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1 Introduction and Summary

Anderson and Darling (1952, 1954) introduce the goodness of fit statistic

A2
m = m

∫ ∞

−∞

{Fm(x)− F0(x)}2

F0(x){1− F0(x)}
dF0(x)

to test the hypothesis that a random sample X1, . . . , Xm, with empirical distribution
Fm(x), comes from a continuous population with distribution function F (x) where
F (x) = F0(x) for some completely specified distribution function F0(x). Here Fm(x)
is defined as the proportion of the sample X1, . . . , Xm which is not greater than x.
The corresponding two-sample version

A2
mn =

mn

N

∫ ∞

−∞

{Fm(x)−Gn(x)}2

HN(x){1−HN(x)}
dHN(x)(1)

was proposed by Darling (1957) and studied in detail by Pettitt (1976). Here Gn(x)
is the empirical distribution function of the second (independent) sample Y1, . . . , Yn
obtained from a continuous population with distribution function G(x) and HN(x) =
{mFm(x) + nGn(x)}/N , with N = m + n, is the empirical distribution function of
the pooled sample. The above integrand is appropriately defined to be zero whenever
HN(x) = 1. In the two sample case A2

mn is used to test the hypothesis that F = G
without specifying the common continuous distribution function.

In Sections 2 and 3 two k-sample versions of the Anderson-Darling test are proposed
for the continuous as well as discrete case and computational formulae are given. Sec-
tion 4 discusses the finite sample distribution of these statistics and gives a variance
formula for one of the two statistics. Section 5 derives the asymptotic null distribution
of both versions which in the continuous case is the (k − 1)-fold convolution of the
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1-sample Anderson-Darling asymptotic distribution. Section 6 describes the proposed
test procedures and gives a table for carrying out the tests. Section 7 reports the re-
sults of a Monte-Carlo simulation testing the adequacy of the table for the continuous
and discrete case. Section 8 presents two examples and Section 9 points out another
use of the above table for combining independent 1- and k-sample Anderson-Darling
tests of fit.

2 The K-Sample Anderson-Darling Test

On the surface it is not immediately obvious how to extend the two-sample test
to the k-sample situation. There are several reasonable possibilities but not all are
mathematically tractable as far as asymptotic theory is concerned. Kiefer’s (1959)
treatment of the k-sample analogue of the Cramer-v. Mises test shows the appropriate
path. To set the stage the following notation is introduced. Let Xij be the jth obser-
vation in the ith sample, j = 1, . . . , ni, i = 1, . . . , k. All observations are independent.
Suppose the ith sample has distribution function Fi. We wish to test the hypothesis

H0 : F1 = . . . = Fk

without specifying the common distribution F . Since rounding of data occurs rou-
tinely in practice we will not necessarily assume that the Fi, and hence the common
F under H0, are continuous. Denote the empirical distribution function of the ith

sample by Fni
(x) and that of the pooled sample of all N = n1 + . . .+nk observations

by HN(x). The k-sample Anderson-Darling test statistic is then defined as

A2
kN =

k∑
i=1

ni

∫
BN

{Fni
(x)−HN(x)}2

HN(x){1−HN(x)}
dHN(x) ,(2)

where BN = {x ∈ R : HN(x) < 1}. For k = 2 (2) reduces to (1). In the case of
untied observations, i.e., the pooled ordered sample is Z1 < . . . < ZN , a computational
formula for A2

kN is

A2
kN =

1

N

k∑
i=1

1

ni

N−1∑
j=1

(NMij − jni)
2

j(N − j)
,(3)

where Mij is the number of observations in the ith sample which are not greater than
Zj.
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3 Discrete Parent Population

If continuous data is grouped, or of the parent populations are discrete, tied observa-
tions can occur. To give the computational formula in the case of tied observations
we introduce the following notation. Let Z?

1 < . . . < Z?
L denote the L(> 1) distinct

ordered observations in the pooled sample. Further let fij be the number of observa-
tions in the ith sample coinciding with Z?

j and let `j =
∑k
i=1 fij denote the multiplicity

of Z?
j . Using (2) as the definition of A2

kN the computing formula in the case of ties
becomes

A2
kN =

k∑
i=1

1

ni

L−1∑
j=1

`j
N

(NMij − niBj)
2

Bj(N −Bj)
,(4)

where Mij = fi1 + . . .+ fij and Bj = `1 + . . .+ `j.

