTER 2

Crossover AcceleratesEvolution in GAswith a Babe-like
Fitness Landscape: M athematical Analyses

This chapter was done in collaboration with Prof. Yoh Iwasa, Kyushu University.
The paper is to be published in Evolutionary Computation Journal after minor

revision.
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I ntroduction

Recently in the engineering field, genetic algorithms (GAs) have attracted a great deal
of attention as optimization methods (Holland, 1992; Goldberg, 1989; Mitchell, Forrest,
& Holland, 1991; Forrest, 1993; Forrest & Mitchell, 1993, 1994; Otto, Feldman, &
Christiansen, 1994; Vose & Wright, 1995; Mitchell, 1996). In GAs, each design of an
object is typically coded in a gene-like bit sequence and a population of those sequences
is prepared in the computer memory. The optimal (or a close to optimal) design is
searched for by evolutionary operations including reproduction, natural selection,
mutation, and genetic recombination. Since GAs without genetic recombination, or
crossover, are nothing more than a parallel hill-climbing method, crossover is a key
operation to achieve the optimal design in the shortest number of trials. In previous
studies, however, the effectiveness of crossover in GAs has met with varying degrees of
success, depending upon the problem domain and the shape of fitness landscape. We are
still far from achieving a complete understanding of the role of crossover in GAs, which
is important not only for an engineering purpose but also from a biological point of view.

Recently, Suzuki (1996, 1997) proposed an evolutionary programming methodol ogy,
Multiple von Neumann computers with machine language architecture (MUNCS).
MUNCs evolve and create a program that solves a problem prepared in an environmental
database. Suzuki used GAs for the evolution of MUNCs and found that crossover
contributed to the acceleration. A key point causing this result was the fitness function of
bit sequences optimized by GAs. In MUNCSs, an advantageous function is achieved by a
particular combination of machine instructions, and without such sequence, no functional
advantage is conferred. A particular combination of instructions corresponds to a schema
with fairly large order; hence in MUNCS, bit sequences optimized by GAs have a highly
discontinuous fitness function.

Up to the present, a discontinuous fitness function has studied by many GA
researchers, exemplified by the royal road function (Mitchell et al., 1992; Jones, 1994;
Wu & Lindsay, 1996; Nimwegen, Crutchfield, & Mitchell, 1996, 1997). This function
takes discrete fitness values of the bit sequence, depending upon the number of ‘blocks
(schemata) that is included in a haplotype. Recent work by Nimwegen et al. (1996,
1997) investigated the dynamics of GAs in this function theoretically and established a
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method to analyze GAs in a multiple block fitness function.

However, Nimwegen et al., inferred the role of crossover based only on the numerical
experiment, but did not make any quantitative estimate of the effectiveness of crossover.
This was done in Chapter 1 for the case with a much simpler fitness landscape. In order
to study the rate of evolution of a single advantageous function, Suzuki assumed a fitness
function with a single advantageous schema and examined the time until domination of
the advantageous schema by the simulation using the frequency vector representation of
the population.

We extend this study by assuming the same fitness function (we called this a
Babel-like fitness function) and examined the GA performance in both experimental and
theoretical ways. A preliminary result was reported in Suzuki & lwasa (1997). In the
simulation, we used simple GAs (Goldberg, 1989) directly operating on the population of
bit sequences. Besides the theoretical study, we aso estimated the time until domination
as a function of several genetic parameters. These results showed that crossover with a
mildly high rate can greatly enhance the evolution if genetic parameters are adjusted to
appropriate values.

Although the theoretical analysis by Suzuki & lwasa (1997) were more accurate than
the analysis in Chapter 1, their analyses were still unsatisfactory in the following points.
First, their theoretical estimation of the time until creation of the advantageous schema
was based upon the simplifying assumption that the diversity of a population is so large
that the bit distribution does not depend upon the history of previous distribution of bit
sequences. Second, since they evaluated the final formula by the aid of the Monte Carlo
method, they could not estimate accurate values of the acceleration rate when the order
of an advantageous schema is large.

The aim of this chapter is to remedy these drawbacks and to present a more exact
estimation of the evolutionary rate by GAs. As in previous works, we focus on a single
advantageous function and assume a Babel-like fitness landscape (among a large number
of possible bit configurations, a single sequence is much more advantageous than the
others). The estimation of the evolutionary rate is made in three different ways. First, we
develop a mathematical estimation method. The second one, which was developed in
Chapter 1, is an analysis using recurrence formulas for a frequency vector expressing the

composition of the population. The third one is a straightforward computer simulation
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using simple GAs.

