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Estimating Absolute Rates of Molecular Evolution and Divergence Times:
A Penalized Likelihood Approach

Michael J. Sanderson
Section of Evolution and Ecology, University of California, Davis

Rates of molecular evolution vary widely between lineages, but quantification of how rates change has proven
difficult. Recently proposed estimation procedures have mainly adopted highly parametric approaches that model
rate evolution explicitly. In this study, a semiparametric smoothing method is developed using penalized likelihood.
A saturated model in which every lineage has a separate rate is combined with a roughness penalty that discourages
rates from varying too much across a phylogeny. A data-driven cross-validation criterion is then used to determine
an optimal level of smoothing. This criterion is based on an estimate of the average prediction error associated with
pruning lineages from the tree. The methods are applied to three data sets of six genes across a sample of land
plants. Optimally smoothed estimates of absolute rates entailed 2- to 10-fold variation across lineages.

Introduction

Estimates of rates of evolution of genes and other
elements of the genome have revealed much about mo-
lecular evolution across a diversity of taxa (e.g., Li
1997). Comparisons of rates have contributed to the de-
velopment of ideas about modes of selection on different
genomic elements, such as introns versus exons, and
have permitted correlates of rate differences, such as
generation time and metabolic rate, to be identified (Gil-
lespie 1991; Martin and Palumbi 1993). Comparisons of
relative rates between lineages, in particular, have pro-
vided abundant evidence for departures from constant
rates of substitution (Li and Wu 1985; Britten 1986; Li
1997; Muse 2000), a finding that has not, however,
dampened enthusiasm for estimating divergence times
from molecular data (e.g., Wray, Levinton, and Shapiro
1996; Kumar and Hedges 1998; Korber et al. 2000).

Characterization of the timescale over which mo-
lecular rates change and of the extent of their autocor-
relation in time has lagged behind characterization of
relative rates (Gillespie 1991). The reasons for this are
several. Such studies require good estimates of absolute
substitution rates. Estimates of absolute rates are often
made by pairwise comparisons that necessarily average
the rate differences on intervening branches (Easteal and
Herbert 1997; Ayala, Rzhetsky, and Ayala 1998), thus
underestimating the variability in rate. More compre-
hensive methods, such as estimating the slope of the
regression of pairwise distance against calibrated diver-
gence time (Wray, Levinton, and Shapiro 1996; Leitner
and Albert 1999), have difficulty accounting for phylo-
genetic nonindependence (Pagel 1997; Ayala, Rzhetsky,
and Ayala 1998). Estimation of absolute rates also re-
quires reliable external information about time, usually
from fossils. The use of fossil information in molecular
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rate estimation problems hinges, in turn, on the correct
assignment of fossils to particular nodes in a phyloge-
netic tree (Marshall 1990; Smith and Littlewood 1994;
Springer 1995; Lee 1999).

Relative rate comparisons, though robust, provide
neither an estimate of absolute rate, nor an indication of
how absolute rates change through time. Reconstructing
how absolute rates change through time requires esti-
mates of rate differences between two or more sequen-
tial branches in a tree. Relative rate comparisons only
indicate differences in rate between sister branches,
which are not sequential, are not descended from each
other, and therefore do not indicate the direction of
change. This problem cannot be corrected merely by
performing multiple relative rate comparisons, whether
they are nested within one another or not. Truly inde-
pendent comparisons share no timepoint in common,
making absolute comparisons impossible, and nested
comparisons suffer from great sensitivity to what is as-
sumed about the timing of nested nodes (Sanderson and
Donoghue 1996).

