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The basic tool to simulate the evolution of a bioprocess, such as the industrial process of acetic

fermentation, is the kinetic model. The model must be simple and have a high predictive ability to

give results capable of explaining the real behaviour. The difficulties in the kinetic modelling of

biological processes are mainly related to the description of the bacterial growth. In this paper a

genetic algorithm is designed to obtain a set of kinetic parameters for the specific growth rate that

enables the model to explain the industrial fermentation. Only acetic concentration data from

industrial fermentators are required. A four-factor desirability function works properly as the

response to maximize. The model optimized can explain not only the behaviour of the industrial

batch process studied, but also the experimental results obtained with a pilot fermentator working

continuously with and without cell recycling. Copyright # 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A predictive simulation environment is a high-potential tool.

The simulation tools allow the engineers to optimize the

industrial processes or to develop new ones reducing the

costs, since the experimental charge must be reduced owing

to the high cost of an experiment in industrial plant. They are

also useful to control the processes by applying techniques

such as on-line state estimation [1,2]. The simulation tools

are also some of the most important tools for the scientists,

since they allow one to shorten the time required to study the

experimental domain and to compare process alternatives

and analyses of a large number of process conditions redu-

cing the experimental costs. Applied to bioprocesses, the

advantages of process simulation have been realised for a

long time now [3–5].

The basic tool to simulate the evolution of a bioprocess,

such as the industrial process of acetic fermentation, is the

kinetic model. The model must be simple and have a high

predictive ability to provide results capable of explaining the

real behaviour. Micro-organisms are very complex systems,

and therefore unstructured (the internal composition and

structure of the cell are not considered) and unsegregated

(all cells are considered identical) models have been used

extensively [6].

The data obtained from industrial fermentators are used in

this work to identify the set of kinetic parameters that

provides a better prediction ability for the model proposed.

The concentration data have been taken from the industrial

plant of the most important vinegar company in Spain,

Vinagrerı́as Riojanas SA.

Genetic algorithms have been applied for a long time to

solve various problems [7–12], including kinetic modelling.

A genetic algorithm has been developed in Matlab 6.1. to

optimize the kinetic model proposed. One critical point in

the building of the algorithm is to find an evaluation function

with a high capacity to fit the simulation to the real data. In

this paper the problem is solved with a four-factor desir-

ability function that works as the response to maximize.

The model optimized has been tested in a simulation

environment different from the process conditions of the

industrial plant. The results of the simulations are compared

with the experimental ones obtained with the pilot fermen-

tation system.

The nomenclature used in the mathematical expressions of

this paper is reported in the Appendix. The symbols have

been organized by their affiliation to the evaluation function,

the kinetic model or the pilot fermentation system.
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2. BACKGROUND AND THEORY

2.1. Genetic algorithms
Genetic algorithms are numerical optimization methods that

try to simulate biological evolution, i.e. the process of opti-

mization of the characteristics of individuals (chromosomes)

to improve their fitness to the environment. The basic idea of

evolution theory is that the individuals with best ability to fit

to the environment have more chances of surviving and

reproducing.

Many authors have applied genetic algorithms to various

optimization problems since Holland published the first

works in 1975. Genetic algorithms are well known for their

ability to perform robust optimizations in a multidimen-

sional space. The applications of genetic algorithms can be

roughly divided into three main categories [7]: numerical

problems [8], sequencing problems [9] and subset selection

problems [10,11]. Several tutorials have been published, such

as those by Lucasius and Kateman [12,13] and Wehrens and

Buydens [14].

It is also possible to find works where genetic algorithms

have been successfully applied to the empirical modelling of

fermentation processes [15]. In our work the genetic algo-

rithm is used to optimize the parameters of a mechanistic

model proposed for industrial acetification. We have adapt-

ed the basic algorithm [12,13] to our problem and have

introduced a desirability function as evaluation function.