An alternative way of dealing with ties is to change the definition of the empirical
distribution function to the average of the left and right limit of the ordinary empirical
distribution function, i.e.,

Fani
(x) :=

1

2
(Fni

(x) + Fni
(x−))

and similarly HaN(x). Using these modified distribution functions we modify (2)
slightly to

A2
akN =

N − 1

N

∫ ∑k
i=1 ni{Fani

(x)−HaN(x)}2

HaN(x){1−HaN(x)} − {HN(x)−HN(x−)}/4
dHN(x) ,

for (nondegenerate) samples whose observations do not all coincide. Otherwise let
A2
akN = 0. The denominator of the integrand of A2

akN is chosen to simplify the mean
of A2

akN . For nondegenerate samples the computational formula for A2
akN becomes

A2
akN =

N − 1

N

k∑
i=1

1

ni

L∑
j=1

`j
N

(NMaij − niBaj)
2

Baj(N −Baj)−N`j/4
,(5)

where Maij = fi1 + . . .+ fij−1 + fij/2 and Baj = `1 + . . .+ `j−1 + `j/2. The formula
(5) is valid provided not all the Xij are the same. This latter way of dealing with ties
corresponds to the treatment of ties through midranks in the case of the Wilcoxon
two-sample and the Kruskal-Wallis k-sample tests, see Lehmann (1975).
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4 The Finite Sample Distribution under H0

Under H0 the expected value of A2
kN is

E
(
A2
kN

)
= (k − 1)

N

N − 1

[
1−

∫ 1

0
{ψ(u)}N−1 du ,

]
where ψ(u) := F (F−1(u)) with ψ(u) ≥ u and ψ(u) ≡ u if and only if F is continuous,
see Section 5 for some details. In the continuous case the expected value becomes
k − 1. In general, as N → ∞, the expected value converges to (k − 1)P (ψ(U) < 1)
where U ∼ U(0, 1) is uniform.

The expected value of A2
akN under H0 is

E
(
A2
akN

)
= (k − 1) {1− P (X11 = . . . = Xknk

)}

which is k − 1 for continuous F and otherwise becomes k − 1 in the nondegenerate
case as N →∞.

Higher moments of A2
kN and A2

akN are very difficult to compute. Pettitt (1976) gives
an approximate variance formula for A2

2N as var(A2
2N) ≈ σ2(1 − 3.1/N) where σ2 =

2(π2 − 9)/3 is the variance of A2
1. This approximation does not account for any

dependence on the individual sample sizes. Below a general variance formula of A2
kN

is given for the continuous case.

σ2
N := var(A2

kN) =
aN3 + bN2 + cN + d

(N − 1)(N − 2)(N − 3)
,(6)

with

a = (4g − 6)k + (10− 6g)H − 4g + 6

b = (2g − 4)k2 + 8hk + (2g − 14h− 4)H − 8h+ 4g − 6

c = (6h+ 2g − 2)k2 + (4h− 4g + 6)k + (2h− 6)H + 4h

d = (2h+ 6)k2 − 4hk

where

H =
n∑
i=1

1

ni
, h =

N−1∑
i=1

1

i
and g =

N−2∑
i=1

N−1∑
j=i+1

1

(N − i)j
.

Note that

g −→
∫ 1

0

∫ 1

y

1

x(1− y)
dx dy =

π2

6
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as N → ∞ and thus var(A2
kN) → (k − 1)σ2 as min(n1, . . . , nk) → ∞. The effect of

the individual sample sizes is reflected through H and is not negligible to order 1/N .
A variance formula for A2

akN was not derived. However, simulations showed that the
variances of A2

kN and A2
akN are very close to each other in the continuous case. Here

closeness was judged by the discrepancy between the simulated variance of A2
akN and

that obtained by (6).

In principle it is possible to derive the conditional null distribution (under H0) of
(3), (4) or (5) given the pooled (ordered) vector Z = (Z1, . . . , ZN) of observations
Z1 ≤ . . . ≤ ZN by recording the distribution of (3), (4) or (5) as one traverses through
all possible ways of splitting Z into k samples of sizes n1, . . . , nk respectively. Thus the
test is truly non-parametric in this sense. For small sample sizes it may be feasible to
derive this distribution and tables could be constructed. However, the computational
and tabulation effort quickly grows prohibitive as k gets larger. Not only will the
null distribution be required for all possible combinations (n1, . . . , nk) but also for all
combinations of ties.

A more pragmatic approach would be to record the relative frequency p̂ with which
the observed value a2 of (3), (4) or (5) is matched or exceeded when computing (3),
(4) or (5) for a large number Q of random partitions of Z into k samples of sizes
n1, . . . , nk respectively. This was done, for example, to get the distribution of the
two-sample Watson statistic U2

nm in Watson (1962). This bootstrap like method is
applicable equally well in small and large samples. p̂ is an unbiased estimator of the
true conditional as well as unconditional P -value of a2, and the variance of p̂ can
be controlled by the choice of Q. In the next section the unconditional asymptotic
distribution of (3), (4) or (5) will be derived.