In recognition of these obstacles, several general
approaches for estimating absolute rate variability have
been proposed, mainly in conjunction with estimating
divergence times in the presence of rate variation. Be-
cause divergence times and absolute rates of evolution
are inextricably linked, one cannot be estimated without
the other. Some methods involve pruning outlier taxa
that appear to depart from a tree-wide rate (Takezaki,
Rhetsky, and Nei 1995). Some are local molecular clock
methods, in which subtrees of the phylogeny are as-
signed different rates, but the rate is constant within
each subtree (Hasegawa, Kishino, and Yano 1989;
Uyenoyama 1995; Cooper and Penny 1997; Rambaut
and Bromham 1998; Bromham and Hendy 2000; Yoder
and Yang 2000). One potential problem with these ap-
proaches is that subset selection may be arbitrary, and
in large trees, the number of possible ways to assign
different rates to subtrees is large (Sanderson 1998).
More general, but still parametric, methods have been
described (Thorne, Kishino, and Painter 1998; Huelsen-
beck, Larget, and Swofford 2000; Kishino, Thorne, and
Bruno 2001), which assume a specific model for rate
variation from branch to branch. Thorne, Kishino, and
Painter (1998) assumed a lognormal distribution of rate
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changes whereas Huelsenbeck et al. assumed a com-
pound Poisson process in which rates change in a step-
wise fashion within lineages, and the amount of change
is governed by a gamma distribution.

Given that little is known about the timescale for
rate variation (Gillespie 1991), estimation procedures
that are less reliant on parametric assumptions might
prove useful. An entirely nonparametric method, non-
parametric rate smoothing (NPRS: Sanderson 1997), es-
timated rates and times via a least-squares smoothing
criterion that penalized rapid rate changes on a tree
(Sanderson 1997). However, parametric models, coupled
with maximum likelihood estimation methods, have
proven to be statistically powerful and highly explana-
tory descriptions of molecular evolutionary processes.
In this paper, I develop a semiparametric approach for
estimating rates of molecular evolution. This approach
attempts to combine the power of parametric methods
and the robustness of nonparametric methods by the use
of penalized likelihood (Green and Silverman 1994),
part of a general class of semiparametric techniques
used in smoothing and regression problems.

Penalized likelihood takes a parameter-rich model
that would ordinarily overfit the data and constrains fluc-
tuations in its parameters by a roughness penalty. For
rate variation, one roughness penalty would penalize
how quickly rates varied from branch to nearby branch,
as in the NPRS method (Sanderson 1997). By adding
the parametric component back in, it is possible to ex-
amine a broad spectrum of solutions with different lev-
els of rate smoothing, ranging from highly penalized,
nearly rate-constant models, to nearly unconstrained rate
variability. The key to this approach is to find an objec-
tive method for selecting an optimal level of smoothing.
After developing such an approach, based on cross-val-
idation, it will be illustrated with three molecular data
sets on land plants.

Materials and Methods
Models and Maximum Likelihood Estimation

Consider a rooted phylogenetic tree with M taxa
and S 1 1 internal nodes, in which the root node is
labeled by 0, the remaining internal nodes are labeled
by integers from {1, . . . , S} and the terminal nodes are
labeled with integers {S 1 1, . . . , S 1 M}. Branches
are labeled by the node they subtend. Let node k have
an age tk (measured backward from the present), and its
ancestral node, anc(k), have an age tanc(k). The branch
defined by these two nodes has a duration in time given
by tanc(k) 2 tk.

Nucleotide substitution models are commonly cast
in a general framework of a four-state Markov process
(Rodriguez et al. 1990), in which transition probabilities
between states are explicitly modeled. This paper ex-
tends model realism in a different direction to account
for rate variation between lineages and, for simplicity,
the standard Markov formulation will be replaced with
a simpler substitution process, in which the estimated
number of substitutions along a branch is regarded as
an observation, xk, drawn from a Poisson process which

has a rate rk . The more complex formulation can be
reintroduced with considerable computational costs.

Two very different models lie at the opposite ex-
tremes of a spectrum of rate variation among lineages.
At one extreme is a clock (CL) model, in which the rate
parameters are the same for every branch, rk 5 r. At the
other extreme is a saturated (SAT) model, in which each
branch is permitted to have a unique rate, rk. The un-
known parameters can be written as uCL 5 {t0, . . . , tS; r}
for the CL model and uSAT 5 {t0, . . . , tS; r1, . . . , rS 1 M}
for the SAT model, corresponding to S 1 2 or 2S 1 M
1 1 free parameters, respectively.