The organization of the chapter is as follows. In the next section, a basic fitness
model is presented and the evolutionary process under this function is described. Then
we explain the three methods one by one; first we present the analytical formulas for two
extreme cases, next we explain the simulation method using vector representation, and
then we describe the computer simulation method with GAs. Finally we compare results
of all three methods. We also discuss the mechanism of GAs and roles of crossover,

together with the implementation criteria for several genetic parameters.
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The Basic Fitness Model and the Evolutionary Picture

Here we present a basic fitness model for the evolution of a single advantageous
function. The assumptions of the model are as follows.

findividuals are haploid. The chromosome of each individual is represented by a string
of a number of binary (0-1) loci.

fAmong all sequences, a single sequence, denoted by [11---1], has fitness by far
larger than the others, and all the other sequences have the same fitness.

fin the initial population, all individuals have the same haplotype which was chosen
randomly.

fMating pair is randomly chosen in the population which is sufficiently large.

Evolution under this fitness function proceeds with the following steps.

Step (i) [Diversification]: Mutation stores diversity until the population reaches an

equilibrium state determined as the balance between mutation and genetic drift.

Step (ii) [Creation]: Mutation and crossover search for and create an advantageous
sequence. Due to the finiteness of the population size, a newly created advanta-
geous sequence may be lost by chance, and the cycles of creation and extinction
of the advantageous sequence are repeated severa times until the advantageous

sequence begins to spread through the population.
Step (iii) [Spread]: The advantageous sequence spreads and dominates the population.

Here the term ‘domination’ does not mean that one chromosome completely occupies the
whole population but it implies that the frequency exceeds 9VU of the whole
popul ation.

We designate the average number of generations from the initia setting until some
domination criterion is satisfied the domination time T,. Based on the above

evolutionary process, T is the sum of three parts;
Tg = Ty + TN+ Ty, (2.1)
where
T,: the diversification time, defined as the average number of generations taken for

the population to store sufficient diversity starting from the initial homogeneous

distribution;
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T.: the creation time, defined as the average number of generations between an
appearance of the advantageous sequence followed by the extinction of its
descendants and the next appearance in a sufficiently diverse population;

N.: the creation number, defined as the average number of appearances of the
advantageous sequence from its absence until it begins to spread;

T,: the spread time, defined as the average number of generations for a novel

advantageous sequence to spread through the population.

Note that N is the same as the destruction number N, defined in Chapter 1. For the
second term, we neglected the correlation between T, and N, or in other words, we
assumed that one appearance of the advantageous sequence does not affect next creation
of the advantageous sequence.

As pointed out in Chapter 1, crossover randomizes diverse regions of the genome and
helps to create novel sequences, and hence T decreases and N. increases with the
crossover rate, which redizes Ty minimum at an intermediate crossover rate. This
dependence was estimated in Chapter 1 with some crude approximations. In Chapter 2,
we estimate T, more accurately by the use of Eq. (2.1). In addition, we here pay a
particular attention to the evolutionary acceleration effect by crossover. In order to

estimate this effect quantitatively, we define the acceleration rate of crossover as

T
_d |without crossover 2.2
cross Td| ( . )

A

with crossover

and evaluate this under various values of genetic parameters. The genetic parameters
used in this chapter are as follows.
| : total number of bits in the sequence, or the number of bits necessary to redlize a
novel advantageous function (we hereafter call this “epistatic number”);
N: population size;
N,: effective population size;
s: selection coefficient of the advantageous sequence relative to the others,
u: mutation rate (probability of bit flipping) per locus (bit position) per generation;
c: probability of a crossover point (chiasma) occurring per pair of neighboring binary
loci;

r: fraction of the sequences which participates in crossover.
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Throughout this chapter, the value of s is taken to be 1. The crossover rate is specified
by two parameters, ¢ and r. In the following, we consider two modes of crossover
designated as FPAP-mode (few-points major-participants mode, namely c<0.5 and
r = 1) and MPIP-mode (many-points minor-participants mode, namely ¢ = 0.5 and
r<1). For MPIP-mode, the population is divided into two parts, the recombining

subpopulation and the non-recombining subpopulation.
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Mathematical Analyses

Here we describe the mathematical analyses and present the estimation method of the

domination time T, and the acceleration rate A Let g; be the frequency of bit 1s at

Cross”
the i-th locus. We first give the following simplifying assumptions.
{The O-1 distribution at the i-th locus is determined only by the frequency parameter g
and is independent of the other loci.