2.2. Desirability functions
Multicriteria decision making (MCDM) is applied when

decisions based on multiple criteria covering several re-

sponses must be made. There are a number of methods to

take multicriteria decisions, and the use of desirability func-

tions is one of them [7,16,17]. It is possible to find recent

works where desirability functions are used in multire-

sponse optimization [18].

A desirability function is defined for each criterion con-

sidered. The function can adopt different mathematical

structures such as linear, exponential or logarithmic, but

the response must be always scaled between 0 (unaccepta-

ble) and 1 (maximum desirability):

dcn ¼ fc ycnð Þ; 04dcn41 ð1Þ

where ycn is the response of sample n for criterion c, fc is the

kind of single desirability function chosen for the selected

criterion c, and dcn is the value of the single desirability

function for response ycn.

The global desirability function for sample n, Dn, is then

defined as the geometric mean of the single desirability

functions:

Dn ¼
Yc

dcn

� �1=c

ð2Þ

2.3. Structure of the kinetic model
In this work we have assumed the general scheme for the

reaction mechanisms in fermentation processes proposed by

Sinclair and Kristiansen [19] (referred to throughout as

Sinclair’s model). This model is shown in Figure 1. The

various rates in the figure are defined in Appendix A2.

2.3.1. Growing cell kinetics
We have applied some typical approximations to our fer-

mentation model. These approximations are very necessary

and have been used for a long time to obtain simple and

predictive models.

� Average cell approximation. The cell-to-cell heterogeneity
does not influence the model, and the average cellular
properties are considered. The model is unsegregated.

� Balance growth approximation. The representation of the
cell is a single component, and the biomass is consid-
ered as a component in solution, Xt. From this point of
view the model is unstructured.

In the model proposed, the total biomass Xt is considered

to be made up of viable, Xv, and dead, Xd, cells [20].

Considering the scheme in Figure 1 only for the cell growing,

we have the following expressions for rg, the overall cell

growth rate, rd, the overall cell death rate and r, the observed

cell growth rate:

Xv !
rg

Xv !
rd
Xd ð3Þ

Xt ¼ Xv þ Xd ð4Þ

Figure 1. Sinclair’sgeneralmodel for fermentationprocesses.
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rg ¼ dXt

dt
ð5Þ

rd ¼ dXd

dt
ð6Þ

r ¼ rg � rd ¼ dXv

dt
ð7Þ

The corresponding specific rates are defined by the overall

rates and the viable biomass concentration:

�g ¼ 1

Xv

dXt

dt

� �
ð8Þ

�d ¼ 1

Xv

dXd

dt

� �
ð9Þ

� ¼ 1

Xv

dXv

dt
ð10Þ

� ¼ �g � �d ð11Þ

2.3.2. Substrate and product kinetics
Applying the general model of Sinclair to the substrate and

the product, the following expressions are obtained in the

acetic fermentation for the overall rate of ethanol consump-

tion, rE, the overall rate of oxygen consumption, rO, and the

overall acetic acid production rate rA:

rE ¼ rE--X þ rE--m þ rE--P þ rE--AcEt ð12Þ

rO ¼ rO--X þ rO--m þ rO--P ð13Þ

rA ¼ rA--X � rA--AcEt ð14Þ

The various rates on the right-hand sides of Equations (12)–

(14) are defined in Appendix A2. The mean contribution is

due to the assimilative way, related to the rates of ethanol

and oxygen consumption for the production of biomass, rE--X

and rO--X respectively, and the rate of acetic acid excretion by

biomass, rA--X. It is reasonable to considerer that in the acetic

fermentation the energetic requirements of the cells are

basically due to the multiplication process. Therefore these

expressions can be simplified:

rE ¼ rE--X ð15Þ

rO ¼ rO--X ð16Þ

rA ¼ rA--X ð17Þ

It is very usual to make a link between the product

formation–substrate consumption and the cell growth.