5 Asymptotic Distribution of A2
kN under H0

Since the asymptotic distribution of (4) reduces to that of (3) in the case that the
common distribution function F is assumed continuous, only the case of (4) will be
treated in detail and the result in the case of (5) will only be stated with proof
following similar lines. In deriving the asymptotic distribution of (4) we combine
the techniques of Kiefer (1959) and Pettitt (1976) with a slight shortening in the
argument of the latter and track the effect of discontinuous F .

Using the special construction of Pyke and Shorack (1968), see also Shorack and Well-
ner (1986), we can assume that on a common probability space Ω there exist for each
N , corresponding to n1, . . . , nk, independent uniform smaples UisN ∼ U(0, 1), s =
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1, . . . , ni, i = 1, . . . , k and independent Brownian bridges U1, . . . , Uk such that

‖UiN − Ui‖ := sup
t∈[0,1]

|UiN(t)− Ui(t)| → 0

for every ω ∈ Ω as ni →∞. Here

UiN(t) = n
1/2
i {GiN(t)− t} with GiN(t) =

1

ni

ni∑
s=1

I[UisN≤t]

is the empirical process corresponding to the ith uniform sample. Let XisN :=
F−1(UisN) and

UiN{F (x)} = n
1/2
i {FiN(x)− F (x)} with FiN(x) =

1

ni

ni∑
s=1

I[XisN≤x]

so that FiN(x) is equal in distribution to Fni
(x). The empirical distribution function

of the pooled sample of the XisN is also denoted by HN(x) and that of the pooled
uniform sample of the UisN is denoted by KN(t) so that HN(x) = KN(F (x)). This
double use of HN as empirical distribution of the XisN and of the Xis should cause
no confusion as long as only distributional conclusions concerning (4) are drawn.

Following Kiefer (1959), let C = (cij) denote a k × k othonormal matrix with

c1j = (nj/N)1/2 , j = 1, . . . , k. If U = (U1, . . . , Uk)
t then the components of V =

(V1, . . . , Vk)
t = CU are again independent Brownian bridges. Further, if UN =

(U1N , . . . , UkN)t and VN = (V1N , . . . , VkN)t = CUN then ‖ViN − Vi‖ → 0 for all
ω ∈ Ω, i = 1, . . . , k and

k∑
i=1

ni{FiN(x)−HN(x)}2 =
k∑
i=1

U2
iN{F (x)} − V 2

1N{F (x)} =
k∑
i=2

V 2
iN{F (x)}

for all x ∈ R.

This suggests that A2
kN , which is equal in distribution to

∫
BN

∑k
i=2 V

2
iN{F (x)}

HN(x){1−HN(x)}
dHN(x) =

∫
AN

∑k
i=2 V

2
iN{ψ(u)}

KN{ψ(u)}[1−KN{ψ(u)}]
dKN(u)

converges in distribution to

A2
k−1 :=

∫
A

∑k
i=2 V

2
i {ψ(u)}

ψ(u){1− ψ(u)}
du
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as M := min(n1, . . . , nk) → ∞. Here AN = {u ∈ [0, 1] : KN(ψ(u)) < 1} and
A = {u ∈ [0, 1] : ψ(u) < 1}. To make this rigorous we follow Pettitt and claim that
for each δ ∈ (0, 1/2) and S(δ) = {u ∈ [0, 1] : δ ≤ u, ψ(u) ≤ 1 − δ} we have (see
Billingsley, theorem 5.2)∫

AN∩S(δ)

∑k
i=2 V

2
iN{ψ(u)}

KN{ψ(u)}[1−KN{ψ(u)}]
dKN(u)−

∫
S(δ)

∑k
i=2 V

2
i {ψ(u)}

ψ(u){1− ψ(u)}
dKN(u)

+
∫
S(δ)

∑k
i=2 V

2
i {ψ(u)}

ψ(u){1− ψ(u)}
d{KN(u)− u} −→ 0

for all ω ∈ Ω as M →∞.

