
No Free Lunch Theorems for SearchDavid H. Wolpert(dhw@santafe.edu)William G. Macready(wgm@santafe.edu)The Santa Fe Institute1399 Hyde Park Rd.Santa Fe, NM, 87501, USAFebruary 6, 1995AbstractWe show that all algorithms that search for an extremum of a costfunction perform exactly the same, when averaged over all possible costfunctions. In particular, if algorithm A outperforms algorithm B on somecost functions, then loosely speaking there must exist exactly as manyother functions where B outperforms A. Starting from this we analyze anumber of the other a priori characteristics of the search problem, like itsgeometry and its information-theoretic aspects. This analysis allows usto derive mathematical benchmarks for assessing a particular search algo-rithm's performance. We also investigate minimax aspects of the searchproblem, the validity of using characteristics of a partial search over acost function to predict future behavior of the search algorithm on thatcost function, and time-varying cost functions. We conclude with somediscussion of the justi�ability of biologically-inspired search methods.1 IntroductionMany problems can be cast as optimization over a cost function. In such aproblem, we are given a particular mapping f : X ! Y (F being the set ofall such mappings). For that f we seek the set of x� 2 X which give rise toa particular y� 2 Y. Most often, we seek the x�'s which extremize f (thiswill often be implicitly assumed in this paper). Physical examples of such aproblem include free energy minimization (Y = <) over spin con�gurations(X = f�1;+1gN), or over bond angles (X = f< � < � <gN ), etc. Examplesalso abound in combinatorial optimization, ranging from number partitioningto graph coloring to scheduling [1].There are two common approaches to these optimization problems. The�rst is a systematic construction of a good X value, x0, from good sub-solutions1



specifying part of x0. The most celebrated method of this type is the branchand bound algorithm [2]. For this systematic and exhaustive approach to workin reasonable time, one must have an e�ective heuristic, h(n), representing thequality of sub-solutions n. There is extensive theoretical work [3] linking thecost function to the properties a heuristic must have in order to search e�ciently.A second approach to optimization begins with a population of one or morecomplete solutions x 2 X and the associated Y values, and (tries to) itera-tively improves upon those X values. There are many algorithms of this type,including hill-climbing, simulated annealing [4], and genetic algorithms [5].Intuitively, one would expect that for this class of algorithms to work ef-fectively, the biases in how they try to improve the population (i.e., the biasesin how they search X ) must \match" those implicit in the cost function theyare optimizing. However almost always these algorithms are directly applied,with little or no modi�cation, to any cost function in a wide class of cost func-tions, with no concern for the particulars of the cost functions at hand. Aswe will demonstrate though, the \matching" intuition is true; blind faith in analgorithm to search e�ectively across a broad class of problems is rarely justi�ed.Indeed, one might expect that there are pairs of search algorithms A and Bsuch thatA performs better thanB on average, even ifB sometimes outperformsA. As an example, one might expect that hill-climbing usually outperforms hill-descending if one's goal is to �nd a maximum of the cost function. One mightalso expect it would outperform a random search. In point of fact though,as our central result demonstrates, this is not the case. If we do not takeinto account any particular biases or properties of our cost function, then theexpected performance of all algorithms on that function are exactly the same.In short, there are no \free lunches" for e�ective optimization; any algorithmperforms only as well as the knowledge concerning the cost function put intothe cost algorithm. For this reason we have dubbed our central result a \no freelunch" (NFL) theorem.To prove the NFL theorem a framework has to be developed which addressesthe core aspects of search. This framework constitutes the \skeleton" of the op-timization problem; it is what can be said concerning search before explicitdetails of a particular real-world search problem are considered. The construc-tion of such a skeleton provides a language to ask and answer formal questionsabout search, some of which have never before even been asked, never mindanswered. (We pose and answer a number of such questions in this paper.) Inaddition, such a skeleton indicates where the real \meat" of optimization lies.It clari�es what the core issues are that underly the e�ectiveness of the searchprocess.The paper is organized as follows. We begin in Section 2 by presentingour framework and using it to prove the NFL theorem. We prove the theoremfor both deterministic and stochastic search algorithms. Section 3 then givesa geometric interpretation of the NFL theorem. In particular, in that sectionwe provide a geometric meaning of what it means for an algorithm to be well2



