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ABSTRACT OF DISSERTATION

OPTIMAL WATER QUALITY MANAGEMENT STRATEGIES FOR URBAN
WATERSHEDS USING MACRO-LEVEL SIMULATION MODELS LINKED WITH
EVOLUTIONARY ALGORITHMS

Urban watershed management poses a very challenging problem due to the various
sources of pollution and there is a need to develop optimal management models that can
facilitate the process of identifying optimal water quality management strategies. A
screening level, comprehensive, and integrated computational methodology is developed
for the management of point and non-point sources of pollution in urban watersheds. The
methodology is based on linking macro-level water quality simulation models with
efficient nonlinear constrained optimization methods for urban watershed management.
The use of macro-level simulation models in lieu of the traditional and complex
deductive simulation models is investigated in the optimal management framework for
urban watersheds. Two different types of macro-level simulation models are investigated
for application to watershed pollution problems namely explicit inductive models and
simplified deductive models. Three different types of inductive modeling techniques are
used to develop macro-level simulation models ranging from simple regression methods
to more complex and nonlinear methods such as artificial neural networks and genetic
functions. A new genetic algorithm (GA) based technique of inductive model
construction called Fixed Functional Set Genetic Algorithm (FFSGA) is developed and
used in the development of macro-level simulation models. A novel simplified deductive
model approach is developed for modeling the response of dissolved oxygen in urban
streams impaired by point and non-point sources of pollution. The utility of this inverse
loading model in an optimal management framework for urban watersheds is
investigated.

In the context of the optimization methods, the research investigated the use of parallel
methods of optimization for use in the optimal management formulation. These included
an evolutionary computing method called genetic optimization and a modified version of
the direct search method of optimization called the Shuffled Box Complex method of
constrained optimization. The resulting optimal management model obtained by linking
macro-level simulation models with efficient optimization models is capable of
identifying optimal management strategies for an urban watershed to satisfy water



quality and economic related objectives. Finally, the optimal management model is
applied to a real world urban watershed to evaluate management strategies for water
quality management leading to the selection of near-optimal strategies.

KEYWORDS:Evolutionary Algorithms, Optimization, Macro-level Simulation Models,
Water Quality, Watershed management
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CHAPTER 1
INTRODUCTION

1.1 Problem Statement

According to the 2000 National Water Quality Inventory report, about 40% of the
assessed streams in the U.S. were not clean enough to support designated uses such as
fishing and swimming. Leading causes of impairment in these assessed waters include
bacteria, nutrients, metals (primarily mercury), and siltation. Runoff from agricultural
lands, municipal point sources (sewage treatment plants and combined sewer overflows),
and hydrologic modifications (such as channelization, flow regulation, and dredging) are
the primary sources of impairment. Although the United States has made significant
progress in cleaning up polluted waters over the past 30 years, much remains to be done
to restore and protect the nation’s waters (EPA, 2002). In the United States, many federal
and state level environmental policies and regulations have been initiated to control such
problems. These include policies and programs such as the Clean Water Act (CWA)
(Federal Register, 1972), the Federal TMDL (Total Maximum Daily Load) program
(Federal Register, 1972), and programs for the control and management of combined
sewer overflows (CSOs) and sanitary sewer overflows (SSOs). The TMDL regulations
that currently apply are those that were issued in 1985 and amended in 1992 (40 CFR
Part 130, section 130.7).

Both point and non-point sources of pollution are internationally recognized as critical
environmental problems. In recent years it has become increasingly obvious to EPA that
in order to enhance and achieve the objectives of the Clean Water Act, an integrated
watershed management approach is needed that addresses both point and non-point

sources of pollution affecting a watershed.

Watershed management is a complex process that involves multiple uses and diverse
stakeholders (Dorn, 2004). Complex watershed management requires the use of a variety
of computer-based hydrologic, hydraulic, and water quality models. These simulation

models are used to quantify the impact of hydrologic and water quality processes



occurring in a watershed. The use of accurate and practical simulation models plays an
important role in watershed management. Such models can be used to identify effective
management solutions to restore water quality in watersheds. The goal in most cases is to
select a strategy (solution) that meets all economic, environmental, and other objectives.
In cases where multiple feasible scenarios need evaluation, the use of simulation models
alone can be cumbersome, time consuming, and cost prohibitive. In such situations, an
optimization model coupled with simulation model(s) can be used to identify optimal
solutions. Such a comprehensive approach of watershed management is an emerging
science (Muleta, 2003) and there is a need to develop more efficient and practical tools to

assist in such an approach.

Urban watershed management poses a very challenging problem due to the various
sources of pollution and there is a need to develop optimal management models that can
facilitate the process of identifying optimal management strategies. An optimal
management formulation for urban watersheds should consist of effective and practical
simulation model structures as well as efficient optimization algorithms. For such an
optimal management formulation to be effective, it should allow the evaluation of
management strategies that address both point and non-point sources of pollution.
Finally, the optimal management formulation should result in alternatives that are

feasible as well as practical and meet both water quality as well as economic objectives.

It is increasingly evident that most water quality problems in urban watersheds are
complex and require costly solutions. There continue to be a need for management tools
and methodologies that can guide decision makers in formulating solutions to such
complex problems that are both least-cost and environmentally sustainable. By necessity,
such tools will require a linkage of water quality simulation models with optimization
models in an effective and efficient manner. Since most existing comprehensive water
quality simulation models do not lend themselves for integration into such an
environment, there is a need to develop simpler models to represent the response of
hydrologic and water quality processes in such watersheds. Such macro-level models can

be more effectively linked with efficient optimization models to provide a decision



support system for watershed managers. The need for macro-level models was recently
highlighted in the National Research Council (NRC, 2001) report that assessed the
scientific basis of the Federal TMDL Program (40 CFR Part 130, section 130.7). The
NRC report recommended that “Given the variety of existing watershed and water quality
models available, and the range of relevant model selection criteria, EPA should expand
its focus beyond mechanistic process models to include simpler models (NRC, 2001).” In
the same context, the report also recommended that “EPA should support research in the
development of simpler mechanistic models that can be fully parameterized from the

available data (NRC, 2001).”

1.2 Summary of Previous Work

Due to the fact that comprehensive watershed management is an emerging and rather
challenging area for researchers, there are relatively few applications that exist (Muleta,
2003). Ormsbee (1983) lists some of the contributions in the area of urban watershed
management, particularly in studying the problem of optimal placement of detention
basins in an urban watershed. These include Abt and Grigg (1978), Mays and Bedient
(1982), and Flores et al. (1982). Ormsbee (1983) presented a methodology for use in the
planning of dual purpose detention basins in urban watersheds. The methodology
employed continuous simulation, statistical analysis, and a design heuristic to obtain an
integrated system of detention basins. The methodology was capable of handling both

water quantity and quality considerations.

Recently, Muleta (2003) summarized a list of contributions in the area of watershed
management. These include contributions by Harrell and Ranjithan (1997), Sengupta
(2000), Dorn et al. (2001), Zhen and Yu (2002), and Srivastava et al. (2002). More
recent contributions include those of Zechman (2005) and Dorn (2004). Muleta (2003)
developed an integrative computational methodology for the management of non-point
source pollution from agricultural watersheds. The method is based on an interface
between evolutionary algorithms (EAs) and a comprehensive watershed simulation

model known as Soil and Water Assessment Tool (SWAT).



Dorn (2004) developed a new evolutionary algorithm based technique for systematic
generation of alternatives and multi-objective optimization to aid in watershed
management. The new EA-based framework focused on storm water management issues
such as use of best management practices (BMPs) to control runoff resulting from new
developments. In particular, the modeling and management framework was applied to
watersheds for obtaining cost-effective system of pipes and dry detention ponds to
convey runoff generated by a design storm while meeting objectives of runoff control.
The optimization model developed in the study is linked with a storm water simulation

model (called SWMM - Storm Water Management Model) developed by EPA.

Zechman (2005) developed a new model error correction procedure to improve the
predictive capabilities of simulation models for use in watershed management. The work
also results in new evolutionary computation (EC) based methods to generate alternatives
for numeric and symbolic search problems. The alternatives generation procedure
developed are then coupled with the model error correction procedure to improve

predictive capabilities of simulation models and to address the non-uniqueness issue.

1.3 Research Needs

Based on a review of the most recent research in the area of optimal watershed

management, several research needs were identified. These are listed as follows:

1. There continues to exist a need for an optimal management framework for urban
watershed management that addresses both point and non-point pollution sources.