Such substrate and product kinetics is usually called growth

associated [6]:

dE

dt
¼ � 1

Y0
X=E

 !
�gXv ð18Þ

dO

dt
¼ � 1

Y0
X=O

 !
�gXv ð19Þ

dA

dt
¼ YA=E

1

Y0
X=E

�gXv ð20Þ

Y0
X=O ¼ YE=OY

0
X=E ð21Þ

In Equations (18)–(21) the relationship between the cell

growth and the product formation–substrate consumption

is established by Y0
X=E and Y0

X=O, the yield factors of biomass/

ethanol and biomass/oxygen respectively, and by YA=E and

YE=O, the stoichiometric coefficients of acetic acid/ethanol

and ethanol/oxygen respectively.

2.3.3. Optimization parameters
Assuming that the industrial data show a decrease in the

acetic production only due to the ethanol consumption, we

propose a function for �g based exclusively on the ethanol

concentration. There is no oxygen concentration factor, be-

cause in the industrial fermentation processes the oxygen

demand is always satisfied by a constant aeration and

agitation:

�g ¼ K1
1

K2 þ ð1=EÞn ð22Þ

We consider �d to be constant, since it is logical to evaluate

an average vital cycle from the average cell approximation

applied to the model.

The initial viable biomass/total biomass ratio RXvi
is an

initial parameter in the simulation. For this reason, it must be

optimized together with the kinetic parameters.

All in all, the problem to be solved was the optimization of

five parameters of the model: K1;K2; n; �d and RXvi .

3. GENETIC ALGORITHM APPLIED
TO KINETIC MODELLING

The algorithm designed in this work is an evolution of the

basic genetic algorithm (GA) adapted to the features of the

problem to be solved. The basic GA can nowadays be easily

consulted in the literature [12,13]. Many authors have

adapted the basic algorithm to very different problems; for

example, Pizarro Millán et al. [10] applied it to feature

selection and Potocnik and Grabec [15] applied it to empiri-

cal kinetic modelling. This proves the flexibility of the

algorithm and its applicability potential in the future.

3.1. Description of the genetic algorithm
developed
The most important technical features of the algorithm are

as follows.

1. Each chromosome represents a possible combination
of values of the five parameters to optimize, in binary
code. There is an allowed range of values for each
parameter to adopt, as many values as allowed by the
binary codification and the number of significant
figures. The initial population is composed of ran-
domly selected values for the parameters within the
allowed ranges and codified into binary code.

2. The evaluation program decodes the values of the
parameters for each chromosome and then uses them
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to simulate a batch process with each sequence of
parameters. The simulation algorithm solves the sys-
tem of differential equations formed by Equations (8)–
(10) and (18)–(20) by the Runge–Kutta algorithm [21].
The initial concentrations are those of the representa-
tive sequence of the process, and the initial viable
biomass/total biomass ratio is that of the parameters
of the chromosome. There is an oxygen control in the
simulation, because in the real process the oxygenation
conditions are enough to satisfy the oxygen demand.

The simulation algorithm has two important stop
conditions.

(a) The simulation is stopped when no real positive
values for one concentration are obtained.

(b) The simulation is stopped when the process time
in the simulation has reached the final process time
of the representative sequence.

In Section 3.2 it is shown how these stop conditions are
important to compare the simulated acetic concentra-
tions with the concentrations of the representative
sequence by means of a desirability function.

3. A new generation with the same number of chromo-
somes is formed by applying reproduction, crossover
and mutation operators. The chromosomes with the
best fitting ability obtain the best value in the desir-
ability function, i.e. closer to 1, and have more chances
of being selected and copied into the next generation.
This probability is expressed for chromosome i of n
chromosomes as

probðiÞ ¼ responseðiÞPi¼n
i¼1 responseðiÞ

ð23Þ

Uniform crossover is used and the five best chromo-
somes of each generation pass unchanged to the next
generation. These chromosomes are called elitist
chromosomes.