TThe spread time T is neglected.

Strictly speaking in the simulation model of finite population size, some linkage
disequilibrium (non-zero correlation) automatically develops between loci due to less
than complete recombination. However, as an approximation, we here neglect correlation
between loci and express the state of the population using the | -dimensional frequency
vector {q;} = {0g;,---,0,;} . The second approximation is acceptable because the
selection coefficient s = 1 is large enough to make the advantageous sequence, once
escaped from the initial danger of extinction, spread rapidly until its final domination.

In the following, we give the formulas for T,,, T, and N one by one.

Diversification Time: Diversification is a process promoted by mutation. Although
crossover facilitates creation of novel sequences, the creation process is based upon
currently stored diversity, and crossover itself cannot increase the diversity at each locus.
Therefore, H(V, that is, heterozygosity at each locus at generation t, is determined only

by mutation and random genetic drift, and is given by the following equation.

H(O= H(°°>[1 _exp({Ni ¥ 4u)t)}
e

= iENU u 1- exp(—(— ¥ 4u)t)} 2.3)

In deriving of this equation, approximations u«1 and N_,»1 are used (see Kimura
(1983) chap. 8). According to this equation, the value of H®  which is initially 0,
gradually increases and approaches the value of H(<) with relaxation time
(1/Ng +4u)~. Hence, the diversification time T,, is roughly estimated as
1 -1
Tvz(-—+4u) . (2.4)
Ne

General Strategies for calculating Creation Time T, and Creation Number N.: We
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present in this subsection a general strategy to evaluate T. and N.. According to
population genetics theory (Crow & Kimura, 1970; Ewens, 1979, p.155), after the lapse
of T,, (namely after the population have stored sufficient diversity at a given parameter
condition) and without selection, distribution at each locus reaches an equilibrium state
in which g; s obey the beta distribution described by
0 = e - a® -t BN, (25)
This formula states that when 3 » 1, q; is likely to have some intermediate value around
0.5, but when B « 1, dlele frequency ¢; tends to either near O or near 1 even after T,
has elapsed.
Here we introduce a parameter | defined as the total number of bit 1's for a haplotype
(a bit sequence). | represents the distance of a haplotype to the advantageous one, and its

population average value, denoted by Q= E(l), is rewritten as

| | |
Q=E(=EDY b= EDb) =Y aq,

i=1 i=1 i=1
where b, is an allele value parameter at the i-th locus. Because for a finite population the
frequency vector {q;} fluctuates every generation, the value of Q also fluctuates
satisfying some probability distribution. We express this distribution by P(Q) and
calculate it using EQ. (2.5) as

1 1

PQ = [-[8Q-> a)[]h(a)da;. (2:6)
0 0 i
This equilibrium distribution is illustrated in Fig. 2.1 for different values of 3. According

to this figure, when B is large, P(Q) has a continuous distribution with a single peak,
whereas when 3 is much smaller than one, the value of Q is discretized and is most
likely to have a value around an integer.

Hence in the following, we formulate T. and N. in two extreme cases, large 3
(B>1) and small B (B«1). When B>1, the vector {q;} fluctuates so fast that a
population reaches the quasi-equilibrium state (the state of the population before creation
of the advantageous sequence) in a time much shorter than the creation time T .. We can
calculate in this case the creation rate of the advantageous sequence by using the

weighted average for the quasi-equilibrium state. When B «1, on the other hand, the
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value of {q;} strongly depends upon previous values and the waiting time until a
population reaches the quasi-equilibrium state is much larger than T,. In this case, we
need another approximation method to evaluate T, and N..