Let P(xzj) 5 jx exp(2j)/x! be the usual probability
of an observation x taken from a Poisson distribution
with parameter j. Then the log likelihood of u for the
SAT model is given by

log L(u z x , . . . , x )SAT 1 S1M

S1M

5 log P(x z r [t 2 t ]) (1)O k k anc(k) k
k51

whereas for the CL model, r is substituted for rk. Max-
imum likelihood estimates under the CL model, , canû
be obtained from these expressions by numerical meth-
ods (Langley and Fitch 1974; Sanderson 1997; Cutler
2000). However, the situation for the SAT model is more
problematic because there are more free parameters (2S
1 M 1 1) than observations (S 1 M). The model is not
identifiable, meaning that several parameter values can
produce the same likelihood, and therefore it is not pos-
sible to estimate a unique SAT, without imposing someû
constraints on rate variation.

Penalized Likelihood

Most previous attempts to impose constraints on
rate variation have relied on explicit parametric model-
ing of the rate variation. A less parametric alternative is
to impose a roughness penalty (Green and Silverman
1994; Simonoff 1994), which forces rates to change
smoothly from branch to branch. Instead of finding the
parameter set that maximizes the log likelihood, for ex-
ample, we can maximize the penalized likelihood, given
by

C(u z x , . . . , x ) 5 log L(u z x , . . . , x )SAT 1 S1M SAT 1 S1M

2 lF(r , . . . , r ) (2)1 S1M

where F is a roughness penalty, which increases as rates
vary more rapidly across the tree, and l is a smoothing
parameter that controls the tradeoff between smoothness
and goodness-of-fit of the data to the SAT model. At
one extreme, l 5 0, is the SAT model described above.
At the other extreme, as l → `, the parameter estimates
are expected to converge to those of the CL model be-
cause no variation in rate is tolerated.

The roughness penalty, F, should be designed to
reflect changes in rate between neighboring branches of
the tree. After Sanderson (1997), this is chosen to pe-
nalize squared differences in rates between ancestral and
descendant branches and the variance in rate between
the branches descended from the root node:
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2F(r , . . . , r ) 5 (r 2 r )O1 S1M k anc(k)
k¸0,D (0)

1 Var(r : k ∈ D(0)) (3)k

where D(k) is the set consisting of the children of node
k. The summation extends over all internal nodes except
the root node and the children of the root node. The
second term compares the branches immediately de-
scended from the root node and minimizes the variance
of their rates. These branches present a particular prob-
lem because they have no ancestral branch for compar-
ison. Minimizing the variance keeps their smoothing ef-
fects comparable to those elsewhere on the tree because
the variance is also a least-squares term.

The semiparametric formulation described by equa-
tions (2) and (3) is ad hoc, and can really only be jus-
tified in terms of its performance in the present problem.
For this, it is necessary to develop an objective measure
of performance.

Cross-validation and the Choice of Smoothing
Parameter

The value of the smoothing parameter, l, can be
seen as indexing an infinite number of semiparametric
models. The choice of l will affect the estimated rates
and times, and it is therefore desirable to have an ob-
jective, data-driven method for choosing this parameter.
A widely used method for model selection in general
(Burnham and Anderson 1998) and smoothing in par-
ticular, is cross-validation (Green and Silverman 1994),
which sequentially removes small subsets of the data,
estimates parameters from the remaining data for a giv-
en choice of the smoothing parameter, and then uses the
fitted model parameters to predict the data that were
removed. Ideally, some choice of smoothing parameter
will lead to a best prediction of the removed data, sig-
nally the optimal level of smoothing. In practice this is
done by constructing a cross-validation criterion (CV)
related to prediction error and then selecting the smooth-
ing parameter that minimizes CV.