4. Twins and out-of-range chromosomes are disallowed
by using a ‘while’ loop with filters. When some of
these chromosomes are discovered after crossover,
they are substituted by chromosomes also obtained
by crossover, and if they are discovered after mutation,
they are replaced by the original chromosomes in the
same positions but mutated again with the same
chances of mutation. With this process the mutability
is not increased and the number of chromosomes
remains constant.

5. The process stops after five generations without
changes higher than a fixed percentage of the mean
response of the elitist chromosomes.

6. The algorithm is completed five times each time the
program is run. A final run where the initial popula-
tion is composed of the best chromosomes found in
each of the previous runs is performed.

7. All the programs have been written in Matlab 6.1.0.450
(The MathWorks, Inc.).

In Table I the configuration parameters of the algorithm

are shown. The configuration has been developed to solve

the critical points, as will be explained in the following

subsection, since it is difficult to find a standard methodol-

ogy to obtain the optimal settings for a particular problem,

and therefore experience and knowledge of the influence of

the different parameters are usually applied [7].

3.2. Critical points
In this subsection the critical points in the algorithm are

exposed. These critical points have influenced very much the

architecture of the program.

3.2.1. First critical point: exploitation ability
of the algorithm
One of the most important goals in building a genetic

algorithm is to obtain the highest exploitation; in our case,

always within the ranges of values allowed for the para-

meters. We have achieved this by the following.

� The highest possible elitism.
� A quite high probability of mutation.
� A limited population size.
� Filtering out-of-range parameters. It is very important

to concentrate the efforts on the most important re-
gions. This is particularly critical in the last runs, where
a global exploration has just been made and it is
necessary to study the response in a short range.

� Filtering twins. In the last runs of the program it is also
very important to avoid twins. Running the program
without this filter caused the algorithm to provide us
with final populations with a large number of repeated
chromosomes, particularly with short allowed ranges
of parameters, thus wasting energy owing to a useless
time-consuming process.

� A final run with the best chromosomes, as reported
before, is a refinement of the best solutions found.

By applying these considerations, we have avoided

the premature meeting of a relative maximum in the re-

sponse.

3.2.2. Second critical point: convergence
The algorithm is less time-consuming and convergence is

achieved by the following.

� The stop conditions in the simulation, which have been
reported before.

� Filtering out-of-range parameters and twins.
� Limiting the number of runs without changes in the

response.
� Introducing a minimum percentage to consider that

there have been changes in the mean response of the
elitist chromosomes.

Table I. Configuration parameters of the genetic algorithm
developed

Population 30 chromosomes
Mutation 1.5%
Elitism Five elitist chromosomes in each population
Stop condition Five generations without changes higher than

5% in the mean response of the elitist chromo-
somes
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3.2.3. Third critical point: response
The response must be able to select the best set of kinetic

parameters, which provides the highest predictive ability to

the model, obtaining simulated acetic concentration se-

quences similar to the industrial one.

The mere use of a root mean square is not enough to

compare the concentration sequences, since it does not

provide information on the differences in the shape of the

data sequence, the final concentration reached and the

process time.

To solve the problem, we propose a four-factor desirability

function as the response to maximize:

R ¼
�

1

1 þ RMS

� �
ts
tr

� �
1

1 þ absðAs � ArÞ

� �

� 1

1 þ abs½a tanðBsÞ � a tanðBrÞ�

� ��1
4

ð24Þ

where RMS is the root mean square of the differences in the

acetic acid concentrations between the simulated and the

representative sequence, ts is the process time in the simula-

tion (h), tr is the process time in the real sequence (h), As is

the final acetic acid concentration reached in the simulation

(g l�1), Ar is the final acetic acid concentration reached in the

real sequence (g l�1), Bs is the slope of data in the simulated

sequence with a process time range of 0–20 h and Br is the

slope of data with a linear behaviour in the real sequence

(0–20 h).