Creation Time for large B: Since creation of the advantageous sequence results from
randomization processes caused by mutation and crossover, the creation time T is
caculated as

T. = (the probability per generation for the advantageous sequence to be created

from absence in the population) -1

= [N - ({pMt-D)ge + (p{Eross-Dyg)1t (2.7)
where p{™t-) and p(cross-) are the probabilities of an arbitrary sequence becoming
advantageous by mutation or by crossover respectively. Symbol (A)g. denotes the
expected value of a quantity A ‘Before Creation’ of the advantageous sequence. See
Appendix E for detailed formulas of p{™t-) and p{cross-),

The averaging operation ( )g. is calculated as follows. When B is large, the vector
{qg;} is continuously distributed (Fig. 2.1a). Under this circumstances, the vector {g;}
fluctuates so fast that we can calculate (A)g. with a weighted average formulated as

101
{Agc = (normalization factor) x _[---J(WBC -A[da. (2.8)
0 0 i

W, is the weight for the quasi-equilibrium state before creation of the advantageous
sequence and the normalization factor is a constant determined by the requirement
(1)gc = 1. If the value of {q;} does not depend upon the history, W is the product
of two factors: the probability in the equilibrium and the probability of the absence of
the advantageous sequence. The probability distribution in the equilibrium is proportional
to the product given by Hh(qi) where EqQ. (2.5) is used. The second factor is calculated
using Poisson distribution. Since the probability of a randomly chosen sequence being
advantageous is very small, the number of the advantageous sequence in the population

(denoted by n;) obeys the Poisson distribution with average NHqi,

NTTq)"
p(n) = (Hn—l!q')exp(—NHqi)- (2.9)

Then the second factor is p(0) = exp(—NHqi). Thus W is written as
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Wge = [(@) - exp(-N] ) - (2.10)
We can calculate (p{™t-)).. and (p{ross-)).. by using Egs. (2.8) and (2.10). See
Appendix E for the detailed method for the numerical evaluation.

Creation Number for large : Although both mutation and crossover help creating
the advantageous sequence, once the creation has achieved, both operate to destroy the
newly created sequence. The creation number N_ is determined from the balance
between these destructive forces and the selective advantage of the created sequence. Let
z be the extinction probability of a newly created advantageous sequence becoming
extinct rather than spreading. The number of times of the appearances of the
advantageous sequence from absence until the final domination obeys a geometric

distribution Z*-1(1-2) (k = 1,2,3,---). N, is the average of this distribution:

- 1
- k—1 -
NC— Zkz (1-2) = i—_——z (211)
k=1
In order to calculate z, we use the technique of branching processes. When the sequence

is created, there is only one copy in the population. Assume that the number of offspring
of the advantageous sequence has a Poisson distribution with a mean value p. Then, the
standard population genetic calculation (see Appendix G) gives the relation

z = exp(-u(1-2). (2.12)
u is the expected value of the ratio of the frequency of the advantageous sequence at the
next generation compared to the current frequency, and can be approximately formulated

as the product of the frequency ratios by selection, mutation, and crossover;

= (1+9) (1= (p™t-)) o) (1 = (p§Eross-) o) (2.13)
where p{™t-) and p{cress-) are the probabilities of a newly created advantageous
sequence being destroyed by mutation and crossover respectively. (A),. denotes the
expected value of a quantity A immediately ‘After Creation’ of the advantageous
sequence. See Appendix E for the formulas for p{™t-) and p{cross-)

( Yac iscaculated in the similar way to that for { ). :

11
(A)ac = (normalization factor)xj---J(WAC-A)qui. (2.14)
0 0 i

W,. is the weight for the quasi-equilibrium state immediately after creation of the
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advantageous sequence and is formulated as the product of Hh(qi) and the probability
of there existing only one advantageous sequence in the population. The latter factor is
given by p(1) = N(JJa)exp(-N]Ja) (see Eq. (29)), so that omitting a constant

coefficient, we get

Wye = [Taih(@) - exp-NT]a) (2.15)
(p{™t-)),. and (p{eross-)),. are calculated from the combination of Egs. (2.14) and
(2.10). See aso Appendix E for the evaluation method.