If W = (W1, . . . ,WN) with W1 < . . . < WN denote the order statistics of the pooled
sample of the UisN then the conditional expectation of

k∑
i=2

V 2
iN{ψ(Wj)} =

k∑
i=1

ni [GiN{ψ(Wj)} −KN{ψ(Wj)}]2

given W is KN{ψ(Wj)} [1−KN{ψ(Wj)}] (k− 1)N/(N − 1). Thus the unconditional
expectation of

D1N =
∫
I[0,δ)(u)IAN

(u)

∑k
i=2 V

2
iN{ψ(u)}

KN{ψ(u)}[1−KN{ψ(u)}]
dKN(u)

is

E(D1N) =
N∑
j=1

(k − 1)

(N − 1)
P [Wj < δ,KN{ψ(Wj)} < 1]

=
(k − 1)N

N − 1
P [U11N < δ,KN{ψ(U11N)} < 1] ≤ δ

(k − 1)N

N − 1
.

Similarly the unconditional expectation of

D2N =
∫
I[ψ(u)>1−δ](u)IAN

(u)

∑k
i=2 V

2
iN{ψ(u)}

KN{ψ(u)}[1−KN{ψ(u)}]
dKN(u)

is

E(D2N) =
(k − 1)N

N − 1
P [ψ(U11N) > 1− δ,KN{ψ(U11N)} < 1] .

If ψ(t) = 1 for some t < 1 then E(D2N) = 0 for δ sufficiently small, and if ψ(t) < 1
for all t < 1 then

E(D2N) ≤ (k − 1)N

N − 1

{
1− ψ−1(1− δ)

}
.
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In either case E(D1N + D2N) → 0 as δ → 0, uniformly in N . Thus by Markov’s
inequality P (D1N + D2N ≥ ε) → 0 as M → ∞ and then δ → 0. Theorem 4.2 of
Billingsley (1968) and the fact that for all ω ∈ Ω

A2
k−1(δ) =

∫
S(δ)

∑k
i=2 V

2
i {ψ(u)}

ψ(u){1− ψ(u)}
du −→ A2

k−1

as δ → 0 (monotone convergence theorem) proves the claim that A2
kN converges in

distribution to A2
k−1. The integral defining A2

k−1 exists and is finite for almost all
ω ∈ Ω by Fubini’s theorem upon taking expectation of A2

k−1.

Similarly one can show that under H0 the modified version A2
akN converges in distri-

bution to

A2
a(k−1) :=

∫ 1

0

∑k
i=2[Vi{ψ(u)}+ Vi{ψ−(u)}]2

4ψ̄(u){1− ψ̄(u)} − {ψ(u)− ψ−(u)}
du

where ψ−(u) = F (F−1(u)−) and ψ̄(u) = (ψ(u) + ψ−(u))/2 and V2, . . . , Vk are the
same Brownian bridges as before. Note that A2

k−1 and A2
a(k−1) coincide when F is

continuous. Thus the limiting distribution in the continuous case can be considered
an approximation to the limiting distributions of A2

kN and A2
akN under rounding of

data provided the rounding is not too severe. Analytically it appears difficult to
decide which of the two discrete case limiting distributions is better approximated
by the continuous case. The fact that ψ̄ approximates the diagonal better than ψ
appears to point to A2

akN as the better approximand. Only simulation can bear this
out.

6 Table of Critical Points

Since the 1- and 2-sample Anderson-Darling tests of fit the use of asymptotic per-
centiles works very well even in small samples, Stephens (1974) and Pettitt (1976),
the use of the asymptotic percentiles is suggested here as well. To obtain s some-
what better accuracy in the approximation we follow Pettitt (1976) and reject H0 at
significance level α whenever

A2
kN − (k − 1)

σN
≥ zk−1(1− α)

where zk−1(1 − α) is the (1 − α)-percentile of the standardized asymptotic Zk−1 =
{A2

k−1 − (k − 1)}/σ distribution and σN is given by (6).

8



If Y1, Y2, . . . are independent chi-square random variables with k−1 degrees of freedom
then A2

k−1 has the same distribution as

∞∑
i=1

1

i(i+ 1)
Yi .

It cumulants and first four moments are easily calculated and approximate percentiles
of this distribution were obtained by fitting Pearson curves as in Stephens (1976)
and Solomon and Stephens (1978). This approximation works very well in the case
k − 1 = 1 and can be expected to improve as k increases. A limited number of
standardized percentiles zm(1 − α) of Zm are given in Table 1. The test using A2

akN

is carried out the same way by just replacing A2
kN with A2

akN above.