Three main features of the desirability functions make

them particularly useful as a tool to be applied to our

problem.

1. The desirability functions are very restrictive, because
if only one single function gives a zero value, the
global value of the function is zero. This behaviour
has been very useful to penalize seriously the sets of
parameters providing simulations with concentrations
lacking any analytical sense, since they are stopped
without reaching the final process time and the final
acetic concentration of the representative sequence,
even if the RMS values are not so bad considering
the scarcity of points to compare. In a similar way the
sets of parameters that provide extremely fast simu-
lated processes are also penalized. The sets of para-
meters providing very slow simulated processes are
penalized, since the simulation is always stopped
when the final process time of the representative
sequence is reached, and thus the RMS is very high
and the acetic concentration reached is very low.

2. On the other hand, all the single functions must give
maximum values to obtain a maximum global value,
conferring a more selective power on the evaluation
function, particularly with simulated sequences with
the same RMS but with very different shapes.

3. The desirability functions are scaled between 0 and 1,
allowing us to compare objectively the fitting of each
simulation to the representative sequence.

In conclusion, the main advantages of working with the

desirability function instead of using only the root mean

square are as follows.

� Better discrimination abilities compared with the RMS
method.

� Evaluation function scaled between 0 and 1.
� The sets of kinetic parameters providing extremely

long or short process times in the simulation are
penalized.

� The sets of kinetic parameters reaching a final acetic
concentration far from the real sequence are penalized.

� The sets of kinetic parameters providing sequence data
with a linear segment in the simulation similar to the
data with a linear behaviour in the real data sequence
are rewarded.

4. EXPERIMENTAL DATA SETS

4.1. Industrial data set
The acetic concentrations in the fermentators of the indus-

trial plant of Vinagrerı́as Riojanas SA, obtained by NIR, were

studied. The data were obtained for a period of 4 months

without changes in the industrial parameters of the process,

i.e. oxygenation conditions and temperature. The average

temperature was 29.5�C and the oxygenation conditions

were enough to satisfy the oxygen demand, and thus the

oxygen became a non-limiting substrate.

Nowadays the fermentators of the industrial plant work

discontinuously with charges. The batch bioreactors studied

were always fed with white wine of the same origin. The

process time was about 30–31 h and 218 complete sequences

were obtained.

An average concentration sequence was calculated by

analysing the data. This sequence is representative of the

process to be modelled. The variability in the concentrations

among the sequences is due to analytical errors and to factors

that cannot be controlled in an industrial process, i.e. differ-

ences in the ethanol concentration of the wine among batch

processes. Therefore the model obtained with this sequence

does not model this variance. Figure 2 shows the average

concentration sequence.

4.2. Pilot processes
Two different continuous processes were developed in the

pilot system to test the predictive ability of the model: one

without cell recycling and another with cell recycling. All the

experiments were carried out in a BioFlo IV fermentator of

10 l capacity. The fermentator was fed with white wine of the

same origin as that used in the industrial plant; the wine was

provided by the company. The parameters of the two

processes were: temperature, 29.5�C; agitation, 400 rpm;

aeration, 2.20 SLPM; overpressure, 0.5 atm. The oxygenation

conditions were improved to meet the oxygen demand, even

when there was an increase in cell population due to the

effects of the recycling.

Figure 3 shows the configuration of the experimental

system. In the steady state, where all the concentrations

within the vessel are independent of time, it is possible to

apply the following balance to any component i of the

system:

F Cif � Cið Þ þ Vrfi ¼ 0 ð25Þ
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where F is the volumetric flow rate of the feed and effluent

liquid streams, Cif is the component i concentration in the

feed stream, Ci is the component i concentration in the bio-

reactor and in the effluent stream, V is the reactor volume

and rfi is the rate of formation of component i within the

reactor.

Rearranging the expression:

rfi ¼
F

V
Ci � Cifð Þ ¼ D Ci � Cifð Þ ð26Þ

The parameter D is called the dilution rate and characterizes

the holding time or processing rate of the continuous reactor.