2. There continues to exist a need for efficient macro-level water quality simulation
models for use in such a framework.

3. There continues to exist a need for efficient nonlinear constrained optimization

models for use in such an optimal management framework.



1.4 Research Questions
This dissertation will investigate the following four research questions as they relate to
water quality modeling and management of urban watersheds that are impaired due to

point and non-point sources of pollution:

1. Can macro-level (simplified) models be used in lieu of more complex deductive
model(s) in providing a sufficient cause and effect relationship on which to base
sound management decisions?

2. Can macro-level models be effectively integrated into a nonlinear constrained
optimization framework so as to provide an effective decision-making tool for
evaluating optimal water quality strategies for watershed management?

3. What types of macro-level simulation models are most efficient in generating such
optimal management strategies?

4. What types of optimization models are most efficient in generating such optimal

management strategies?

1.5 Research Objectives

The objective of this research is to develop a screening level, comprehensive and
integrated computational methodology that can be used by decision makers to evaluate
cost-effective water quality management strategies leading to reduction of point and non-
point source pollution in urban watersheds. The research will investigate the utility of
macro-level water quality simulation models for use in an integrated watershed
management framework. An optimal management model will thus be developed by

linking a macro-level water quality model with an efficient optimization model (Figure 1-

1.



Optimization Model

Decision Function
Variables Evaluation
Descriptive Model

Figure 1-1. Proposed Framework of the Optimal Management Model

This is a disaggregated approach of formulating an optimal management problem in
which a set of decision variables are passed on from the optimization model to the
simulation model. The simulation model evaluates the system equations and any
constraints that are being considered, and returns the information back to the optimization
model. Based on the information passed to the optimization model, a particular solution
set or strategy is assigned an objective function value or fitness value. The process
continues and different solution sets are evaluated and ranked based on their fitness value
leading to the selection of the optimal solution set or strategy. Thus there are two distinct
components of the optimal management model namely 1) the water quality simulation
model, and 2) the optimization model. This research will investigate the utility of macro-
level water quality simulation models in lieu of the traditional and complex process-based
(deductive) models in developing optimal load reduction strategies for complex urban

watersheds affected by both point and non-point source pollution.

The systematic analysis of a complex urban watershed will frequently require the
application of multiple deductive models of watershed processes. While such deductive
models can be expected to better reflect the true dynamics of the process or processes
being modeled, such models may not be ideally suited for application in an integrated
watershed management framework. In many cases, the linkage of such deductive models
with an associated optimization model may not be feasible or even physically possible.

In such an environment, more compact and computationally efficient macro-level models



may be necessary. If macro-level models can be shown to produce comparable
management decisions to those solutions obtained using more comprehensive deductive
models, then the use of such efficient macro-level models can be justified. In theory,
three different levels or types of macro-level simulation models are possible namely 1)
implicit inductive models, 2) explicit inductive models, and 3) simplified deductive
models. This research will investigate the utility of the last two classes of models
(explicit inductive and simplified deductive) in the context of an optimal watershed
management framework. State-of-the-art operations research techniques will be explored
for use in developing the explicit inductive models. In particular, these techniques range
from simple regression models to more complex and nonlinear models such as artificial
neural networks (ANNs). A genetic algorithm-based function approximation technique
recently developed by the author named FFSGA (Fixed Functional Set Genetic

Algorithm) approach will also be investigated for use in developing macro-level models.

In the context of optimization methods, the research will investigate the utility of linking
macro-level simulation models with “parallel” methods of optimization. Specifically, the
utility of two different types of optimization techniques will be investigated for use in the
proposed optimal management model. These include 1) an evolutionary computation-
based method called genetic optimization (Goldberg, 1989) and 2) a modified version of
the direct search method of optimization called the Box Complex method of constrained
optimization (Box, 1965). This modified method is named Shuffled Box Complex
method of constrained optimization. Finally, the research will evaluate the utility of the
proposed optimal management model in application to a real world problem. The
proposed methodology uses practical and state-of-the-art knowledge from different
interconnected disciplines of hydrology, operations research, artificial intelligence, and
watershed management. The research objectives are in line with the short and long-term
goals of the CWA (Federal Register, 1972), the Federal TMDL Program (40 CFR Part
130, section 130.7), and recommendations of the NRC report (NRC, 2001).



1.6 Research Application

The modeling methodology developed in this dissertation will be used to address the
environmental problems of the Beargrass Creek watershed in Jefferson County,
Louisville, Kentucky (Figure 1-2). The watershed contains three different sub-basins all
of which have been placed on the State of Kentucky’s 303(d) List of Impaired Water
Bodies since the early 1990’s for pathogens and dissolved oxygen/organic enrichment.
The sources of pollution include storm water runoff as well as wet weather discharge

from numerous CSOs and SSOs.

The Louisville and Jefferson County Metropolitan Sewer District (MSD) provides
sanitary sewer, storm water drainage, and flood protection services for all of Jefferson
County. The Commonwealth of Kentucky filed a civil suit against MSD in state court in
February, 2004 for unlawful discharge of untreated sewage and overflows of combined
sewage into the Ohio River and its tributaries totaling billions of gallons each year. The
U.S. Department of Justice, U.S. Environmental Protection Agency, and Commonwealth
of Kentucky's Environmental and Public Protection Cabinet (EPPC) jointly signed a
consent decree on April 25, 2005 for a comprehensive Clean Water Act settlement with
the Louisville and Jefferson County Metropolitan Sewer District (MSD). The settlement
requires that MSD will make extensive improvements to its sewer systems to eliminate
unauthorized discharges of untreated sewage and to address problems of overflows from
sewers that carry a combination of untreated sewage and storm water at a cost likely to

exceed $500 million (U.S. Department of Justice, 2005).

To restore these water bodies to compliance, the Louisville and Jefferson County MSD is
in the process of establishing Total Maximum Daily Loads (TMDLs) for each of the three
sub-basins of the Beargrass Creek watershed as well as developing a long term control
plan (LTCP) that will enable them to achieve such loads. In support of the development
of the pathogen and nutrient TMDL for these sub-basins, a comprehensive water quality
monitoring and modeling effort is underway. Data for this watershed will be used in the

development of macro-level water quality models and optimal management models for



the Beargrass Creek watershed. Beargrass Creek is an urban and complex watershed that
is impaired due to both point and non-point sources of pollution and thus provides an

excellent opportunity to evaluate the utility of the proposed methodology.

r Watershec
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[ CITY/OHIO RIVER
[ FLOYDS FORK
[C] GOOSE CREEK
[ HARRODS CREEK
[ MIDDLE FORK BEARGRASS CREEK
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[E] SOUTH FORK BEARGRASS CREEK

Muddy Fork of
Beargrass Creek

Ohio River
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Beargrass Creek 3

Figure 1-2. Beargrass Creek Watershed, Louisville, Jefferson County, Kentucky



The proposed optimal management model will be used as a screening tool to evaluate

least cost water quality management strategies for the Beargrass Creek watershed that is

impaired by multiple sources (i.e. CSOs, leaking sewers, and non-point source pollution).

Alternatively, the optimal management model will also be used to develop water quality

management strategies as constrained by a specified budget.

1.7 Significant Contributions of the Research

The unique contributions of this research are summarized as follows:

1.

A comprehensive and screening level optimal management model for integrated
watershed management is developed for complex urban watersheds impaired by both
point and non-point sources. The management model is obtained by linking macro-
level water quality simulation models with efficient optimization models in a
disaggregated constrained optimization framework. The proposed framework makes
use of a novel inverse loading deductive model for simulating dissolved oxygen
linked with a new, highly efficient optimization method called the Shuffled Box
Complex method.

A macro-level approach of water quality simulation modeling is proposed for use in
an optimal management framework. Such an approach provides greater flexibility
and allows for the use of several different types of simulation model structures for use
in the optimal management model and results in significant savings in computational
time when compared to more traditional process-based simulation models.

A novel simple deductive model is developed to simulate the dissolved oxygen (DO)
and biochemical oxygen demand (BOD) dynamics in an urban watershed impaired by
wet weather flows from CSO discharges, urban runoff, and leaking sewers along
stream banks. This inverse loading model is based on the classic Streeter-Phelps
equation (Streeter and Phelps, 1925) for modeling dissolved oxygen deficit in a water
column and is calibrated using observed dissolved oxygen data collected in the
watershed to back-calculate the corresponding effective BOD concentration that is

causing the DO deficit in the stream reach. The effective BOD loads (concentration

10



and flows) are then disaggregated into different components corresponding to the
source of pollution (i.e. point, non-point, and other). Once the BOD loads are
disaggregated, the model is run in the forward direction to simulate DO response in
the watershed. An added advantage of this inverse load model is that it eliminates the
use of a rainfall-runoff model (and thus the error associated with it) by using observed
stream flows in the simple deductive model.