Creation Time and Creation Number for small B: As was shown in Figs. 2.1b and
1c, the value of g; tends to be near 0 or 1 and the value of Q = Zqi is discretized
when B is much smaller than one. For a small B, the state transition of the population
cannot be approximated by a random sampling for al the probabilities. Rather the
population makes Markovian jumps between “partial distributions’ which are centered
around integers. Within a partial distribution the vector {g;} is chosen anew every
generation. We express the state of the population at generation t using the
(I +1) -dimensional probability vector {%V} = (X{V, -, X(V) whose i-th entry XV
denotes the probability that the population at generation t is in the i-th partia
distribution (Q=1i) and that no advantageous sequence has ever been created. On this
vector representation, we formulate the generation cycle with the recursion formulas for
mutation and creation. As we focus on the history before the first creation of the
advantageous sequence, we need not formulate selection. Crossover is considered only in
the creation step because crossover itself does not change the value of {q;} .

Transition formulas for mutation and creation are

mut.
% - Y %M, (2.168)
i=0
cre.
% = %0, (2.16b)

where M ji is the probability of the population in the j-th partial distribution shifting to
the i-th partial distribution by mutation. To formulate this matrix, we consider the
probability of the allele distribution concentrating q=0 (g=1) shifting to the
distribution concentrating q=1 (q=0). Since this probability is the product of the
probability of a mutation occurring in the whole population and the probability of its
fixation, it is {1-(1-uwN¥x(1/N)=Nu-(1/N) = u . This is the same as the
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mutation rate itself so that M;;i is the same as the probability of transition from a
sequence with j 1 bits to a sequence with i 1 bits by mutation. See Appendix A for the
detailed formula of M ;. To calculate O;, we use a similar argument as that used in the
derivation of Eq. (2.7). Since an advantageous sequence is created through mutation and

crossover, O, is formulated as

O = L[N ((PUEN) o _; + (pLEross- N ] ifi<l, (2.17a)

o, =0, (2.170)
where p(™t-) and p(cross-) are the creation probabilities by mutation and crossover
given by Egs. (E2) and (E8) respectively. (A)q_; means the expected value of quantity
A under the i-th partia distribution. See Appendix E for the evaluation of {pgmUt-))Q:i
and (p{eross-)) ;. .

Starting from the initial binomial distribution X(© = (:)@)' (i=01-1) we
simulate the generation cycle by the use of recurrence formulas (2.16a) and (2.16b). The
value of Zi(i(t) is initially equal to one, decreases, and gradually approaches zero.
Through the recurs on, we calculate two quantities, the creation time T and the creation

probability vector {e} , using

t=1 | | |

To= Yix(THV-F0) = ¥ IKO,
t=0

oo

g = > (1-0Opxv.
t=0

The i-th entry e, of the vector {e;} is the probability of creation of the advantageous
sequence occurring from the i-th partial distribution, and from this vector, we can
calculate the creation number N in the following way. N, is calculated from the
extinction probability z (see Eq. (2.11)). Since the value of z depends upon the partia
distribution from which the advantageous sequence is created, we estimate (z)in for
different i and calculate the weighted average
Zei<Z>in
z= 41— (2.18)

2e

Like Egs. (2.12) and (2.13), (2 .;'s are calculated from
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(Dg-i = exp((Wq-i (1 -(Dg-1), (2.19)

(Waq-i= L +9)(1—(pft-)q_ (1= (PN ) . (2.20)
The formulas for p{™t-) and p{cr°ss-) are given in Appendix E (Egs. (H1a) and (H1b)).
See Appendix E for (p{™t))_; and (p{eross-)), ;.
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Simulation using a Vector Representation of the Population

The second method we adopted is a simulation using a vector representation of the
population. This method is almost the same as that developed in Chapter 1, and here we
again adopt this method to show the validity of this method if some modifications are
made as to the initial condition and population diversity, and also to compare its
performance with a new method described in the next section.

The experimentation is as follows. We represented a population at generation t by the
frequency vector (x{V, ---, x{V)) whose i-th entry x(! represents the frequency of
sequences with i of bit 1's at generation t. We started with initia frequency vector

(x(@) = (&) = (0,---,1,---,0) (where k is determined from the number of bit 1's
in a bit sequence that is chosen randomly), and simulated the generation cycle by
operating recursion relations formulated for selection, mutation, crossover, and random
genetic drift. The recurrence formulas were the same as those given in Chapter 1, except
for a slight modification of the crossover tensor (Cj,;) . Since crossover has no effect in
a perfectly homogeneous (monomorphic) population, the effectiveness of crossover
changes with heterozygosity H. To incorporate this dependence, we changed the entries
of (Cj,) according to the theoretical value of H calculated from Eq. (2.3). See
Appendix K for the modified method to calculate (Cjy;) . The generation cycle with the
recurrence formulas was repeated until the frequency of the advantageous sequence (X,)
exceeded 0.5, and then the final generation number was recorded as the domination time
T4. For each parameter set, 30 replicates of numerica trials were conducted and the

average value of T, was calculated.
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Simulation with GAs using a Direct Representation of the Population