Table 1
Percentiles zm(γ) of the Zm-Distribution

γ
m .75 .90 .95 .975 .99
1 .326 1.225 1.960 2.719 3.752
2 .449 1.309 1.945 2.576 3.414
3 .498 1.324 1.915 2.493 3.246
4 .525 1.329 1.894 2.438 3.139
6 .557 1.332 1.859 2.365 3.005
8 .576 1.330 1.839 2.318 2.920
10 .590 1.329 1.823 2.284 2.862
∞ .674 1.282 1.645 1.960 2.326

For values of m not covered by Table 1 the following interpolation formula should give
satisfactory percentiles. It reproduces the entries in Table 1 to within half a percent
relative error. The general form of the interpolation formula is

zm(γ) = b0 +
b1√
m

+
b2
m
,

where the coefficients for each γ may be found in Table 2. Similarly one could
interpolate and even extrapolate in Table 1 with respect to γ in order to establish an
approximate P -value for the observed Anderson-Darling statistic, see Section 8 for
examples.
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Table 2
Interpolation Coefficients
γ b0 b1 b2

.75 .675 -.245 -.105

.90 1.281 .250 -.305

.95 1.645 .678 -3.62
.975 1.960 1,149 -.391
.99 2.326 1.822 -.396

7 Monte Carlo Simulation

To see how well the percentiles given in Table 1 perform in small samples a number
of Monte Carlo simulations were performed. Samples were generated from a Weibull
distribution, with scale parameter a = 1 and shape b = 3.6, to approximate a normal
distribution reasonably well. The underlying uniform random numbers were gener-
ated using Schrage’s (1979) portable random number generator. The results of the
simulations are summarized in Tables 3-17 of the Appendix. For each of these tables
5000 pooled samples were generated. Each pooled sample was then broken down into
the indicated number of subsamples with the given sample sizes. The observed false
alarm rates are recorded in columns 2 and 3 for the two versions of the statistic. Next,
for each pooled sample created above the scale was changed to a = 150, a = 100 and
a = 30 and the sample values were rounded to the nearest integer. The observed
false alarm rates are given respectively in columns (4,5), (6,7) and (8,9). On top of
these columns the degree of rounding is expressed in terms of the average proportion
of distinct observations in the pooled sample.

It appears that the proposed tests maintain their levels quite well even for samples
as small as ni = 5. Another simulation implementing the tests without the finite
sample variance adjustment did not perform quite as well although the results were
good once the individual sample sizes reached 30. It is not clear whether A2

akN has
any clear advantage over A2

kN as far as data rounding is concerned. At level .01 A2
akN

seems to perform better than A2
kN although that is somewhat offset at level .25.

The power behavior of these tests has not been studied but one can expect that the
good behavior of the 2-sample test A2

mn, as demonstrated by Pettitt (1976), carries
over to the k-sample case as well.
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8 Two Examples

As a first example consider the paper smoothness data used by Lehmann (1968, p.
209, Example 3 and reproduced in Table 18 of the Appendix) as an illustration of
the Kruskal-Wallis test adjusted for ties. According to this test the four sets of eight
laboratory measurements show significant differences with P -value ≈ .005.

Applying the two versions of the Anderson-Darling k-sample test to this set of data
yields A2

kN = 8.3559 and A2
akN = 8.3926. Together with σN = 1.2038 this yields

standardized Z-scores of 4.449 and 4.480 respectively, which are outside the range of
Table 1. Plotting the log-odds of γ versus z3(γ) a strong linear pattern indicates that
simple linear extrapolation should give good approximate P -values. They are .0023
and .0022 respectively, somewhat smaller than that of the Kruskal-Wallis test.

As a second example consider the air conditioning failure data analyzed by Proschan
(1963) who showed that the data sets are significantly different (P -value ≈ .007)
under the assumption that the data sets are individually exponentially distributed.
The data consists of operating hours between failures of the air conditioning system on
a fleet of Boeing 720 jet airplanes. For some of the airplanes the sequence of intervals
between failures is interrupted by a major overhaul. For this reason segments of data
from separate airplanes, which are not separated by a major overhaul, are treated as
separate samples. Also, only segments of length at least 5 are considered. These are
reproduced in Table 19 of the Appendix.

Applying the Anderson-Darling tests to these 14 data sets yields A2
kN = 21.6948 and

A2
akN = 21.7116. Together with σN = 2.6448 this yields standardized Z-scores of

3.288 and 3.294 respectively, which are outside the range of Table 1. Using Table 2,
the interpolation formula for zm(γ) yields appropriate percentiles for m = 13. Plot-
ting the log-odds of γ versus z13(γ) suggests that a cubic extrapolation should provide
good approximate P -values. These are .0042 and .0043 respectively. Hence the ev-
idence against homogeneity appears stronger here even without the exponentiality
assumption.