. A new genetic algorithm-based technique for inductive model construction is
developed called FFSGA (fixed functional set genetic algorithm). FFSGA can be
effectively used to develop inductive (empirical) models for a response function in
the area of water resources and environmental engineering and management. This
new technique competes well with existing state-of-the-art techniques used for
inductive model development such as artificial neural networks (ANNs) and genetic
programming (GP) (Tufail and Ormsbee, 2004; Tufail and Ormsbee, 2006). An
added advantage of FFSGA over other state-of-the-art techniques such as ANNs and
GP is that it results in a compact, simple, and easy to use expression for a response
function modeled.

This research investigated the use of two different types of optimization techniques
(genetic algorithms and Shuffled Box Complex method) for use in the optimal
management model to evaluate their relative performance and applicability to
watershed management problems. The Shuffled Box Complex method of constrained
optimization is a new method that is based on the original Box Complex method of
constrained optimization (Box, 1965). The new method introduces the concept of
multiple complexes and random shuffling in the original Box Complex method and
application results demonstrates that the modified Shuffled Box Complex method can
be successfully applied to watershed management problems with performance
superior or equal to that of genetic algorithms. The advantage of using Shuffled Box
Complex over genetic algorithms (GAs) is that it is relatively simple and it eliminates
the use of penalty functions to handle inequality constraints in the optimal
management model. The use of penalty functions in using GAs for constrained
optimization can be considered as a drawback as they can require extensive fine

tuning and parameter estimation.
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1.8 Organization of the Dissertation

This dissertation is organized into eight chapters as follows. Chapter 1 provides an
introduction to the research that consists of a problem statement, summary of previous
work, research needs, research questions, research objectives, research application, and
significant findings of the research. Chapter 2 presents a discussion on optimization
methods that can used in an optimal management framework. In particular, two types of
optimization techniques are discussed in detail namely an evolutionary-based method
called genetic algorithms (GAs), and a direct search method called Shuffled Box
Complex method of constrained optimization. Chapter 3 presents a literature review of
mathematical models for watershed management. A review of both deductive and
inductive models and their methods of analysis are presented in this chapter. Chapter 4
presents a new approach for function approximation called Fixed Functional Set Genetic
Algorithm (FFSGA). FFSGA can be effectively used to develop inductive and macro-
level simulation models for a response function in water resources engineering and
management. Chapter 5 is devoted to the development of a series of macro-level water
quality simulation models. These include 1) explicit inductive models for pathogens,
nutrients, and dissolved oxygen response in a watershed, and 2) a simplified deductive
and inverse loading model for dissolved oxygen response in an urban watershed. Chapter
6 presents the mathematical formulation of the proposed optimal management model.
Chapter 7 presents the application of the optimal management model to a real world
watershed that is impaired by point and non-point sources of pollution. The watershed
used for this application is the Beargrass Creek watershed in Louisville, Kentucky.

Finally, the conclusions and recommendations of the research are summarized in Chapter

8.
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CHAPTER 2
OPTIMIZATION FOR WATERSHED MANAGEMENT

2.1 Introduction

A common problem encountered by engineers in all fields is the problem of finding an
optimal policy for a system under study. Optimization is often applied to solve such
problems in order to maximize the benefits and minimize the associated costs. The
theory of optimization finds applications in all branches of engineering at different levels.
Some example areas of application include design, planning and analysis of existing
systems, and control of dynamic systems (Reklaitis et al. 1983). In most engineering
applications, optimization is linked to a mathematical model of the system that is used to

analyze and characterize the performance of the system.

Watershed simulation models are frequently used to predict hydrologic and water quality
responses for a variety of applications such as real time control of separate and combined
sewer systems, impacts of combined sewer overflows and urban runoff on receiving
waters, and evaluation of different management strategies for watershed pollution
control. Broadly speaking, the use of simulation models can fall into one or both of two
major categories namely, 1) for use as an analysis or evaluation tool for engineers and
scientists and 2) for use as design or management tool for decision makers. In the latter
case, the use of simulation models alone may not be the best way to achieve management
objectives in which multiple strategies are evaluated to obtain the optimal solutions. The
number of design or management scenarios that may exist can be so large that a manual
or trial and error investigation of such scenarios using simulation models alone can be
cumbersome and tedious (Muleta, 2003). In such applications, there is a need for an
integrated management approach that uses an optimization technique linked to a
simulation model to achieve optimal solutions. Such an approach will allow the decision
makers to choose the best solution that satisfies all constraints by evaluating multiple

feasible management strategies in an effective manner.
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In the context of watershed management, an optimal management formulation can be
very useful to help watershed managers evaluate optimal management strategies needed
to achieve water quantity and quality objectives. Such a formulation will consist of an
optimization model linked to one or more set of watershed models that simulates
hydrologic and water quality processes and their impacts on the receiving waters in the

watershed and is schematically shown in Figure 2-1 below.

Pass Optimization Return
Decision Model State
Variables \ / Variables

Hydrologic
Model Satisfy State
. . Equations
Simulation
Model { Evaluate State
. Constraint
Water Quality
Model

Figure 2-1. Optimization Formulation for Watershed Management

The choice of optimization technique to be linked with a simulation model for watershed
management depends on the particular application and its complexity. Traditional
optimization methods (e.g. simplex method, steepest descent method) are known to
perform well for mostly linear or quadratic functions. Hydrologic and water quality
processes occurring in a watershed are known to be highly non-linear and complex and
the use of traditional optimization techniques are limited for such applications. In such
applications, traditional methods typically lack robustness and require continuous search
spaces with defined derivatives. Even when the processes are simplified and linearized,
such techniques are known to produce questionable results in their application to multi-
modal functions (Muleta, 2003). The use of evolutionary methods for complex processes
tends to overcome some of the shortcomings of the traditional methods. Evolutionary

methods can handle large search spaces, do not require derivatives of the functions,
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performs simultaneous evaluation of multiple solution vectors, and are particularly suited
for large non-convex problems. These advantages make them a suitable choice for use in
conjunction with a water quality simulation model for watershed management, which is
one of the objectives of this study. In this research, the utility of two types of
optimization models linked to macro-level simulation models are investigated in solving
the optimal watershed management problem due to point and non-point sources of

pollution.

2.2 Definition of the Optimal Management Problem

Optimization problems are mathematically formulated to include an objective function
that is optimized (maximized or minimized) subject to a set of constraints, which can be a
set of algebraic equations and/or inequalities. The set of algebraic equations can be
represented by a simulation model of the particular system being modeled. Such a
mathematical formulation or framework leads to the development of an optimal
management model which can be used in the optimal design and operation of the system.

More specifically, the optimal management problem can be stated as follows (Mays,

1997):

Given:
1. The state equations
2. A set of boundary conditions on the state variables at the initial time and the
terminal time

3. A set of constraints on the state variables and the control variables

Determine the optimal (and admissible) values of the control variables so that a

performance index (an objective function) is optimized (minimized or maximized).

In its most general form, the optimal management problem may be formulated as non-

linear optimization problem given as follows (Equations 2-1 to 2-4):
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Minimize or Maximize: F(X) (2-1)

Subject to: gxX)=0 (2-2)
h(X) >0 (2-3)
Xmin <X< ><max (2'4)

Where X represents a vector of decision variables, F(X) represents the objective function
to be maximized or minimized, g(X) represents the explicit or implicit system constraints
to be satisfied, and h(X) represents the implicit bound constraints to be satisfied by the
optimal management formulation. Xmin and Xmax represent the explicit bound constraints
on the decision variables of the optimal management formulation. The system
constraints can be represented explicitly by the use of a set of linear or nonlinear
equations or implicitly by the use of a simulation model (Ormsbee and Reddy, 1995).
When using an implicit formulation, the system equations can be represented using either

an inductive or deductive formulation.