The third method we adopted to estimate the evolutionary rate is the simple GA that
operated on the population of bit strings directly prepared in the computer memory. The

simulation procedure was as follows:

Step O: [Initial setting] A binary number of | bits is chosen by the random number
generator. All the N sequences of | bits in the population have the same binary

number (the population is homogeneous).

Step 1: [Selection] In proportion to fitness values (1+s = 2 for the advantageous
sequence and 1 for all the other sequences), select N sequences randomly from
the whole population and create their copies, which compose a population of

sequences for next generation (the standard roulette selection).

Step 2: [Mutation] Choose a bit randomly out of all sequences and flip it. This modifi-
cation is repeated so that the number of binary loci subject to modifications

might be approximately equal to Nlu.

Step 3. [Crossover] Choose Nr sequences out of the population and pair them ran-
domly. Between each pair, recombine binary strings at the rate that the probabil-
ity for cross-point to occur per interbit gap equal to c. Then, return to Step 1.

Note that N, = N in this experiment owing to the standard roulette selection in Step
1. The generation cycle (recursion of Steps 1~3) was repeated until the mean population
fitness exceeded 1.5, i.e., until the frequency of the advantageous sequence exceeds 0.5.
(This is the definition of ‘domination’ in this experiment. See Chapter 1 for the
background of the choice of this threshold frequency.) The program for the simulation
was written in the ANSI-C language and run on a desk-top MIMD computer, Parsytec
XPLORER with sixteen PowerPC's (80MHZz). For each set of parameters, numerical

trials were conducted fifteen times and the mean value was calcul ated.
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Results

Figure 2.2a shows the results for T, and T,,+ T, as a function of ¢ in FPAP mode,
and Fig. 2.2b shows those as a function of r in MPIP mode. The other parameters were
I =20, N = N, = 4096, and u = 0.002. The lines with dots are the results from the
simulation by GAs, and the curved solid lines are the results from the theoretical
estimation using the formula for large B (note that B = 4096 x 0.002 = 8 is much larger
than one). The results obtained from the two different methods agree well with each
other. They are qualitatively the same as results of the simulation with the vector
representation, developed in Chapter 1. These results suggest that T is the minimum at
an intermediate optimum crossover rate. This can be explained as follows. Since both
mutation and crossover are randomization processes to create novel sequences, when the
mutation rate is not as high as to completely randomize the population, crossover helps
to create novel sequences of bits and reduces T.. In Fig. 22 both T, and T, + T,
decrease with ¢ (or r) in the region of low ¢ (or r). If ¢ (or r) is too high, on the other
hand, the created advantageous sequences are destroyed by crossover and cannot spread
in the population. This increases the creation number N, and brings about an
conspicuous increase in T . In the region of higher ¢ (or r) in Fig. 2.2, T, + T does not
increase with ¢ (or r), whereas T increases markedly.

Figures 2.3~2.9 show the acceleration rate by crossover A defined by Eq. (2.2) as

cross
a function of the mutation rate u. The crossover rate were c = 0.015 and r = 1 for
FPAP-mode (Figs. 2.3, 2.4, 2.5, 2.6a, 2.7, 2.83, and 2.9a), andc = 0.5 andr = 0.2 for
MPIP-mode (Figs. 2.6b, 2.8b, and 2.9b). In al these figures, the thick solid lines are the
results from the mathematical formulas for large B, the fine solid lines are those from
the mathematical formulas for small 3, the lines with black dots are those from the GA
simulation, and the lines with white dots are those from the simulation using the vector
representation of the population.

In Figs. 2.3~2.5, the epistatic number was | = 12 and the (effective) population size
was N = N,=500 (Fig. 2.3), N = N_=2000 (Fig. 24), or N = N, = 10000 (Fig.
2.5), respectively. In each figure, the results obtained from different methods are
gualitatively similar. The results from the simulation (shown in lines with dots in the

figures) are given only for larger u, because for very low u, the computational load of
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the simulation was so large that the experiments cannot be completed within a practical
simulation time. In Fig. 2.6, theoretical results are shown for different values of the
(effective) population sizes.