One method for cross-validation on trees is the
pruning of terminal branches from the tree. Removal of
a terminal branch, m, from the tree leaves its immediate
ancestral node in place, along with all the other branches
in the tree. Label the set of observations on numbers of
substitutions on the remaining branches {x}(2m). The
idea is to use this reduced set of observations to estimate
parameters of the model using the penalized likelihood
method described above. This generates a set of M es-
timates, , corresponding to each pruned taxon.(2m)û SAT

After estimation, the observed value, xm, can be
compared to the predicted value, xm*. One way to make
this prediction is to base it on the rate of branch m’s
immediate ancestor branch, which is , plus infor-(2m)r̂ anc(m)

mation based on the estimated age of the ancestor of
node m, . Both of these estimates are part of(2m)t̂ anc(m)

. In a Poisson process, this expected number of(2m)û SAT
substitutions is just the product of the relevant rates and
the duration of branch m, so

(2 m) (2 m)x* 5 r̂ (t̂ 2 t ).m anc(m) anc(m) m (4)

The quality of the prediction can be measured by
the squared deviation of the prediction from the obser-
vation, weighted by the inverse of the variance (which
is equal to the mean in a Poisson process). A CV cri-
terion can be constructed by taking the average of these
prediction errors over all ways to prune the terminal
branches:

M
2CV 5 (x 2 x*) /x* (5)O m m m

m51

Because the parameter estimates depend on the choice
of smoothness parameter, l, we may be able to select l
by minimizing CV.

In the data analyzed below, l was varied on a log
scale between 0.1 and 10,000. For comparative purpos-
es, the CV score for two other estimators was also ob-
tained, although these do not depend on l. These were
the NPRS method described in Sanderson (1997) and
the maximum likelihood estimation using the CL model,
as outlined by Langley and Fitch (1974). A priori, these
might be considered logical extremes. Because the real
data sets depart significantly from clocklike substitution
rates, a simulated data set was constructed to test the
performance of the cross-validation method under those
conditions. A tree of 15 taxa was constructed according
to a stochastic pure-birth process (Cox and Miller 1977),
which generates a topology and branch durations. Num-
bers of substitutions were then assigned to branches by
generating random Poisson deviates with means equal
to the rate of substitution times the duration of the par-
ticular branch. The rate of substitution was set to 50
substitutions per unit time, in which a unit of time con-
sisted of the distance from root to tip of the tree. The
simulation protocol has been described elsewhere in
more detail (Bininda-Emonds et al. 2001) and is imple-
mented in the author’s program, r8s (http://ginger.
ucdavis.edu/r8s).

Optimization of the Penalized Likelihood

Optimization entails the search for solution(s),
,that maximize the objective function, C, in equationû

(2) for a given set of observations, {xk}, and choice of
l. The maximization of this objective function is a non-
linear optimization problem which can be solved nu-
merically by standard numerical techniques such as
Powell’s gradient-free method and quasi-Newton gradi-
ent-based methods (Gill, Murray, and Wright 1981;
Press et al. 1992). Termination criteria were based on
both the convergence of the objective function and the
gradient (to zero). Any cases in which convergence was
a problem were reanalyzed with different optimization
settings or a different algorithm. The local stability of
solutions was checked by perturbing them and restarting
the search, and all searches were started from several
different initial random guesses at the parameters.

Penalized likelihood optimization is implemented
in the author’s program, r8s.
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Molecular Data