2.3 Types of Approaches in an Optimal Management Problem

In most applications, the optimal management problem can be formulated in one or two
distinct ways. These include 1) a composite approach, where the explicit system
constraints are lumped and solved with the corresponding bound constraints (e.g. the
traditional linear programming formulation) or 2) a disaggregated approach, where the
system constraints are separated from the optimization problem and explicitly enforced

through simulation. These are shown in Figures 2-2 and 2-3 below.

Optimization Model
MIN: F(X)
ST: g(X)=0

h(X)>0
X min <X < X max

Figure 2-2. Composite Optimization Framework
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Optimization Model
MIN: F(X)
ST: h(x)>0
X min <X <X max

A

X h(X)

\ 4

Descriptive Model
gX)=0

Figure 2-3. Disaggregated Optimization Framework

This research is focused on the application of the disaggregated approach to optimal
management of water quality in urban watersheds. Such an optimal management
formulation is comprised of two distinct components namely 1) an optimization model
and 2) a descriptive model of the system or process for which the optimal management

model is sought (Tufail and Ormsbee, 2005a).

The disaggregated approach was chosen due to its flexibility in allowing the effective
evaluation of different model structures for both optimization and descriptive models.
Contrary to the composite approach, the mathematical programming in the disaggregated
approach is less complex and easier to implement. The next two sub-sections will
describe some of the available choices for descriptive models as well as optimization
algorithms for use in the disaggregated approach of optimal management formulation

given in Figure 2-3.

2.3.1 Types of Descriptive Models in an Optimal Management Problem
A descriptive model can be represented in different ways in an optimization framework
and Figure 2-4 and Table 2-1 below gives the broad classes of models that can be used to

represent a descriptive model of a system.
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Types of Descriptive Models

A 4 A 4 A 4 A 4
Complex Implicit Explicit Simplified
Deductive Inductive Inductive Deductive

Figure 2-4. Classes of Descriptive Models used in Optimal Management Problems

Table 2-1. Examples of Descriptive Model Classes

Descriptive model approaches | Example model or method

Complex deductive model HSPF/SWMM/WASP/CEQUAL-RIV1

Explicit inductive model Regression/Neural Networks models using raw data

Implicit inductive model Regression/Neural Networks using output from a
calibrated deductive model

Simplified deductive model Streeter-Phelps inverse load model

2.3.1.1 Complex Deductive Model

This approach requires the use of a complex deductive model linked to an optimization
algorithm (per the framework given in Figure 2-3).  This approach can be
computationally very expensive since most complex deductive models require significant
time, particularly if applied to perform a continuous simulation over a longer period of
time. The transfer of control variables between the simulation model and optimization
algorithm can thus be very time consuming. For these reasons, this approach may not be
very favorable for scenarios where multiple management scenarios need to be evaluated
in a short period of time. In addition, for more complex applications involving multiple
deductive models, it may not be practical or even physically possible to embed the

simulation models with an optimal management framework.
2.3.1.2 Implicit Inductive Model

An implicit inductive model is constructed by utilizing output data from a calibrated

deductive model of the process or system being modeled. This approach can be useful in
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situations where 1) a fully calibrated deductive model is available but it is very complex
for integration into an optimization framework and thereby computationally expense, and
2) there is lack of raw data needed to develop an explicit inductive model. Implicit
inductive models can result in significant computational savings and may be more
favorable if quick decisions are needed over a short period of time. A certain degree of
caution needs to be exercised in the development of implicit inductive models for
integration into an optimization framework. Such a caution means that the resulting
implicit models should capture the dynamics of the process with acceptable confidence in
order to serve as a substitute for the calibrated deductive model. This can be verified by
comparing the performance of the implicit inductive model versus the calibrated

deductive model using the same set of independent variables.

2.3.1.3 Explicit Inductive Model

An explicit inductive model can be constructed when sufficient data are available to
permit the development of an inductive relationship between the independent and
dependent variables. Such models may be developed using various techniques such as
linear or nonlinear regression, artificial neural networks (ANNSs), or other evolutionary
methods such as genetic programming and genetic functions. The development of
explicit inductive models requires sufficient raw data over a range of time to fully capture
the behavior of the response function being modeled. The use of explicit inductive
models in an optimization framework can be a favorable choice due to their ease of use
and simplicity as substitutes for more process-based deductive models. For instance,
explicit inductive models may be preferred where 1) computational expense is a critical
issue, 2) the process-based deductive model is over parameterized and cannot be
adequately calibrated, and 3) budgetary constraints do not allow for a complex deductive
model. While such an approach can result in significant computational savings resulting
in an efficient and effective optimal management framework, it is important to make sure
that the resulting model is capable of accurately representing the response function. This
can be verified by evaluating the assumed cause and effect relationship between input

and output variables through the process of model validation.
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2.3.1.4 Simplified Deductive Model
A simplified deductive model can be constructed for a particular response function for
integration into an optimization framework when either of the following scenarios is

valid:

e A comprehensive calibrated deductive model is not available due to reasons such
as budgetary constraints.

e A comprehensive calibrated deductive model requires excessive computation
time.

e The deductive model consists of multiple complex deductive models which make
it too complex to allow effective integration into the optimization framework.

e An explicit inductive model is not available due to data scarcity.

e An explicit inductive model does not fully capture the dynamics of the response
function being modeled, that is it fails to accurately validate the cause-and-effect
relationship between input and output variables.

e An implicit inductive model is not available due to unavailability of a calibrated
deductive model.

e An implicit inductive model does not capture the full dynamics of the response

function as modeled in the calibrated deductive model.

In this approach, a model of the system response function can be constructed by using a
simplified approach to modeling. Thus rather than constructing a comprehensive
dynamic model for a system, one or more simplified model representations of the process
or processes are constructed. This is achieved by making reasonable assumptions about
the system and validating the resulting models using any available data sets. For
example, under the appropriate conditions, the Kinematic Wave model may serve as a
reasonable approximation of the St. Venant Equations for fully dynamic flow in an open
channel. Alternatively, the Streeter-Phelps model (applied over daily time step for
simulating dissolved oxygen in a stream) may serve as a reasonable substitute for a more
complex deductive water quality model for simulating dissolved oxygen such as HSPF or

WASP or CE-QUAL2-RVI1. Such an approach has the advantage of reducing
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computational time when integrated into an optimization framework and can provide an
effective planning tool for evaluating multiple screening level management alternatives in

the optimal management problem.

2.3.2 Types of Optimization Models in an Optimal Management Problem

Various optimization algorithms have been developed for solving different optimization
problems. In general, optimization algorithms may be subdivided into two broad
classifications: constrained optimization methods and unconstrained optimization
methods. Unconstrained methods are for use in solving Equation (2-1) only, while
constrained methods are for use in solving problems involving Equations (2-1) to (2-4).
Constrained methods can further be subdivided into linear problems or nonlinear
problems. Due to the constrained nature of the watershed management problem, only

those methods applicable to nonlinear constrained problems will be examined.

Nonlinear constrained methods can broadly be classified into four categories namely 1)
exhaustive search or optimal enumeration methods, 2) gradient-based methods, 3) direct
search methods, and 4) evolutionary methods as shown in Figure 2-5 and Table 2-2. The
choice of a particular method depends on many factors such as the functional form of the
objective function and the associated constraints, user preference, knowledge of

technique, complexity of the application and other application-specific needs.

Classes of Optimization

A 4

A 4 A 4 A 4 A 4

Enumeration Gradient-based Direct Search Evolutionary
Methods Methods Methods Methods

Figure 2-5. Classes of Optimization Techniques
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Table 2-2 Examples of Optimization Classes

Class of Optimization methods Example method

Optimal enumeration methods Dynamic Programming
Gradient-based methods Generally Reduced Gradient (GRG)
Direct search methods Box Complex
Evolutionary computing methods Genetic Algorithms

2.3.2.1 Optimal Enumeration Methods

In optimal enumeration methods, the search algorithm evaluates the objective function
value at each point in the feasible search space. An example of this optimization method
is the traditional Dynamic Programming (DP). While very efficient for a particular
subset of constrained nonlinear problems, DP is largely restricted to problems that can be
separated into a series of independent problems or to those that involve only a small
number of decision variables (Bellman, 1961). Unfortunately, the watershed management

problem under consideration does not satisfy these restrictions.