According to Figs. 2.3~2.6, we can conclude that A is the maximum at an

Cross

intermediate mutation rate u. This result is explained as follows. When u is very low,
the genetic diversity is so small that crossover which can create novel sequences by
stored diversity cannot be effective. When u is sufficiently high, on the other hand, the
population is fully randomized by mutation, and then crossover cannot enhance creation

of novel sequences further. This aso decreases A in the region of higher u. Hence

Cross

there is an intermediate value of mutation u that makes crossover the most effective.
According to Figs. 2.3, 2.4, 2.5, and 2.6, the analytical estimation assuming small 3

suggests that A does not necessarily depend monotonically on u for low u and has a

Cross

second peak in the region of lower u. Although we could not confirm this result with the
simulation (because of the limitation of computational time), this might be a real

phenomena by the following reason. The reduction of A for alow u is caused by the

Cross

reduction in randomization by crossover due to the reduction in the population diversity.
However, a low u aso reduces the randomization by direct effect of mutation itself.

Since A is determined by the balance between randomization by mutation and

Cross

crossover, if the creation of the advantageous sequence by mutation is suppressed more

strongly than by crossover, this increases A, and can make the second peak of A, ..

According to Fig. 2.6, when the population size N is not very large, the theoretical
results obtained from the two different analyses (large-B analysis and small- analysis)
are similar, but they differ considerably for larger N (N = 10000 or 50000). We can

explain this in the following way. As discussed above, the decrease in A, With u in

the region of large u comes from the reduced of H, or in other words, because g;s tend
to near 0 or 1. In the analysis for large B, however, continuous distribution of vector
{0;} is assumed and this effect is not fully considered. This causes the underestimation

of A Actualy, the simulation results shown in Fig. 2.5 quantitatively agree with the

Cross-”

results from the small-B analysis. When we use the value of A estimated from the

Cross
large-B analysis, we need to note this underestimation for low 3.
Figures 2.7~2.9 show the results for larger epistatic numbers | (I = 20 for Figs. 2.7

and 2.8 and | = 40 for Fig. 2.9). According to these figures, we can conclude that the
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value of A s geometrically increases with |. Crossover greatly enhances the creation of
advantageous schemata when their orders are fairly large.

Finally we point out that two modes of crossover, FPAP-mode and MPIP-mode did
not differ much. According to the results shown in Figs. 2.6, 2.8, and 2.9, the two modes
of crossover did not make any significant difference in the acceleration effect and the

evolutionary outcome.
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Discussion

We studied the performance of GAs and the acceleration effect by crossover under a
conspicuously discontinuous (Babel-like) fitness function in which only one sequence is
much more advantageous than the others. The estimation was made with three different
methods, and the results obtained from those methods demonstrated that crossover
clearly accelerates evolution when its rate is not very high and the mutation rate u has an
intermediate optimum value. The key point responsible for this result is the fitness
landscape assumed in the model. In this landscape, evolutionary speed is primarily
determined by the creation rate of an advantageous schema. Both mutation and crossover
can enhance this creation process; and, especially when the mutation rate is not very
high, crossover can significantly promote the speed of evolution.

Traditionally the theory of GAs has been centered upon the ‘building block
hypothesis (BBH) (Holland, 1992) which states that the final solution is achieved
through the combination of good component schemata. Many good schemata which are
candidates for components of the final solution were considered to spread in ‘implicit
paralelism’ (Goldberg, 1989), and the crossover operation in GAs was regarded to help
to combine those component schemata into a single individual to create a more
advantageous sequence (Fig. 2.10a). However, when the fitness landscape is
discontinuous as assumed in the present chapter, evolution proceeds according to the
picture illustrated in Fig. 2.10b, rather than the one shown in Fig. 2.10a. The BBH is
valid, if it only asserts that the final solution is made of component good schemata.
However, in this picture, creation and domination of advantageous component schemata
take place not in parallel but serially (one by one), and the magjor roles of crossover are
not combining advantageous schemata but the following two:

f[Creation]: randomizing sequences and helping to create a novel advantageous
schema,

f[Preservation]: maintaining advantageous schemata which has already been fixed in
the population.

The effect of crossover on the creation of schemata is esse