9 Combining Independent Anderson-Darling Tests

Due to the convolution nature of the asymptotic distribution of the k-sample Anderson-
Darling tests of fit the following additional use of Table 1 is possible. Ifm independent
1-sample Anderson-Darling tests of fit, see Section 1, are performed for various hy-
potheses then the joint statement of these hypotheses may be tested by using the
sum S of the m 1-sample test statistics as the new test statistic and by comparing
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the appropriately standardized S against the row corresponding to m in Table 1. To
standardize S note that the variance of a 1-sample Anderson-Darling test based on
ni observations can either be computed directly or can be deduced from the variance
formula (6) for k = 2 by letting the other sample size go to infinity as:

var(A2
ni

) = 2(π2 − 9)/3 + (10− π2)/ni .

It should be noted that these 1-sample tests can only be combined this way if no
unknown parameters are estimated. In that case different tables would be required.
This problem is discussed further by Stephens (1986), where tables are given for
combining tests of normality or of exponentiality.

Similarly, independent k-sample Anderson-Darling tests can be combined. Here the
value of k may change from one group of samples to the next and the common
distribution function may also be different from group to group.
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Appendix

Results of the Monte Carlo Simulations

Table 3 Observed Significance Levels of A2
kN and A2

akN

Number of Replications = 5000
Sample Sizes 5 5 5

average proportion of distinct observations
nominal 1.0000 .9555 .9346 .8034

significance
level α A2 A2

a A2 A2
a A2 A2

a A2 A2
a

.250 .2654 .2656 .2656 .2714 .2614 .2702 .2632 .2770

.100 .1000 .1040 .0998 .1062 .0994 .1046 .1034 .1146

.050 .0476 .0502 .0488 .0526 .0486 .0532 .0500 .0586

.025 .0228 .0252 .0230 .0256 .0224 .0262 .0220 .0298

.010 .0070 .0086 .0058 .0086 .0062 .0084 .0054 .0096

Table 4 Observed Significance Levels of A2
kN and A2

akN

Number of Replications = 5000
Sample Sizes 10 10 10

average proportion of distinct observations
nominal 1.0000 .9099 .8700 .6520

significance
level α A2 A2

a A2 A2
a A2 A2

a A2 A2
a

.250 .2416 .2438 .2418 .2464 .2438 .2482 .2432 .2534

.100 .1044 .1066 .1040 .1086 .1050 .1078 .1026 .1126

.050 .0496 .0524 .0502 .0542 .0490 .0530 .0512 .0588

.025 .0238 .0244 .0240 .0256 .0242 .0254 .0236 .0314

.010 .0102 .0108 .0102 .0112 .0100 .0114 .0110 .0128
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Table 5 Observed Significance Levels of A2
kN and A2

akN

Number of Replications = 5000
Sample Sizes 30 30 30

average proportion of distinct observations
nominal 1.0000 .7594 .6719 .3552

significance
level α A2 A2

a A2 A2
a A2 A2

a A2 A2
a

.250 .2504 .2508 .2488 .2532 .2502 .2556 .2478 .2572

.100 .0964 .0972 .0946 .0978 .0950 .0998 .0956 .1048

.050 .0466 .0474 .0474 .0482 .0480 .0500 .0462 .0532

.025 .0228 .0236 .0238 .0244 .0242 .0252 .0228 .0268

.010 .0092 .0092 .0094 .0096 .0090 .0094 .0086 .0104

Table 6 Observed Significance Levels of A2
kN and A2

akN

Number of Replications = 5000
Sample Sizes 5 5 5 5 5

average proportion of distinct observations
nominal 1.0000 .9249 .8904 .6971

significance
level α A2 A2

a A2 A2
a A2 A2

a A2 A2
a

.250 .2576 .2618 .2580 .2636 .2600 .2646 .2568 .2704

.100 .1068 .1100 .1062 .1130 .1044 .1128 .1036 .1210

.050 .0498 .0528 .0492 .0544 .0490 .0550 .0476 .0592

.025 .0202 .0226 .0188 .0234 .0196 .0232 .0214 .0280

.010 .0068 .0074 .0064 .0074 .0070 .0078 .0060 .0094

Table 7 Observed Significance Levels of A2
kN and A2

akN

Number of Replications = 5000
Sample Sizes 10 10 10 10 10

average proportion of distinct observations
nominal 1.0000 .8551 .7951 .5134

significance
level α A2 A2

a A2 A2
a A2 A2

a A2 A2
a

.250 .2502 .2526 .2524 .2548 .2518 .2562 .2522 .2604

.100 .1028 .1042 .1034 .1070 .1022 .1066 .1018 .1114

.050 .0492 .0512 .0498 .0524 .0488 .0528 .0478 .0566

.025 .0246 .0268 .0250 .0272 .0250 .0284 .0250 .0302

.010 .0080 .0088 .0080 .0086 .0076 .0086 .0092 .0100
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Table 8 Observed Significance Levels of A2
kN and A2