2.3.2.2 Gradient-based Methods

Gradient based methods seek to minimize an expanded objective function made up of the
original objective function (i.e. Equation 2-1) and a penalty term that incorporates the
degree of violation of the associated constraints (i.e. Equations 2-2 through 2-3). The
expanded formulation is minimized by seeking to determine the values of the decision
variables in the objective function that will yield a function gradient equal to zero. The
primary limitations of the method are due to 1) the requirement for gradients or higher
order derivatives of the composite objective function, 2) the need for an iterative process
to fine tune the weights associated with the penalty term in order to avoid a numerical
distortion of the solution space, and 3) the potential convergence of the method to a sub-
optimal solution in those problems that may possess many alternative optimal solutions.
Each of the three limitations tends to become particularly acute in application to the
proposed watershed management formulation. Examples of traditional gradient methods
include the steepest descent method (Cauchy, 1847), quasi-Newton methods (Davidon,
1959; Fletcher and Powell, 1963) and conjugate gradient method (Hestenes and Stiefel,
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1952). More recently, Abadie and Carpentier (1969) developed a gradient method called
the Reduced Gradient method which is able to explicitly handle constraints without the
need of a penalty function by breaking the problem into a series of unconstrained
problems that are solved using either the conjugate gradient method or the quasi-Newton

methods.

2.3.2.3 Direct Search Methods

Direct search methods are similar to gradient based methods in that they seek to yield a
search path through the decision space that minimizes the objective function, but
dissimilar in that they are able to obtain the incremental search direction without the use
of derivatives. Thus they tend to be more applicable to optimization problems formulated
using the disaggregated approach. Like gradient methods, constraints are normally
handled through the use of a penalty method and thus the method cannot guarantee a
global optimal solution due to a directed search along a single search path. Examples of
traditional direct search methods include Rosenbrock’s algorithm (1960), Powell’s
method of conjugate direction (Powell, 1964), and the downhill Simplex method of
Nelder and Mead (1965). Unlike the methods of Rosenbrock and Powell, the Simplex
method is able to search along a single decision path that incorporates a local search
around the search direction, thereby increasing the efficiency of the search. One
limitation of the Simplex method is that the solution space is investigated along a single
search path. However, this limitation has been overcome through the use of multiple
simplexes that are used to pursue an optimal solution along multiple simultaneous paths
(Duan et al. 1993). Duan et al. (1993) developed a method called Shuffled Complex
Evolution (SCE) approach for global minimization in which multiple complexes
(simplexes) are evolved in different search paths. In addition to evolving multiple
simplexes, the approach by Duan et al. (1993) introduced the idea of shuffling between

simplexes in a random manner.

Unlike the previous methods which were applied only to unconstrained problems, Box

(1965) developed a method similar to that of Nelder and Mead (1965) that is applicable
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to constrained problems. This was done by explicitly incorporating the constraints into
the search space via a constrained simplex which he called a Complex (without the need
of a penalty term), thereby greatly improving the efficiency of the overall algorithm.
Despite these improvements, the method still suffers from the fact that the solution space
is investigated along a single search path, although a more robust one as a result of the

use of an expanded complex.

In this research, a new method is proposed called the Shuffled Box Complex method of
constrained optimization, which is a modification of the original Box Complex method of
constrained optimization (Box, 1965) by introducing the concept of multiple complex
evolution and subsequent complex shuffling for constrained optimization problems. The
Shuffled Box Complex method was chosen as a candidate for the watershed management
problem because 1) the method is conceptually simple, 2) no function derivatives are
required, 3) the method is directly applicable to problems involving nonlinear inequality
constraints without requiring any transformations and/or use of penalty functions, and 4)
the method does not distort the region of search. The next two subsections will describe
first the original Box Complex method and then the proposed Shuffled Box Complex

method of optimization.

2.3.2.3.1 Box Complex Method

The Complex method of Box (1965) is based on the Simplex method of Spendley, Hext
and Himsworth (1962) and has been explained in detail in Ormsbee (1983). The method
has successfully been applied to complex nonlinear problems in environmental design
(Craig et al, 1978), hydrology (Ormsbee et al. 1984), and water distribution system
design (Ormsbee, 1985). It is a direct search technique that moves through the region of
search by use of a flexible mathematical figure called a complex. Each vertex in the
complex corresponds to a single design. In general, k > (n + 1) vertices are used in the
complex, where n equals the number of decision variables. Associated with each vertex
are n coordinates, with each coordinate corresponding to an individual design variable.

The Complex method of Box involves two distinct phases. The first phase involves the
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construction of the initial complex. In order to generate an initial complex, an initial
vertex corresponding to an initial design must be generated. This initial design must
satisfy all constraints (explicit and implicit bound constraints). The remaining (k-1)
points needed to set up the initial complex are obtained one at a time by the use of
random numbers and bounds for each of the decision variables which are based on the
explicit bound constraints for the decision variables as given in Equation (2-4) above.
Given upper and lower bounds X and X®, the pseudo-random variable uniformly
distributed on the interval (0, 1) is sampled, and the point coordinates calculated using the

following equation.
X, = X" + 5 (X©-X") i=l..N (2-5)

Where X; represents the individual design decision variables that make up a solution set,
r; i1s the random number, and N is the number of points to be generated. A point so
selected will satisfy all the explicit bound constraints but not necessarily all the implicit
bound constraints. This will require the decision variables to be passed on to the
simulation program or any descriptive model that represent the implicit system
constraints. If an implicit constraint is violated, then the random point is moved halfway
back to the centroid of those points that have already been selected and satisfy all the
constraints. Ultimately, a satisfactory point will be found. Following this procedure, the
(k-1) additional points can be generated which satisfy all the constraints (Ormsbee,

1986).

The second phase of the Complex method involves the movement of the complex
through the solution space. This process is performed using two operations: complex
expansion and complex contraction. These two operations may be visualized as follows.
At each stage of movement the objective function is evaluated at each of the points in the

complex, and the vertex of the greatest objective function value determined. The

complex is then expanded away from this worst point (say Pp;g;), through the centroid

(Pientroid) of the remaining points to yield a new point (say P,.,). Mathematically this

may be written as:
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P, = (l+a)P

centroid

a Phigh (2_6)

Where o is the expansion coefficient and P,.,0iq 15 the centroid of all points excluding
Phign. Box recommended a value of 1.3 for a.. The objective function is then evaluated
at this new point P,,,. If the new point yields an objective function value which is better
than the worst point Py;q;, then the worst point Pj;ep is discarded and the replaced by
Pe. In this way, the complex moves in the direction of function minimization (see
Figure 2-6). If, however, the value of the new point is worse than Pj;ep, then the new
point is contracted back toward the centroid of the remaining points and a new point
P,ey-2 1s generated (see Figure 2-7). This continues until an acceptable point is generated
(Ormsbee, 1986). The contraction process can be mathematically represented as follows:

P = oP, +(-0)P

new—2 new centroid

(2-7)

Where @ is the contraction coefficient for which a value of 0.5 is recommended. This
dual process of expansion and contraction continues until some constraint is violated or
the algorithm converges. If an independent variable X; of a new point i violates some
explicit bound constraint then that variable is reset to a value just inside the constraint. If
the new point violates some implicit bound constraint (inequality constraint) then the
point is moved halfway towards the centroid of the remaining points. Eventually a
permissible point will be found. The search finally terminates when the complex has

collapsed into the centroid (Ormsbee, 1986).
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Figure 2-6. Complex Expansion in the Box Complex Method
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Figure 2-7. Complex Contraction in the Box Complex Method
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2.3.2.3.2 Shuffled Box Complex Method

The original Box Complex method of optimization is modified by incorporating the
concept of multiple complex evolution and complex shuffling. In the Shuffled Box
Complex method, instead of generating one complex of solution points, multiple
complexes are generated that move in the direction of function minimization
simultaneously via different search directions. After a specified number of generations
(iterations), the points constituting the multiple complexes are shuffled randomly and
reassigned to the complexes. The new complexes then continue to move towards the
constraint boundary in the direction of function minimization. Such a shuffling process
will ensure that information contained in the sample is efficiently and thoroughly
exploited. It will make the search process more robust and diverse by mixing
information between complexes. Shuffling will also enhance survivability by a sharing
of the information between different solution sets. This process of shuffling can be
considered evolutionary in the sense that communities are made to mix during the search
process causing a sharing of information similar to the genetic operations of crossover
and mutation in the case of evolutionary optimization methods such as a genetic
algorithm. The shuffling continues until a specified convergence criterion is met or the
specified number of generations is over. The concept of evolving multiple complexes and
complex shuffling was first developed by Duan et al. (1993) in their Shuffled Complex
Evolution (SCE) approach for global minimization. The difference between SCE
approach and the proposed Shuffled Box Complex method lies in the specific application.
The SCE approach was applied to an unconstrained optimization problem and a
technique known as the competitive Complex evolution (CCE) was used to evolve each
individual complex in the search space. In contrast, the Shuffled Box Complex method
has been developed for constrained optimization problems in which the individual
complexes are evolved using the original Box Complex method of optimization with the

provision for handling inequality constraints through complex contraction.
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2.3.2.4 Evolutionary Methods

Evolutionary computation is the study of computational systems which use ideas and get
inspiration from natural selection and adaptation. The primary aim of evolutionary
computation is to study and develop robust and efficient computational systems for
solving complex real world problems. Sarker et al. (2002) reports that evolutionary
optimization is the most active and productive area of evolutionary computation as
measured by the number of successful applications and resulting publications in this area.
All evolutionary or heuristic search methods are characterized by a population of
solutions that evolve to better solutions through a process or mechanism that is analogous
to the process of natural selection (Goldberg, 1989). There is no formal mathematical
proof for evolutionary methods but they have been proven to be superior to traditional
optimization methods, particularly in case of nonlinear, non-convex, multi-modal

problems (Muleta, 2003).