The feed stream was under proportional, integrative and

derivative (PID) control to maintain the pH constant and

therefore to maintain the concentrations of ethanol and acetic

acid constant. When a constant stream feed was observed for

more than 100 h and the oxygen dissolved in the medium

was constant, it was considered that a steady state had been

reached.

From Equation (26) we realize that when the steady state is

reached, the rate of consumption or production of com-

pound i may be easily evaluated. In our experiments the

volume of the reactor was maintained constant at 7 l, and the

acetic and ethanol concentrations in the wine stream were

measured off-line and the concentrations inside the fermen-

tator were measured on-line, using a FOSS NIRSystems 5000

liquid analyser previously calibrated. In the experiments the

residual ethanol was maintained at about 20 g l�1. The volu-

metric flow rate was easily calculated by measuring the wine

consumption during a given period of time. In this way the

acetification rate and the ethanol consumption rate were

evaluated for the continuous process with and without cell

recycling.

Working with cell recycling, we had to manage two

streams of effluents, which we have called F1 and F2 in

Figure 3; these are the filtered vinegar stream and the purged

vinegar stream respectively. It is obvious that

F ¼ F1 þ F2 ð27Þ

and that the concentration of ethanol and acetic acid does not

change between the two streams. Therefore the recycling

rate R is calculated as

R ¼ F1

F
ð28Þ

Figure 2. Averagedata sequence calculated fromtheindustrialconcentrations.

Figure 3. Pilot fermentationsystem.
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The continuous process with cell recycling was developed

with a recycling rate of 0.4.

5. OPTIMIZATION RESULTS

After running the program several times, an optimized set of

parameters was obtained. The ranges allowed for n, �d and

RXvi were the logical ones from the point of view of the

biological knowledge of the model proposed i.e. [1–10] for n,

[0.01–0.1] for �d and [0–1] for RXvi . The ranges for K1 and K2

were very large in the first runs, [1� 10�6–1� 106] for both

parameters, to explore the whole experimental domain and

to find the areas with the best predictive ability. Then we

studied these areas to find the best zone, and gradually the

allowed range was shortened until we obtained the ranges

with which we performed the last runs, i.e. [1� 10�5–

1� 10�4] for K1 and [1� 10�4–1� 10�3] for K2. The optimized

set of parameters is shown in Table II.

6. PREDICTIVE ABILITY OF THE
MODEL OBTAINED

The model obtained is able to explain the evolution of a batch

fermentation under the temperature and oxygenation con-

ditions of the industrial process modelled. Furthermore, if

we want to test the real usefulness of the model from an

engineering point of view, we should test the predictive

ability of the model with different bioprocess designs. There-

fore the model was introduced in a simulation environment

that reproduces the conditions of those continuous processes

with and without cell recycling that were developed in the

pilot fermentator, as reported in Section 4.2.

The simulation programs were developed in Matlab

6.1.0.450 (The MathWorks, Inc.).

6.1. Prediction of the pilot process: continuous
process without cell recycling
The simulation output of the continuous process without cell

recycling, using the optimized kinetic model, is shown in

Figure 4. The simulation starts with a batch process with the

initial concentrations of the representative sequence. When

the ethanol concentration reaches 20 g l�1, owing to the

ethanol consumption, the program simulates the PID control

of the feed stream, which is programmed with the same

concentrations of ethanol and acetic acid as in the white wine

used in the pilot processes. In Figure 4, when the ethanol

concentration is controlled at 20 g l�1, the concentrations of

viable and total biomass and acetic acid are also maintained

constant. If we study the simulated profiles of growth rate

and acetification rate, they are stabilized after the simulated

PID control starts. From these results it can be inferred that

the steady state has been reached in the simulation, as it was

reached with the pilot system described in Section 4.2. The

feed stream profile it is not shown in the figure, but it is not

difficult to deduce that it will be constant when the steady

state is reached.

