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EXTENDED ABSTRACT 

The use of goodness-of-fit test statistics for 
discrete or categorical data is widespread 
throughout the research community with the Chi-
Square the most popular when a researcher aims to 
determine if observed categorical data differs from 
a hypothesized multinomial distribution. Even for 
ordinal categorical data, the use of empirical 
distribution function (EDF) test statistics such as 
the Kolmogorov-Smirnov, the three Cramér-von 
Mises (A2, W2 and U2 as defined below) and 
various modifications of these are limited in the 
literature. Power studies of the EDF type test 
statistics are even more limited. 

This paper compares the simulated power of the 
three Cramér-von Mises test statistics with that of 
the Chi-Square test statistic for a uniform null 
hypothesis against a variety of alternative 
distributions which are summarized in Figure 1. 
Recommendations are made on which is the most 
powerful test statistic for the predefined alternative 
distributions. 
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Figure 1. Type of alternative distributions used in 
the power studies. 

The results of the simulated power studies in this 
paper lead to the following general 
recommendations: 

• For trend type alternatives A2 and W2 
appear much more powerful than U2 and χ2. 
(See Figure 2 for a uniform null against a 
decreasing trend alternative distribution). 

• For all the other investigated alternative 
distributions U2 and χ2 appear much more 
powerful than A2 and W2. (See Figure 3 for a 
uniform null against a leptokurtic type 
alternative distribution). 
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Figure 2. Powers for a uniform null and a 
decreasing alternative distribution. 
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Figure 3. Powers for a uniform null and a 
leptokurtic alternative distribution. 
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1. INTRODUCTION 

Although designed for ordinal categorical data, the 
empirical distribution function (EDF) type 
goodness-of-fit test statistics Cramér-von Mises 
(W2), Anderson-Darling (A2) and Watson (U2) as 
defined by Choulakian et al. (1994) are not widely 
used in the applied literature. These authors have 
used simulation studies to show that A2 and W2 are 
relatively more powerful than the Chi-Square (χ2) 
test statistic (Pearson 1900) when the null 
distribution is uniform and the alternative 
distribution follows a trend. The test statistics are 
specified in Table 1. 

Table 1. Test statistics used in the power study. 
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where k is the number of cells, N is the sample 
size, pi is the probability of an event occurring 
in cell i, Ei is the expected frequency in cell i, Oi 
is the observed frequency in cell i, 
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There have been limited investigations of the 
powers of these particular EDF type test statistics. 
This paper uses simulated powers to extend the 
studies of Choulakian et al. (1994) and From 
(1996) by comparing the powers of the three 
Cramér-von Mises type test statistics with the χ2 
test statistic for a uniform null distribution (A0) 
against the fully specified alternative distributions 
summarized in Figure 1 (Decreasing A1, Step A2, 
Triangular or ‘bath-tub type’ A3, Platykurtic A4, 
Leptokurtic A5 and Bimodal A6) and fully defined 
in Table 2. The uniform null distribution was used 
because most similar published power studies of 
discrete goodness-of-fit tests have used such a null 
distribution however further work on non-uniform 
null distributions has been undertaken by Steele 

(2002). For a small number of categories some of 
the alternative distributions do not clearly exhibit 
the shapes illustrated in Figure 1. Also the 
distributions become quite similar for a small 
number of categories. For this reason a larger 
number of categories (k=10) was used. 

Table 2. Distributions used in the power study. 
Cell Probabilities 

 1      2      3      4      5      6      7      8      9      10 

A0 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 

A1 0.32 0.13 0.10 0.08 0.07 0.07 0.06 0.06 0.05 0.05 

A2 0.05 0.05 0.05 0.05 0.05 0.15 0.15 0.15 0.15 0.15 

A3 0.17 0.13 0.10 0.07 0.03 0.03 0.07 0.10 0.13 0.17 

A4 0.04 0.11 0.11 0.12 0.12 0.12 0.12 0.11 0.11 0.04 

A5 0.05 0.05 0.05 0.05 0.30 0.30 0.05 0.05 0.05 0.05 

A6 0.05 0.11 0.17 0.11 0.06 0.06 0.11 0.17 0.11 0.05 

In Section 2 the simulation and linear interpolation 
techniques used to approximate power are 
discussed with sample size considerations. The 
results of the power studies are presented in 
Section 3 and a summary table of the most 
powerful test statistic for each alternative 
distribution is presented in the concluding Section 
4. 