The methods are illustrated by reference to three
published molecular sequence data sets spanning land
plants. The timescale for these taxa extends back 450
MYA to the origin of land plants or to the origin of
vascular plants at about 420 MYA. None of the data
sets are clocklike, based on likelihood ratio tests (data
not shown). The first data set consists of 3,795 nt con-
catenated from two chloroplast photosystem (PS) genes,
psaA and psbB,in 19 species of land plants (Sanderson
et al. 2000: tree from their Fig. 3; sequence data avail-
able at http://ginger.ucdavis.edu/wwwppdata). The sec-
ond data set consists of 1,428 nt of the plastid rbcL gene
sampled in 37 land plants (Sanderson and Doyle 2001;
data at http://ginger.ucdavis.edu/wwwppdata). Data for
the three protein coding genes were partitioned into ap-
proximate substitution classes to help distinguish non-
synonymous from synonymous changes: one class for
first and second positions and the other for third posi-
tions. The third data set consists of 4,744 nt of concat-
enated sequence from small subunit (SSU) ribosomal
DNA sequences from nuclear, chloroplast, and mito-
chondrial genomes of 28 land plants (Nickrent et al.
2000: sequence data at http://www.science.siu.edu/land-
plants/Alignments/Alignments.html; the tree used is the
single most parsimonious tree obtained from that data
set, excluding rbcL,which was included in the original
data set on the website, and excluding two algal
outgroups).

Zero-length branches were collapsed to hard poly-
tomies. Estimated numbers of substitutions along each
branch of these trees (the observations, xk) were ob-
tained by maximum likelihood using PAUP* 4.0 (Swof-
ford 1999) with a Jukes-Cantor model of substitution.
This is an extremely simple substitution model but
should provide the closest fit to the Poisson assumption
described earlier. Subsequently, I discuss extensions to
more complex substitution models.

Results
Algorithmic Issues

Successful estimation of parameters—meaning that
the optimization procedure converged to a stable solu-
tion—depended on the data, the smoothing parameter,
and the numerical algorithm used. Data sets with as
many as 100 taxa were tested, and for reasonable levels
of smoothing, could converge in under 60 s using quasi-
Newton methods on a 500 MHz Pentium III running
Linux 6.0. All algorithms had trouble with extremely
low smoothing parameters, when the optimization prob-
lem is ill-conditioned, meaning that a small change in
the data translates into a large change in the estimated
parameters (Gill, Murray, and Wright 1981). Overall,
quasi-Newton methods that relied on an explicit calcu-
lation of the gradient of the objective function succeeded
much better over a wider range of smoothing values.
Derivative-free methods ran into trouble both at low
smoothing and at very high levels of smoothing. On the
other hand, standard implementations of quasi-Newton
methods in Press et al. (1992) failed when any terminal

branches had zero observed substitutions, apparently be-
cause the directional derivative for the rate along those
terminal branches cannot be zero even at the obtained
solution.

Cross-validation Results

In all the molecular data sets, plots of the CV score
versus the level of smoothing, l, indicate a minimum
for intermediate levels of smoothing (fig. 1). These op-
timal points indicate the level of smoothing correspond-
ing to the least prediction error, and therefore these can
be viewed as the best semiparametric models for the
data. A range of patterns is observed, however, among
the various data sets. In the PS and SSU data sets, very
high values of l introduce more prediction error than
very low values. One does better with an undersmoothed
than with an oversmoothed model. For the rbcL third
position data, the reverse is true, and for first and second
position data the CV curve is nearly symmetrical. In the
data from the simulation that assumed a clock, no min-
imum is present. Instead, there is a monotonic improve-
ment as smoothing increases in the direction of clocklike
evolution.

Comparisons with the CV scores of other methods
indicate that the penalized likelihood approach always
performs better than either a clock-based method such
as Langley-Fitch (CL) or a wholly nonparametric meth-
od, such as NPRS (Sanderson 1997) whenever the data
depart from constant rates. NPRS never achieves the low
level of prediction error obtained by optimal smoothing
in penalized likelihood. NPRS tends to overfit the data,
in that the estimates of local substitution rates obtained
from it tend to have higher variance than the variance
found at optimal levels of smoothing. Even when the
data are clocklike, penalized likelihood would select a
value for smoothing that would be essentially clocklike
itself.

NPRS outperformed CL in the real data, except in
the rbcL first and second position partition. There the
optimal smoothing level is nearly clocklike, and lower
values of smoothing do progressively worse than assum-
ing a clock, a result anticipated when data are nonclock-
like, but there is simply not much of it (Sanderson 1997;
see Discussion).