akN

Number of Replications = 5000
Sample Sizes 30 30 30 30 30

average proportion of distinct observations
nominal 1.0000 .6461 .5402 .2417

significance
level α A2 A2

a A2 A2
a A2 A2

a A2 A2
a

.250 .2524 .2532 .2516 .2542 .2526 .2552 .2522 .2596

.100 .1036 .1042 .1022 .1056 .1034 .1068 .1028 .1138

.050 .0520 .0522 .0518 .0532 .0514 .0550 .0512 .0588

.025 .0256 .0260 .0266 .0266 .0262 .0266 .0264 .0306

.010 .0114 .0114 .0116 .0120 .0112 .0122 .0108 .0136

Table 9 Observed Significance Levels of A2
kN and A2

akN

Number of Replications = 5000
Sample Sizes 5 5 5 5 5 5 5 5 5

average proportion of distinct observations
nominal 1.0000 .8678 .8126 .5438

significance
level α A2 A2

a A2 A2
a A2 A2

a A2 A2
a

.250 .2610 .2650 .2618 .2674 .2616 .2692 .2584 .2722

.100 .1108 .1128 .1114 .1142 .1096 .1150 .1056 .1234

.050 .0470 .0486 .0460 .0504 .0462 .0510 .0470 .0562

.025 .0206 .0226 .0204 .0242 .0198 .0246 .0204 .0290

.010 .0064 .0070 .0064 .0076 .0068 .0078 .0058 .0080

Table 10 Observed Significance Levels of A2
kN and A2

akN

Number of Replications = 5000
Sample Sizes 10 10 10 10 10 10 10 10 10

average proportion of distinct observations
nominal 1.0000 .7598 .6721 .3551

significance
level α A2 A2

a A2 A2
a A2 A2

a A2 A2
a

.250 .2516 .2532 .2498 .2542 .2512 .2590 .2464 .2600

.100 .0944 .0952 .0950 .0966 .0958 .0976 .0964 .1024

.050 .0494 .0500 .0498 .0514 .0496 .0528 .0492 .0580

.025 .0256 .0258 .0252 .0268 .0248 .0268 .0256 .0306

.010 .0122 .0122 .0118 .0128 .0118 .0128 .0118 .0136
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Table 11 Observed Significance Levels of A2
kN and A2

akN

Number of Replications = 5000
Sample Sizes 30 30 30 30 30 30 30 30 30

average proportion of distinct observations
nominal 1.0000 .4900 .3816 .1486

significance
level α A2 A2

a A2 A2
a A2 A2

a A2 A2
a

.250 .2494 .2498 .2522 .2534 .2520 .2542 .2512 .2612

.100 .0956 .0958 .0964 .0978 .0956 .0994 .0968 .1058

.050 .0454 .0456 .0450 .0462 .0448 .0468 .0438 .0504

.025 .0222 .0224 .0220 .0230 .0224 .0230 .0214 .0260

.010 .0076 .0076 .0078 .0080 .0076 .0078 .0078 .0098

Table 12 Observed Significance Levels of A2
kN and A2

akN

Number of Replications = 5000
Sample Sizes 5 10 15 20 25

average proportion of distinct observations
nominal 1.0000 .7938 .7152 .4035

significance
level α A2 A2

a A2 A2
a A2 A2

a A2 A2
a

.250 .2522 .2552 .2538 .2582 .2528 .2572 .2544 .2632

.100 .1016 .1026 .1020 .1044 .1024 .1056 .1016 .1090

.050 .0494 .0510 .0496 .0516 .0496 .0526 .0492 .0566

.025 .0228 .0234 .0222 .0248 .0234 .0252 .0230 .0302

.010 .0110 .0110 .0114 .0114 .0114 .0118 .0108 .0142

Table 13 Observed Significance Levels of A2
kN and A2

akN

Number of Replications = 5000
Sample Sizes 5 5 5 5 25

average proportion of distinct observations
nominal 1.0000 .8688 .8124 .5432

significance
level α A2 A2

a A2 A2
a A2 A2

a A2 A2
a

.250 .2490 .2512 .2496 .2550 .2464 .2554 .2488 .2608

.100 .0968 .0998 .0980 .1022 .0966 .1024 .0942 .1076

.050 .0466 .0488 .0468 .0506 .0462 .0502 .0458 .0544

.025 .0206 .0222 .0198 .0224 .0208 .0232 .0196 .0266

.010 .0072 .0088 .0072 .0094 .0070 .0094 .0066 .0106
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Table 14 Observed Significance Levels of A2
kN and A2