Evolutionary computation consists of four major branches namely 1) evolutionary
programming, 2) evolution strategies, 3) genetic algorithms, and 4) genetic programming.
Of these four, the first three types of algorithms have been collectively grouped under
evolutionary algorithms (EAs) by more and more researchers (Sarker et al. 2002). All
these three types of evolutionary algorithms namely evolution strategies, evolutionary
programming, and genetic algorithms use similar computational framework. This is

shown in Figure 2-8.
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Figure 2-8. An Overview of Evolutionary Computation Methods

Evolutionary strategies were first proposed by Rechenberg and Schwefel in 1965 as a
numerical optimization method and did not include the concept of a “population”. The
“population” concept was introduced into evolution strategies later (Schwefel, 1981;

Schwefel, 1995; Sarker et al. 2002).

Evolutionary programming was first proposed by Fogel (1962) as a way to achieve
artificial intelligence and since then several examples of evolving finite state machines
were demonstrated (Fogel et al. 1966). Since the late 1980’s, it has been used to solve

various combinatorial and numerical optimization problems (Sarker et al. 2002).

Genetic algorithms (GAs) were first introduced by Holland (1975) and his students
(DelJong, 1975). Genetic algorithms are mostly used as global optimization methods for
combinatorial or numerical problems. GAs are probably the most well-known branch of

evolutionary computation (Sarker et al. 2002).
Genetic programming (GP) is a branch of genetic algorithms (Koza, 1992). It should be

noted that GA is not a model-building tool and has been used traditionally for finding

optimal values of parameters or decision variables of existing models. Thus while GA
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use a string of numbers to represent the solution, GP has the capability to create computer
programs or models that can turn inputs to outputs from specified building blocks such as
mathematical operations and variables. The output from a GP is an empirical model used
for approximation whereas the output from a GA is the optimal values of the parameters

or decision variables of a known empirical model (Alvarez et al, 2000).

2.3.2.4.1 Framework of Evolutionary Algorithms (EAS)

All evolutionary algorithms have two prominent features that separates them from other
search methods and these include 1) they are population based, and 2) there is
communication and exchange of information between individuals in a population. This
types of communication and information exchange is a result of selection and/or
recombination in evolutionary algorithms. A general framework of evolutionary
algorithms is given in Figure 2-10. Note that the search operators for instance in the case
of genetic algorithms will be the genetic operators such as generation, crossover, and
mutation. These operators are used to produce off-springs (new individuals or solution

vectors) from parents (existing individuals).

The framework given in Figure 2-9 is a general framework for all evolutionary
algorithms. Different algorithms vary from one another in the different representation of
individuals and different methods of implementing fitness evaluation, selection, and
search operators (Sarker et al. 2002). The next subsection will give an overview of

genetic algorithms for use as a global optimization technique in this research.
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1. Seti=0;
2. Generate the initial population P(i) at random;
3. REPEAT
a. Evaluate the fitness of each individual in P(7);
b. Select parents from P(i) based on their fitness;
c. Apply search operators to the parents and produce generation P(i +1);

4. UNTIL the population converges or the maximum time is reached

Figure 2-9. General Framework of Evolutionary Algorithms (Sarker et al. 2002)

Of the three EAs described above (Figure 2-8), this research will investigate the utility of
genetic algorithms (GAs) as an optimization method for application to the watershed

management problem. GAs are described in detail in the following section.

2.3.2.4.2 Genetic Algorithms (GAs)

GAs are a subset of EAs that mimic biological principles (Darwin’s theory of evolution)
to optimize highly complex functions. The method was developed by John Holland
(1975) in the 1960s and 1970s but was popularized by one of his students, David
Goldberg, who applied it to solve a difficult problem in engineering involving the control
of gas pipeline transmission for his PhD dissertation (Haupt and Haupt, 1998). A genetic
algorithm (GA) is a stochastic numerical search procedure inspired by biological
evolution and natural selection. GA is used in cross breeding trial solutions and allowing
the fittest solutions to survive and propagate to successive generations. GA deals with a
population of individual solutions which undergo constant changes by means of genetic
operations of reproduction, crossover, and mutation (Goldberg, 1989). GA can be
viewed as a search procedure where the search process is controlled by the fitness of the

solution vector (Burn and Yulianti, 2001). A solution in GA is represented as a string of
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decision variables (also referred to as chromosome) that evolves through generations to
further improve its fitness. A simple GA consists of the following steps (Burn and

Yulianti, 2001) as shown in Figures 2-10 and 2-11:

Initialize population;
Evaluate population;
While TerminationCriteriaNotSatisfied

{

Select parents for reproduction;
Perform crossover and mutation;
Evaluate population;

Figure 2-10. A simple Genetic Algorithm

[1] SELECT POPULATION
[2] EVALUATION

Determine fitness (objective)
‘w for each decision vector
F(X)
REPRODUCTION

(crossover and mutation)

\

1001001011

[3] SELECTION

Select all vectors with
fitness function values
above certain threshold 0110010111

[4]

1001010101 [5]

Figure 2-11. Steps in a simple Genetic Algorithm
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Select an initial population of solution vectors or strings.

Each of these vectors (also called chromosomes) is defined by a sequence of decision
variables, known as genes in GA terminology. These can be represented as a string
of binary or real numbers or integers. In case of binary representation of genes, the
length of each chromosome is defined by the user (Muleta, 2003).

Evaluate the fitness of each string.

For each of the solution chromosomes chosen during the random search, a measure of
fitness (which corresponds to an objective function value) is evaluated. All solution
chromosomes in the initial population are referred to as species of the first generation.
Their chance of survival depends on the values of their fitness (Muleta, 2003).

Select strings from the current population to mate.

The chromosomes of the first generation are then ranked in an ascending order (for
minimization problems) to determine the ones that will get the chance to mate and
produce off-springs. The ones with higher fitness values (low objective function
value) will have the greater chance to survive to the next generation (Muleta, 2003).
This process of choosing mates is called selection.

Perform crossover for the selected strings.

Once the chromosomes for mating (parents) are selected, there is exchange of
information between the genes of the selected parents that gives rise to off-springs.
The mechanism of creating new individuals by assigning them genes of the parents is
called crossover. In this manner, new individuals will replace the ones that had the
worst fitness values in the previous generation. There are many ways in which
crossover can be performed and using different methods generates new types of GAs
(Muleta, 2003).

Perform mutation for the selected string elements.

To bring diversity in the new individuals created after crossover operation and to
make sure that the search is not confined to the genes brought by the initial
population selected randomly, the operation of mutation is performed. In mutation, a
certain percentage of chromosomes (often 3 to 10 percent) are selected and their
genes are altered at a randomly selected location. This will change the genes of the

selected chromosomes and prevents the GA from being trapped in local minima.
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6. Repeat steps 2-5 for the required number of generations.
The process of evaluating fitness, selection, crossover, and mutation is carried over
and over in a cyclic manner until the GA converges to an optimal solution that meets
user’s criteria or the number of specified generations is over. Also, if the solution
vectors are not getting any better in successive generations, the GA search process

can be terminated.