Estimated Rates and Times as a Function of
Smoothing Level

Specific results are illustrated with examples pri-
marily from the two larger molecular data sets, SSU and
PS. Detailed analyses of these data will be presented
elsewhere. In all the data sets, higher levels of smooth-
ing led to estimated absolute substitution rates that var-
ied less from branch to branch, as indicated by the co-
efficient of variation of rates across branches (fig. 2).
The rate variation for individual branches is shown for
two contrasting examples: the branch subtending the
Gnetales and the branch subtending angiosperms (fig.
3). See figure 4 for the phylogenetic placement of these
clades. Rates of substitution for the branch subtending
Gnetales varied by a factor of 2–3 over the ranges of
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FIG. 1.—Cross-validation analysis for SSU, the two PS codon partitions, the two rbcL partitions, and for data set consisting of a simulated
clocklike substitution process. The CV score is given by equation (5). The horizontal dashed line labeled PL indicates the CV score for penalized
likelihood under optimal smoothing. The dashed line labeled CL indicates the score for maximum likelihood estimation assuming a clock. The
dashed line labeled NPRS indicates the score for the NPRS method (Sanderson 1997). The separate codon partitions for the PS data set are
indicated by PS(12) for the first and second positions, PS(3) for the third positions, and similarly for rbcL.

FIG. 2.—Variation in the absolute rates of substitution across lin-
eages as a function of smoothing parameter. The coefficient of varia-
tion is the standard deviation divided by the mean. Optimal values
based on cross-validation analysis are indicated by arrows (see fig. 1).

FIG. 3.—Absolute rates of substitution along two selected indi-
vidual branches of the phylogenetic tree as a function of the smoothing
parameter. Optimal values based on cross-validation analysis are in-
dicated by arrows (see fig. 1). The phylogenetic position of these
branches is indicated by the named clades shown in figure 4.

smoothing values described here, depending on the
gene, whereas the range of variation for the branch sub-
tending angiosperms was considerably less than that.

Differences in levels of smoothed rate estimates
can be visualized across an entire tree in rate-calibrated
phylogenies (fig. 4), which are tree diagrams in which
branch lengths are drawn proportional to the absolute
rates of substitution. These clearly show how smoothing
can decrease the estimated variation in rate across the
tree. For example, for first and second positions in PS,
the rates of branches become steadily more similar to
each other in moving from less smoothing to more
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FIG. 4.—Rate-calibrated phylogenies for the first and second codon positions of the PS gene data set for two levels of smoothing. These
trees have branch lengths drawn proportional to the absolute rates of substitution. These may appear misleadingly similar to conventional
phylograms (Swofford 1999), but branch lengths in phylograms are proportional to the amount of sequence divergence rather than the absolute
rate of substitution.

FIG. 5.—Estimated divergence times for two selected nodes as a
function of the smoothing parameter. Optimal values based on cross-
validation analysis are indicated by arrows (see fig. 1).

smoothing. The rate along the branches leading to Hu-
perzia and to Angiopteris, two low-rate lineages, in-
creases, whereas the rate along the branch leading to
Welwitschia and Ephedra, two high-rate lineages, de-
creases (albeit only slightly for this gene partition).

Estimated divergence times also depend on the
choice of smoothing parameter. This is illustrated by the
estimated age of the two nodes corresponding to the age
of Gnetales and angiosperms (fig. 5). The estimated age
of Gnetales is very sensitive to the smoothing level,

showing a nearly monotonic increase in age as the mod-
el is made more clocklike, especially for the SSU data.
The angiosperm age is a bit less sensitive to smoothing,
but again the SSU data show relatively more sensitivity
than the PS data.

Optimal Estimated Rates and Times

Given the results of the cross-validation analysis,
estimates of ages and rates can also be obtained for each
data set at the optimal level of smoothing. These are
indicated for the exemplar branches and nodes in figures
3 and 5. The variation in rates across each tree is sub-
stantial for all data sets (table 1): about twofold variation
in rbcL first and second position data, threefold variation
in the PS first and second position data, fivefold varia-
tion in the PS third position data, eightfold variation in
the SSU data, and 10-fold variation in rbcL third posi-
tion data.