Before the simulated feed stream flow is started, the

concentration profiles correspond with a batch process.

The viable and total biomass concentrations and the acetic

acid concentration increase and the ethanol concentration

decreases owing to the logical evolution of the fermentation.

The simulated acetification profile in this stage is adjusted to

the acetification profile of the representative sequence in the

first 15 h.

Table II. Optimizedset of kineticparameters

Kinetic parameter Optimized value

K1 5.60� 10�5

K2 6.30� 10�4

n 3.16
�d 3.09� 10�2 h�1

RXvi
0.63

Figure 4. Simulationofacontinuousprocesswithout cellrecycling.
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The simulation parameters are reported in Table III and

the results obtained by simulation can be seen in Table IV.

The experimental results with the pilot system showed a

steady state with an acetification rate of 4.12� 0.21 g l�1 h�1,

similar to the value obtained in the simulation, i.e.

4.24 g l�1 h�1. In conclusion, the simulation with the model

optimized is able to explain the pilot process.

6.2. Prediction of the pilot process: continuous
process with cell recycling
The simulation output of the continuous process with cell

recycling, using the optimized kinetic model, is shown in

Figure 5. The simulation program is similar to the program

described in Section 6.1, but a cell recycling ratio is intro-

duced when the feed flow starts. We can make similar

considerations about the concentration profiles to those

made with Figure 4. The simulation parameters and the

results obtained by simulation are also reported in Tables

III and IV respectively.

The experimental results with the pilot system showed a

steady state with an acetification rate of 6.90� 0.35 g l�1 h�1,

similar to the value obtained in the simulation, i.e.

6.92 g l�1 h�1. We can also conclude that the simulation

with the model optimized is able to explain the pilot process.

Furthermore, it was expected to observe an increase in the

acetification rate due to the cell recycling, as was obtained

with the real and the simulated process. Comparing Figures

4 and 5, it is also clear that the total and viable biomass

concentrations reached in the simulated steady state with

cell recycling are higher than those reached without cell

recycling. This is shown in a similar way in Table IV, as

the average feed flow is higher in the process with cell

recycling, owing to the increase in the cell population and

therefore in the ethanol requirements.

All in all, not only the results of the simulation using the

optimized kinetic model agree with the real ones, but both of

them demonstrate clearly the increase in productivity that

could be reached by the development of processes with cell

recycling in the industrial plant.

7. CONCLUSIONS AND FURTHER
RESEARCH

The present work shows a successful optimization of the

kinetic parameters of the model proposed by applying the

genetic algorithm developed.

Only a representative sequence of the acetic acid concen-

trations from the industrial fermentators was needed; no

biomass concentrations were required. The desirability func-

tion used as evaluation function was able to select the best set

of parameters for the model.

Table IV. Simulationresultsof the continuousprocesses

Without cell With cell
recycling recycling

Average feed flow (l h�1) 1131 1773
Average acetification rate 3.91 6.13
(g l�1 h�1)
Average feed flow in last 1225 2000
10 h (l h�1)
Average acetification rate in 4.24 6.92
last 10 h (g l�1 h�1)
Average acetification rate in 4.12� 0.21 6.90� 0.35
last 10 h obtained with pilot
fermentator (g l�1 h�1)

Table III. Simulationparametersof the continuousprocesses

Without cell With cell
recycling recycling

Fermentator volume (l) 25000 25000
Residual ethanol (g l�1) 20 20
Recycling ratio 0 0.4
Simulation time (h) 200 200

Figure 5. Simulationofacontinuousprocesswith cellrecycling.
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The model obtained predicts the behaviour of the indus-

trial process of acetification. The model was used success-

fully in the simulation of a pilot continuous process with and

without recycling. The results obtained in the simulation

were a good prediction of the experimental ones.