2. CALCULATION OF THE SIMULATED 
POWER 

For a uniform null distribution over ten cells 
against the alternative distributions defined in 
Table 2 the powers of the test statistics are 
approximated for sample sizes of 10, 20, 30, 50, 
100 and 200. The sample sizes represent expected 
frequencies of 1, 2, 3, 5, 10 and 20 per cell under 
the uniform null distribution and by selecting these 
expected frequencies researchers who use 
goodness-of-fit tests with a minimum requirement 
of 5 observations per cell can make power 
comparisons for different minimum number of 
observations per cell. It is also shown in the results 
that in most of the situations discussed below that 
sample sizes of around 20 per cell produce power 
approximations very close to 1. The powers are 
estimated using 10000 simulated random samples. 
The simulated null distribution of each test statistic 
is discrete which means that a critical value and 
corresponding power at a significance level of 
exactly 5% may not be possible. To enable 
meaningful comparisons of the powers of each test 
statistic, the powers are obtained for critical values 
either side of the 5% level, and linearly 
interpolated to produce the approximate power for 
the 5% level. 
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3. POWER STUDY RESULTS 

3.1. Uniform Null with a Decreasing (A1) 
Alternative 

For small sample sizes Figure 4 shows that A2 and 
W2 have powers greater than χ2 and U2. The largest 
cumulative difference between the uniform null 
and the decreasing alternative distribution occurs 
at the second cell and as A2 and W2 are affected by 
large cumulative differences at the earlier cells this 
is one reason why they have larger power under 
these circumstances. Also χ2 generally has higher 
power than U2. For sample sizes of at least 5 per 
cell (ie N ≥ 50 in this example), the powers of all 
the test statistics are very high. 
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Figure 4. Powers for uniform null and decreasing 
(A1) alternative. 

3.2. Uniform Null with a Step Type (A2) 
Alternative 

For the step type distribution the cumulative 
difference between a uniform null and the step 
type A2 distribution increases up to the fifth cell. 
Because they are more able to detect larger 
cumulative differences in the earlier cells the test 
statistics A2 and W2 are shown in Figure 5 to be 
more powerful. It should be noted that the power 
of U2 is almost as good as A2 and W2 while the 
power of χ2 is noticeably less than the three 
Cramér-von Mises type test statistics. For larger 
sample sizes of ten or more per cell (ie N ≥ 100 in 
this situation) the powers of all four test statistics 
are very high and approximately the same. 
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Figure 5. Powers for a uniform null and step type 
(A2) alternative. 

3.3. Uniform Null with a Triangular (A3) 
Alternative 

The major cumulative differences between a 
uniform distribution and the A3 triangular 
alternative distribution do not occur in the earlier 
cells as was the case in Sections 3.1 and 3.2. For 
this reason it is expected that A2 and W2 are less 
likely to detect a difference and hence have lower 
power. The U2 statistic is circular in that although 
it can be used on ordinal type data, calculation of 
the test statistic does not depend on which cell is 
defined as the first. This circular test statistic is 
shown in Figure 6 to be much more powerful than 
the other three test statistics. However for larger 
sample sizes the powers of all the test statistics are 
approximately the same and high. This result also 
corresponds to a similar triangular type alternative 
distribution based on 12 cells by Choulakian et al. 
(1994). 

3.4. Uniform Null with a Platykurtic (A4) 
Alternative 

As the cumulative differences between a uniform 
null and the A4 platykurtic alternative distribution 
are not large the A2 and W2 test statistics are 
expected to have lower power. The power of W2 is 
shown in Figure 7 to be very poor for all sample 
sizes however for the smaller sample sizes of five 
per cell (that is N ≤ 50) under the uniform null all 
the test statistics have poor power. For larger 
sample sizes χ2 and U2 are shown to have much 
higher power. 
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Figure 6. Powers for uniform null and triangular 
(A3) alternative. 
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Figure 7. Powers for uniform null and platykurtic 
(A4) alternative. 

3.5. Uniform Null with a Leptokurtic (A5) 
Alternative 

As was also the case in Section 3.4, the cumulative 
differences between the uniform null and the 
leptokurtic A5 alternative are quite small for earlier 
cells and the low powers of A2 and W2 in Figure 8 
show this to be true for smaller sample sizes. The 
powers of U2 and χ2 are shown to be 
approximately equal for all sample sizes. It appears 
that due to its circular nature, U2 is more able to 
detect the large cumulative differences which 
occur at the middle cells. 
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Figure 8. Powers for uniform null and leptokurtic 
(A5) alternative. 

3.6. Uniform Null with a Bimodal (A6) 
Alternative 

The powers of the test statistics are shown in 
Figure 9 to be quite diverse. The power of χ2 is 
shown to be approximately double those of the 
other test statistics for smaller sample sizes. 
Although the power of U2 is quite low it is still 
much larger than the very weak powers of A2 and 
W2. 
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Figure 9. Powers for uniform null and bimodal 
(A6) alternative. 
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4. CONCLUSIONS 

Although it is not possible to recommend one of 
these test statistics as being the most powerful for 
all situations a very broad summary of the 
simulated powers in this paper suggests that, 
particularly for smaller sample sizes: 

• For trend type alternatives A2 and W2 
appear much more powerful than U2 and χ2. 

• For all the other investigated alternative 
distributions U2 and χ2 appear much more 
powerful than A2 and W2. 

Importantly, when considering the power of the 
test statistic, the simulated results presented in this 
and other papers suggests that the applied 
researcher should not blindly use one particular 
test statistic. However the broad summary above 
may assist an applied researcher to at least 
consider alternatives to the χ2 test when testing 
whether their observed ordinal data differs from 
that expected under a multinomial null 
distribution. 
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