Discussion
Optimal Levels of Smoothing

In four of the five data partitions among the three
data sets, cross-validation indicated an optimal level of
smoothed rate variation that led to performance signif-
icantly better than that permitted by the assumption of
a clock. In the fifth, rbcL first and second position, the
improvement was only marginal but the method did no
worse. These patterns can be understood intuitively.
Consider the case in which rates vary substantially
across a tree. For large l, the predicted values will es-
sentially be the prediction under a molecular clock, but
the observed number of substitutions along many
branches will deviate from that expectation because
rates are variable, leading to poor prediction of the ob-
servations in pruned branches. When l is small, on the
other hand, the model is overfit, and small changes in
the data (i.e., subsamples of the data constructed during
pruning) will lead to large changes in the parameter es-
timates. This leads, in turn, to a poor ability to predict
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Table 1
Range of Estimated Absolute Ratesa of Substitution at Optimal Smoothing Levels

PS (12) PS (3) SSU rbcL (12) rbcL (3)

Log10 (optimal smoothing
parameter) . . . . . . . . . . . . . . . . . . . . . .

Mean Rate. . . . . . . . . . . . . . . . . . . . . . . .
Standard Deviation . . . . . . . . . . . . . . . . .
Minimum Rate . . . . . . . . . . . . . . . . . . . .
Maximum Rate . . . . . . . . . . . . . . . . . . . .

2.50
0.107
0.037
0.051
0.183

1.50
0.938
0.408
0.315
1.849

2.25
0.109
0.057
0.038
0.303

3.25
0.154
0.029
0.100
0.217

2.0
1.052
0.607
0.214
2.435

NOTE.—See figure 1 for determination of optimal smoothing parameter. Codon partitions indicated by (12) and (3).
a Rates are in units of substitutions per site per 109 years.

pruned branches. For these reasons, one would expect
some intermediate value of l to give the best (smallest)
CV score.

If the data are truly clocklike, on the other hand,
CV should monotonically decrease with increasing l, as
it does for the simulated data in figure 1, mainly because
the noise in a constant-rate Poisson process causes un-
stable estimates of rates and times at low values of
smoothing. However, if data are sufficiently noisy, as in
the rbcL first and second positions, this pattern may well
occur even for nonclocklike data because the simulta-
neous inference of both divergence times and absolute
rates simply cannot be any more effective than a clock-
based method. Previous simulation studies of the NPRS
method (Sanderson 1997) indicated that it performed
best when the average numbers of substitutions on
branches were relatively high. With less data, the as-
sumption of a clock could often provide results as good
as those with more sophisticated methods.

The estimation of l is itself subject to error, of
course. For the present paper, this error has been ig-
nored, but it clearly will contribute to the error variance
of the estimates of rates and divergence times, just as
model misspecification does in conventional parametric
inference. Determination of the error on l is likely to
be computationally expensive, at least if resampling
methods are used.

Comparisons to Other Methods

Penalized likelihood outperformed CL and NPRS
in every data set that departed from a clock, as long as
cross-validation was used to determine the optimal level
of smoothing. Even under the simulated clocklike data,
cross-validation would lead the investigator to choose a
level of smoothing that was clocklike and thereby retain
optimal levels of prediction error. Penalized likelihood
always outperforms NPRS, which tends to overfit the
data, allowing too much rate variation and thereby los-
ing predictive power. This does not, however, imply that
NPRS is worse than assuming a clock. Usually NPRS
is better, except perhaps in the case of few substitutions
along branches.

The CV criterion proposed here provides an em-
pirical method for comparing other recently proposed
rate and time estimation procedures (Thorne, Kishino,
and Painter 1998; Huelsenbeck, Larget, and Swofford
2000), which have mainly been evaluated on an absolute
scale by simulation studies (Sanderson 1997; Rambaut

and Bromham 1998). Studies of relative performance of
methods on the same data should illuminate the
strengths and weaknesses of these approaches.