Given the good results obtained with the model, it is

currently being used to develop new industrial systems of

fermentation. As a matter of fact, it has been demonstrated

by simulations with the model optimized that the process

with cell recycling increases the production of acetic acid, as

was inferred from the pilot processes.

If the desirability function proposed is adapted, the algo-

rithm can be used to obtain an economic optimization of the

process. Depending on the goal, some factors to optimize

other parameters, such as aeration, agitation, cooling or

energy consumption, should be included in the response.
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APPENDIX. NOMENCLATURE

A1. Evaluation function
Ar final acetic acid concentration reached in real

sequence (g l�1)
As final acetic acid concentration reached in simu-

lation (g l�1)
Br slope of data with linear behaviour in real

sequence (0–20 h)
Bs slope of data in simulated sequence with pro-

cess time range of 0–20 h
dcn value of single desirability function for response

ycn
Dn value of global desirability function for sample

n
fc kind of single desirability function chosen for

selected criterion c
RMS root mean square of differences in acetic acid

concentrations between simulated and repre-
sentative sequence

tr process time in real sequence (h)
ts process time in simulation (h)
ycn response of sample n for criterion c

A2. Kinetic model
A acetic acid concentration (g l�1)
E ethanol concentration (g l�1)
O oxygen concentration (g l�1)
r observed cell growth rate (gDW l�1 h�1)
rA overall acetic acid production rate (g l�1 h�1)
rA--AcEt acetic acid consumption rate by ethyl acetate

formation (g l�1 h�1)
rA--X rate of acetic acid excretion by biomass

(g l�1 h�1)
rd overall cell death rate (gDW l�1 h�1)
re rate of consumption of organic cell matter in

endogenous respiration (gDW l�1 h�1)

rE overall rate of ethanol consumption (g l�1 h�1)
rE--AcEt ethanol consumption rate by ethyl acetate for-

mation (g l�1 h�1)
rE--m ethanol consumption rate for production of

maintenance energy (g l�1 h�1)
rE--P ethanol consumption rate for formation of pro-

ducts (g l�1 h�1)
rE--X ethanol consumption rate for production of

biomass (g l�1 h�1)
rg overall cell growth rate (gDW l�1 h�1)
rl cell lysis rate (gDW l�1 h�1)
rO overall rate of oxygen consumption (g l�1 h�1)
rO--m oxygen consumption rate for production of

maintenance energy (g l�1 h�1)
rO--P oxygen consumption rate for formation of pro-

ducts (g l�1 h�1)
rO--X oxygen consumption rate for production of

biomass (g l�1 h�1)
rP overall product formation rate (g l�1 h�1)
rS overall rate of substrate consumption (g l�1 h�1)
rS--m substrate consumption rate for production of

maintenance energy (g l�1 h�1)
rS--P substrate consumption rate for formation of

products (g l�1 h�1)
rS--X substrate consumption rate for production of

biomass (g l�1 h�1)
RXvi

initial viable biomass/total biomass ratio
Xd death biomass concentration (gDW l�1)
Xt total biomass concentration (gDW l�1)
Xv viable biomass concentration (gDW l�1)
YA=E acetic acid/ethanol stoichiometric coefficient
YE=O ethanol/oxygen stoichiometric coefficient
Y0

X=E biomass/ethanol yield factor
Y0

X=O biomass/oxygen yield factor
� observed specific growth rate (h�1)
�d overall specific death rate (h�1)
�g overall specific growth rate (h�1)

A3. Pilot fermentation system
Ci component i concentration in bioreactor and in

effluent stream (g l�1)
Cif component i concentration in feed stream (g l�1)
D dilution rate (h�1)
F volumetric flow rate of feed and effluent liquid

streams (l h�1)
F1 filtered vinegar stream (l h�1)
F2 purged vinegar stream (l h�1)
R recycling rate
rfi rate of formation of component i within reactor

(g l�1 h�1)
V reactor volume (l)
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