akN

Number of Replications = 5000
Sample Sizes 5 25 25 25 25

average proportion of distinct observations
nominal 1.0000 .7286 .6347 .3180

significance
level α A2 A2

a A2 A2
a A2 A2

a A2 A2
a

.250 .2620 .2626 .2606 .2640 .2618 .2662 .2580 .2686

.100 .1040 .1056 .1028 .1068 .1028 .1084 .1042 .1144

.050 .0512 .0520 .0514 .0530 .0522 .0538 .0494 .0588

.025 .0248 .0252 .0252 .0260 .0250 .0268 .0242 .0290

.010 .0090 .0090 .0090 .0092 .0090 .0096 .0088 .0102

Table 15 Observed Significance Levels of A2
kN and A2

akN

Number of Replications = 5000
Sample Sizes 10 20 30 40 50

average proportion of distinct observations
nominal 1.0000 .6465 .5407 .2417

significance
level α A2 A2

a A2 A2
a A2 A2

a A2 A2
a

.250 .2596 .2610 .2592 .2644 .2590 .2638 .2602 .2682

.100 .1052 .1062 .1054 .1072 .1056 .1078 .1040 .1136

.050 .0526 .0528 .0528 .0554 .0530 .0566 .0540 .0606

.025 .0266 .0270 .0268 .0280 .0258 .0282 .0240 .0312

.010 .0074 .0078 .0078 .0084 .0078 .0086 .0076 .0098

Table 16 Observed Significance Levels of A2
kN and A2

akN

Number of Replications = 5000
Sample Sizes 10 10 10 10 50

average proportion of distinct observations
nominal 1.0000 .7607 .6733 .3561

significance
level α A2 A2

a A2 A2
a A2 A2

a A2 A2
a

.250 .2612 .2634 .2630 .2640 .2630 .2678 .2608 .2700

.100 .1094 .1104 .1098 .1112 .1086 .1124 .1074 .1168

.050 .0520 .0534 .0530 .0552 .0530 .0560 .0522 .0608

.025 .0262 .0270 .0262 .0278 .0266 .0278 .0280 .0316

.010 .0112 .0118 .0110 .0122 .0116 .0122 .0114 .0144
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Table 17 Observed Significance Levels of A2
kN and A2

akN

Number of Replications = 5000
Sample Sizes 10 50 50 50 50

average proportion of distinct observations
nominal 1.0000 .5594 .4483 .1837

significance
level α A2 A2

a A2 A2
a A2 A2

a A2 A2
a

.250 .2480 .2490 .2478 .2486 .2468 .2500 .2490 .2544

.100 .1016 .1012 .1010 .1030 .1018 .1040 .1010 .1074

.050 .0506 .0510 .0508 .0532 .0514 .0540 .0500 .0582

.025 .0254 .0258 .0254 .0266 .0262 .0272 .0268 .0290

.010 .0110 .0110 .0104 .0110 .0102 .0112 .0108 .0126

Data Sets

Table 18 Four sets of eight measurements each of the smoothness
of a certain type of paper, obtained in four laboratories

laboratory smoothness

A 38.7 41.5 43.8 44.5 45.5 46.0 47.7 58.0
B 39.2 39.3 39.7 41.4 41.8 42.9 43.3 45.8
C 34.0 35.0 39.0 40.0 43.0 43.0 44.0 45.0
D 34.0 34.8 34.8 35.4 37.2 37.8 41.2 42.8
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Table 19 Operating hours between failures of air conditioning systems
for separate airplanes and major overhaul (MO) segments

airplane operating hours

7907 194 15 41 29 33 181

7908 413 14 58 37 100 65 9 169 447 184
36 201 118

7908 MO 34 31 18 18 67 57 62 7 22 34

7909 90 10 60 186 61 49 14 24 56 20
79 84 44 59 29 118 25 156 310 76
26 44 23 62

7909 MO 130 208 70 101 208

7910 74 57 48 29 502 12 70 21 29 386
59 27

7911 55 320 56 104 220 239 47 246 176 182
33

7912 23 261 87 7 120 14 62 47 225 71
246 21 42 20 5 12 120 11 3 14
71 11 14 11 16 90 1 16 52 95

7913 97 51 11 4 141 18 142 68 77 80
1 16 106 206 82 54 31 216 46 111

39 63 18 191 18 163 24

7914 50 44 102 72 22 39 3 15 197 188
79 88 46 5 5 36 22 139 210 97
30 23 13 14

7915 359 9 12 270 603 3 104 2 438

7916 50 254 5 283 35 12

8044 487 18 100 7 98 5 85 91 43 230
3 130

8045 102 209 14 57 54 32 67 59 134 152
27 14 230 66 61 34
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