Extensions

Penalized likelihood can be applied to better mod-
els of the substitution process, such as the full four-state
Markov model commonly used in maximum likelihood
phylogenetic inference—albeit at considerable compu-
tational cost. Unfortunately, the cross-validation proce-
dures are computationally expensive. A tree with M ter-
minal taxa will have M independent estimation steps
corresponding to each pruning. The running time of the
numerical algorithms is also polynomial in M. Thus, im-
plementation of a full Markov model version of cross-
validation will add one degree to the exponent in the
running-time scaling factor. For anything but the small-
est trees, addition of the full Markov model will require
good algorithm engineering.

The simplification used here may not be too bad in
general. Suitably corrected branch length estimates may
be nearly sufficient, in a statistical estimation sense, to
estimate rates and divergence times. The main problem
may well be accounting properly for rate variation
across sites, which seems to exert a very substantial in-
fluence on length estimates (Yang 1996). Rate variation
can be incorporated directly by using a negative bino-
mial distribution for branch lengths rather than a Poisson
as used here. If sites have rates that are chosen randomly
from a gamma distribution—the usual approach (Yang
1996)—then the probability of a substitution at any site
is a negative binomial (Uzzell and Corbin 1971), and
the distribution of branch lengths for a particular branch
is then the sum of R negative binomial distributions
(where R is the number of sites), which is also a nega-
tive binomial.

The increasing availability of multigene data sets
for many taxa suggests extensions of the model in a
different direction. Different genes may well have dif-
ferent patterns of rate variation, but the divergence times
are held in common between them (unless coalescence
times of the separate gene trees differ significantly). A
comprehensive model should then include a single set
of divergence time parameters but a separate set of rate
parameters for each gene. This could be easily imple-
mented if all genes were subject to the same smoothing
parameter, but if each gene is optimally smoothed to a
different extent, then the cross-validation procedure
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must simultaneously optimize multiple smoothing pa-
rameters, a fairly daunting prospect. Obviously, the
problem would be much easier if the divergence times
themselves could be fixed prior to analysis. In that case,
the problem would reduce to one that is much closer to
semiparametric regression problems that are well char-
acterized. Given enough data, this may become possible
for some clades.

Rates of Evolution of Plant Genes

Recent studies have suggested dramatic differences
in rates of molecular evolution among land plant line-
ages based on differences in branch lengths on estimated
trees (Chaw et al. 2000; Nickrent et al. 2000; Sanderson
et al. 2000). This study confirms these inferences but
places bounds on the rate variation. Certain lineages,
especially Gnetales and some ferns, show much higher
than average rates of evolution in all data sets and in
both codon partitions of the protein-coding genes. Other
lineages have much lower rates than average. The var-
iation in rate is highest for rbcL third positions and SSU
data, largely owing to extremely long branches in the
Gnetales. In the PS genes, codon position partitions do
not differ much in the level of variation in rate, despite
the third codon partition mainly reflecting synonymous
changes. The implications of this and its generality re-
main to be explored, but it agrees with previous findings
in plant genes, which suggest strong lineage effects for
both synonymous and nonsynonymous sites (Muse
2000).

The interplay between estimates of divergence
times and rates is exceedingly complex. The sensitivity
of an age estimate for a node to the level of smoothing
is partly influenced by the sensitivity of estimated rates
in the local region around that node. For example, in
the SSU data, the rate for the Gnetales branch varies
over a factor of two along the smoothing axis and so
does the age estimate. However, the estimated rate for
the PS third position data along that branch shows the
same level of sensitivity, and yet its age estimates are
much less sensitive to different levels of smoothing.
Clearly, the discovery of striking differences in substi-
tution rates across land plants does not automatically
dim the prospects for using molecular data to reconstruct
ancient divergence times.
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