There are many advantages of using GAs over traditional optimization methods and some

of these are summarized as follows:

¢  They do not require derivative information,

e  They can deal with a large number of parameters,

e  Their concept is easy to understand.

e  They support multi-objective optimization,

e  They are good for noisy environments,

e  They are well suited for parallel computers,

e  They provide a population of solutions and not just one solution,

e  They are capable of searching simultaneously from a population of solutions,
e  They are known to be successful in optimizing complex, non-linear, and noisy

functions for which other traditional methods fail.

The most important advantage of GAs as stated by Muleta (2003) is their ability to work
for functions that are not easy to describe mathematically such as the hydrologic and
water quality processes occurring in a watershed. It is very difficult to obtain a well-
behaved mathematical relationship between the inputs and outputs involved in such
processes and GAs are very well suited for such complex and non-linear problems. GAs
has been successfully applied to a variety of problems in water resources engineering and
management as presented in Muleta (2003). Consequently, there are numerous
publications on the use of GAs as global optimization tools by researchers covering a
broad spectrum of water resources engineering and management areas. It is therefore not

feasible to list a reference to all of these publication but a some of these include Hilton
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and Culver (2000), Nishikava (1998), Ritzel et al. (1994), Reis et al. (1997), Wang
(1991), McKinney and Lin (1994), Esat and Hall (1994), Oliveira and Loucks (1997),
Wardlaw and Sharif (1999), Savic and Walter, (1997), Hellman and Nicklow, (2000),
Reddy and Ormsbee (2002).

It should be noted however that GAs are not the answer to every optimization problem
and they too like other traditional optimization problems have certain limitations. Effort
should be made to understand such limitations and keeping them in view one should
make a decision on when and how GAs can be used for a particular application. For
instance, for well behaved response functions, other traditional methods are known to be
more efficient and they can outperform GAs in finding the optimal solutions (Haupt and
Haupt, 1998). It should also be noted that GAs are technically only applicable to
unconstrained problems.  Another shortcoming of the method is its significant
computational expense, particularly in cases where the complex objective function
evaluation may require significant time. Finally, it should be realized that GA are a
heuristic optimization technique and does not guarantee a globally optimal solution
(Muleta, 2003). But as pointed out by Nicklow (2000), the fact that the majority of
literature on GAs demonstrates its ability to obtain global or near global optimal solution
continue to make it a favorable choice for researchers. The benefits of using the GA
technology should meet the key requirements of the application in hand for GAs to be

effective optimization tools.

2.3.2.4.3 Genetic Algorithms for Constrained Optimization

As indicated above, GAs are directly applicable only to unconstrained optimization
problems. In the application of GAs to constrained nonlinear optimization problems, a
particular solution vector (chromosome) can violate certain constraints of the problem
formulation and can thus result in infeasible solution sets. In the recent years, different
methods have been proposed for handling constraints by GAs. These can be grouped into

the following categories (Yeniay, 2005):
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methods based on preserving feasibility of solutions,
methods based on penalty functions,
methods based on a search for feasible solutions, and

hybrid methods (Michalewicz and Schoenauer, 1996).

o=

Of these four methods, penalty function methods are the most popular methods used for
constrained optimization problems using a GA. These methods transform a constrained
problem into an unconstrained problem by imposing a penalty on the infeasible solution.
This is done by adding to the objective function value a positive value (penalty) which
reduces the fitness value of such infeasible solutions (Yeniay, 2005). This decreases the
chances of the solution to have a significant impact on the offspring solutions as they
evolve in future generations. Both static and dynamic penalties can be applied when
using GAs for constrained optimization (Sarker et al. 2002). Comparative studies about
penalty function methods in GA can be found in Kuri-Morales and Gutierrez-Garcia
(2001), Miettinen et al (2003), and Yeniay (2005). The use of penalty functions in using
GAs for constrained optimization can be considered as a drawback as they can require
extensive fine tuning and parameter estimation. This disadvantage of GAs was one of the
motivator for developing the Shuffled Box Complex method for the constrained

optimization problem in this research which does not require penalty functions.
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CHAPTER 3
MATHEMATICAL MODELS FOR WATERSHED MANAGEMENT

3.1 Introduction

In this chapter, an overview of the types of mathematical models and the methods of
analysis used in mathematical models is presented. This will lead to some applications of
mathematical models used for watershed management. In particular, this chapter will
provide a brief discussion on the two commonly used approaches (types) of mathematical
models (also referred to as simulation models) namely, 1) deductive or mechanistic
models and 2) inductive or empirical models. This will be followed by a discussion on
the analysis methods used in the development of these two types of modeling approaches.
In the context of watershed simulation models, both deductive and inductive watershed
models will be discussed. An overview of some of the available deductive watershed
models available to the public is given in the context of deductive watershed models for

hydraulic, hydrologic, and water quality modeling.

This research will evaluate the development of effective watershed response models for
processes occurring in an urban watershed that can be used in an optimal management
framework for linkage with efficient optimization algorithms. The concepts and methods
discussed in this chapter are therefore important and will provide a good platform for

understanding the work described in the future chapters.

3.2 Mathematical Modeling

Mathematical modeling is the process of creating a mathematical representation of some
phenomenon in order to gain a better understanding of that phenomenon. It is the use of
mathematics to describe real world phenomena, test ideas, and make predictions about a
real world process being modeled. It can thus be seen as a process that attempts to match

observation with symbolic statement. "Generally the success of a model depends on how
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easily it can be used and how accurate are its predictions." (Edwards and Hamson, 1990,

p.-3).

The analysis, design, or management of any real world process is facilitated through the
use of systems approach. In systems analysis (approach) a physical or engineered system
is represented in a simplified form through the construction and use of a mathematical
model (Figure 3-1). Such models represent a systematic organization of a system’s
knowledge developed for some kind of planning, engineering, or scientific purpose. From
a watershed management perspective, the most important subsystem is the watershed
system. Scientists and engineers develop and use descriptive models for the purpose of
describing such a physical system or sub-system and for the purpose of predicting the

behavior of such a system in response to a given stimulus or loading.

Given Input Predicted Output
System [—m

Figure 3-1. Systems Approach

A mathematical model can be used to represent a wide range of systems (Sinha, 1991;

and Mays, 1997) such as:

e Static and dynamic systems

e Linear and nonlinear systems

e Time-varying and time-invariant systems

e Deterministic and stochastic systems

e Continuous-time and discrete-time systems

e Lumped-parameter and distributed-parameter systems

Depending on the type of system being modeled, the resulting mathematical model may

be classified accordingly. Most real world systems are dynamic, nonlinear, time-varying,
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and stochastic, and often require the development of complex models to fully and

accurately represent them.

It is worth mentioning here that computer models do not solve problems but only provide
guidance to the user who then utilizes the information in the most beneficial way.
Mathematical modeling plays a very useful role in the design, analysis, and management

of a system through (Lund and Palmer, 1998):

¢ Furthering understanding of the problem.
e Defining solution objectives.

e Developing promising alternatives.

e Evaluating alternatives.

¢ Providing confidence in solutions.

e Providing a forum for negotiations in the final decision making.

The purpose of most models is to reproduce consistently the observable phenomena that
are of significance for a particular problem. For example, the purpose of a dissolved
oxygen water quality model is to reproduce in time and space the dissolved oxygen
patterns observed at a particular site taking into account the effects of flows and pollution
loads, etc. Models can be used to assist in real-time decision-making or evaluate a
physical or biological system under past, present, and future conditions (BDMF, 2000).
For water-related areas, mathematical modeling can be applied to the following (BDMF,

1997):

e Fisheries, aquatic biology, and habitat health
e Groundwater

¢ Hydrodynamics

e Hydrology, hydraulics, and irrigation

e System operations and real-time management
e Water quality and Watershed Management

e Water resources planning
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3.3 Types of Mathematical Models

Mathematical models represent existing or hypothesized knowledge of how a system
works and may be classified on the basis of the origins of such knowledge. Two different
strategies are typically employed in building a mathematical model. These include either
a deductive or mechanistic approach or an inductive or empirical approach. Deductive
models are based on the basic fundamentals of physics and chemistry governing a
process or system, while inductive models are data driven models that are based more
directly on field or laboratory observations. The question of “which type of model to
use?” has been asked ever since modeling of systems has been in place. Numerous
models have been developed in the quest to find the best approach or strategy to model
different systems or processes. It can be safely said that no one model can fully explain
the complexity of the real world and that is the reason why modelers continue to develop
models of varying complexity, generality, and validity. Thus Beck (1985) has stated that
"Different types of models are appropriate for solving different kinds of problems; there
is no universal model for solving all manner of problems; comprehensiveness and
complexity in a simulation are no longer equated with accuracy; and there is a healthy
mood of critical questioning of the validity and credibility of water quality models”.
Both empirical and mechanistic models have found various and successful
implementations and developments in different scientific areas. When comparing the
potential of the empirical and mechanistic approaches, it is recommended to select
models on both extremes of the empirical/mechanistic scale, (i.e., empirical models with
as little mechanistic assumptions as possible and mechanistic models with as few

empirical features as possible) (Nestorov et al. 1999).

Different analysis methods are used to construct deductive and inductive models. For
deductive models these methods may consist of different numerical schemes (e.g. finite
difference or finite element methods) to solve the underlying governing mathematical
equations representing the process or system being modeled. Conversely, inductive
models are constructed using methods that relate a given set of independent variables to a

given set of dependent variables (e.g. regression).
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3.4 Deductive Mathematical Models

Most traditional mathematical models used in planning and/or design are deductive or
mechanistic models. These are also referred to as physically or process based models.
Such models rely on the fundamental laws of physics and chemistry that govern a
particular process or system under study. Some examples of deductive modeling

approach are given as follows (BDMF, 2000):

e Use of conservation of mass to derive models of the operation of river-reservoir
systems;

e Use of conservation of mass, momentum, and energy with channel geometries
and bed elevations for hydraulic routing;

e Use of principles of advection and dispersion for contaminant transport modeling;

Mechanistic or deductive models commonly consist of a set of fundamental governing
equations representing conservation of mass, energy, and momentum, reaction kinetics of
various pollutants, etc. In most cases, these equations are either partial differential
equations or ordinary differential equations. Except for a few particular cases, remote
from the real world, a general analytical solution of the complex set of differential
equations cannot be found (Ciriani et. al., 1977). These governing equations have initial

or boundary conditions, and can be solved by several numerical schemes.

Deductive models can be applied in different ways depending on the manner in which the
input and output of the model is used. These include 1) deterministic, 2) parametric, and
3) stochastic. In deterministic models, all model parameters are assumed to have discrete
values that are used in the governing equations of the process being modeled to obtain
model outputs. In parametric models, model parameters are obtained by calibration using
observed model inputs and outputs. In stochastic models, probability distributions of
model parameters are obtained for use in the model to obtain a probability distribution of

the model output.
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3.4.1 Analysis Methods for Deductive Models

Once the mathematical form of a deductive model (set of differential equations) has been
specified, the numerical method to solve the model equations must be found. Often,
particularly for complex models, the solution method for the model equations will require
testing to ensure that the numerical solutions are correct for the intended types of
problems and modeling objectives. Concerns about accuracy and stability of a particular
numerical scheme can be addressed by comparing the numerical solutions with (1)

analytical solutions available for special cases or (2) solutions from trusted numerical

solution methods (BDMF, 2000).

The key to various numerical methods is to convert the partial or ordinary differential
equations that govern a physical phenomenon into a system of algebraic equations.
Different techniques are available for this type of conversion. There are five commonly
used, closely related, numerical methods for solving differential equations namely 1)
finite difference methods, 2) finite element methods, 3) collocation methods, 4) method
of characteristics, and 5) boundary element methods (Pinder, 1983). In applications of
water resources systems modeling, the finite difference and finite element methods are
more popular than any of the other methods (Tufail, 1995). A brief description of these

two methods is given as follows.

3.4.1.1 Finite Difference Method (FDM)

The finite difference has been a very familiar and popular approach for modeling of
physical processes in engineering. The method consists of replacing directly the
governing partial derivatives by quotients of finite differences. This results in a system
of algebraic equations that are solved, after imposing the boundary conditions, for the
unknowns at discrete mesh points of the region being analyzed. Most common finite
difference representations of derivatives are based on Taylor’s series expansion
(Anderson, 1995). There are several practical reasons for the popularity of this method as

summarized below (Pinder, 1983):
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¢ Finite difference methods are simple and conceptually straightforward.

e The fundamental concepts are readily understood and do not require advance
training in applied mathematics.

e The form and algebraic simplicity of the equations arising from difference
approximations have led to the development of several efficient algorithms for

their solution.

Finite difference methods can fall into one of the two approaches namely explicit or

implicit as discussed below.

3.4.1.1.1 Explicit Finite Difference Methods

In an explicit approach of finite difference method, each difference equation
(representing a governing differential equation) contains only one unknown and can
therefore can solved in a straight forward manner explicitly for the unknown(s). This is
the simplest of the approaches of solving difference equations. A disadvantage of the
explicit methods is that they are not unconditionally stable, meaning that for a given
spatial grid length Ax, the corresponding temporal interval At must be less than some
limit imposed by the stability constraints. This may in some cases lead to a very small At
thus leading to longer run times in the computation of the solution over a given

simulation time.

3.4.1.1.2 Implicit Finite Difference Methods

In an implicit approach of finite difference method, there are more than one unknown in
the resulting difference equations and these must be obtained by means of simultaneous
solution of the difference equations applied at all points of the grid representing the
discretization. In terms of stability, implicit methods are unconditionally stable and thus
they allow for using larger computational time steps (At). However, the use of larger At
can lead to larger truncation errors in the solution. Due to the simultaneous solution of a

large system of equations, the implicit approach is more complex in terms of
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computations and is relatively more difficult to program than the explicit approach

(Anderson, 1995).

3.4.1.2 Finite Element Method (FEM)

The finite element is an approximation procedure for solving partial differential equations
of boundary and/or initial value type in engineering and mathematical physics. This is a
very powerful, modern computational tool for solving engineering problems, and has
gained wide acceptance in the area of computational fluid mechanics (Stasa, 1985). The
procedure employs subdivision of the solution domain into many smaller regions of
convenient shapes, such as triangles and quadrangles, and uses approximation theory to
quantize behavior on each finite element. The approximation functions are derived using
the basic idea that any continuous function can be represented by a linear combination of
algebraic polynomials. Thus, over each finite element, the physical process is
approximated by functions of desired type (polynomials or otherwise), and algebraic
equations relating physical quantities (unknowns of the governing differential equations)
at selected points (nodes) of the element are developed (Reddy, 1993). These element
equations are collected together to form a global system of algebraic equations including
a proper accounting of the boundary conditions. Finally, the nodal values of the
dependent variables (unknowns) are determined from the solution of this global matrix

equation system (Baker, 1983).

The most distinctive feature of the FEM that separates it from other numerical schemes is
the division of a given domain into much simpler sub-domains, called finite elements.
Any geometric shape that allows computation of the solution or its approximation at
selected points (referred to as nodes) of the sub-domain, qualifies as a finite element.
The use of interpolation functions to define the unknown variables throughout the
problem domain is an important concept that distinguishes the FEM from the more
popular FDM. In the FDM, the unknowns are defined only at the nodal points, whereas
in the FEM, the unknown variables are defined throughout the problem domain in a

piecewise fashion over the individual elements. This characteristic of the FEM permits
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the application of variational or weighted residual principles. One of the main
advantages of the FEM over other numerical methods, including the FDM, is the fact that
FEM can handle irregular geometries routinely. However, for one-dimensional problems
this is not a significant factor. Another significant advantage of the FEM is the easy
handling of the variable spacing of the nodes. Also, the FEM has the capability with
which non-homogeneous and anisotropic materials can be easily handled, a feature not
available easily with the FDM. Lastly, the implementation of higher-order elements in
the FEM makes it more preferable than the FDM (Stasa, 1985). This can allow modeling
of critical regions of the domain more precisely, thus improving the accuracy of the
approximate solution. Some disadvantages associated with the FEM include the
necessary use of digital computers and expensive software. In the end, the choice of a
particular method (FEM, FDM, or others) used in a particular application depends on the
complexity of the problem, and the user’s familiarity with the different methods that can

be used (Tufail, 1995).

3.4.2 Deductive Watershed Models

Deductive watershed simulation model provide tools for simulating the movement of
precipitation and pollutants from the ground surface through pipe and channel networks,
storage treatment units, and finally to receiving waters. Both single-event and continuous
simulation may be performed on catchments having storm sewers and natural drainage,
for prediction of flows, stages and pollutant concentrations. EPA and state agencies have
emphasized watershed-based assessment and integrated analysis of point and non-point
sources of pollution (EPA, 1997). As a result, models are being increasingly used to

evaluate a wider range of pollutant transport and receiving water impacts issues.

Deductive watershed models play an important role in linkin