\matched" to a cost function. It may be argued that the average behavior ofalgorithms is not an interesting quantity by which to compare algorithms, andthus the NFL results are of limited value. We address this potential criticismin Section 4 by investigating minimax distinctions between algorithms.Section5 begins exploring some of the questions and answers raised by the frameworkdeveloped in Section 2. Some of those answers lead naturally into results con-cerning the information theoretic aspects of search. Those results demonstratethe importance of the NFL theorem in analyzing optimization (those results arederived from the NFL theorem). A myriad of other properties of search may beinvestigated using techniques similar to those developed in this section. We lista sample of these in Section 9.2. In Section 6 we turn to the important problemof assessing the performance of particular search algorithms. We derive two\benchmarks" against which to compare such an algorithm's performance. Notall search problems are static; in many cases the cost function changes over time.Section 7 extends our analysis to the case of time dependent cost functions. Insection 8 we provide some theorems valid for any single �xed cost function.These theorems state that one can not use a search algorithm's behavior so farfor a particular cost function to predict its future behavior on that function.Finally, we conclude in Section 9 with the implications and future directions forour work.The paper can be read in stages. A �rst reading might highlight the NFLtheorem and its broad implications. Such a reading should start with Section2 for an understanding of the NFL theorem, Eq. (1). Section 3 then providesa geometric understanding of the theorem. Section 4, which considers minimaxdistinctions between algorithms, addresses limitations of the NFL theorem. Fi-nally, Section 9.1 discusses broad implications of the NFL result.A second reading might explore the potential of the framework we havedeveloped. Such a reading should include section 5, which uses our frameworkto demonstrate some of the information theoretic aspects of search. Section6 then uses the framework to provide useful benchmarks against which otheralgorithms may be compared.A �nal reading might investigate extensions of the above ideas. Such areading would include section 7, which extends the NFL results to a class oftime-dependent cost functions. It would also include section 8, which probeswhat may be learned from a limited amount of search over a single, speci�c,cost function. Concluding with Section 9.2 we list many directions for futureextensions.2 No Free Lunch Theorems for SearchAll search algorithms rely on extrapolating from an existing set of m points andassociated cost values, (x; y)m 2 (X � Y)m, to a new, hopefully low cost point,x0 2 X . The extrapolation may be either deterministic or stochastic.3



For simplicity take X and Y to be �nite. De�ne dm � fdm(i)g � fdxm(i); dym(i)g 2Dm for i = 1 : : :m to be a set of m distinct search points and associated costvalues ordered in some way (usually according to the time at which they aregenerated) with the ordering index given by i. Let us call this a population ofsize m.Let f indicate a single-valued function from X to Y. Note that there are a�nite number of f if jX j and jYj are �nite. At each stage of a search algorithm,a new point x 2 X is chosen based on the preceding members of d; the pairfx0; f(x0)g is added to d; and the procedure repeats.Any search algorithm of the second type discussed in the introduction isa (perhaps probabilistic) mapping taking any population to a new point inthe search space. For simplicity we assume that the new search point has notalready been visited. (As discussed below, relaxing this assumption does nota�ect our results.) So in particular a deterministic search algorithm is a mappinga : d 2 D ! fx jx 62 dg, where D � [mDm, and in particular contains the emptyset. For clarity of the exposition, in this paper we will only explicitly considersuch deterministic, non-retracing search algorithms, but, as discussed below, allour results also apply to stochastic and retracing algorithms.We are interested in the histogram, ~c, of cost values that an algorithm, a,obtains on a particular cost function, f , given m distinct cost evaluations. Notethat ~c is given by the y values of the population, dym, and is a vector of lengthjYjwhose ith component is the number of members in the population dm havingcost fi. Once we have ~c we can use it to assess the quality of the search. Forexample if we are searching for minima we might take the minimum value in ~cas our performance measure. Consequently, we are interested in the conditionalprobability that histogram ~c will be obtained under m applications of algorithma on f . We denote this quantity P (~c j f;m; a).A major result of this work is that P (~c j f;m; a) is independent of a whenwe average over all cost functions. In other words,Theorem: For any pair of algorithms a1 and a2,Xf P (~c j f;m; a1) =Xf P (~c j f;m; a2): (1)An immediate consequence of this result is that the expected histograms,E(~c j f;m; a) = P~c ~c P (~c j f;m; a), are on average identical between any twopairs of algorithms. More generally, at the point in their search where they haveboth created a population of size m, the performance of any two algorithms(measured for example as the depth of the minimum found) is, on average,identical (the average being over all possible cost functions). In particular if a1has better performance than a2 over some subset � � F of functions, then a2must perform better on the set of remaining functions F n �. So for exampleif simulated annealing outperforms genetic algorithms on some set �, geneticalgorithms must outperform simulated annealing on F n �.4



2.1 Proof for deterministic searchWe now show thatPf P (~c j f;m; a) has no dependence on a. Conceptually, theproof involves the following steps: First, we reduce the distribution over ~c valuesto one over dym values. Then we use induction to establish the a-independenceof the distribution over dym. The inductive step starts by rearranging the distri-butions in question. Then f is broken up into two independent parts, one forx 2 dxm and one for x 62 dxm. These are evaluated separately, giving the desiredresult.Expanding over all possible y components of a population of size m, dym, wesee Xf P (~c j f;m; a) = Xf;dym P (~c; dym j f;m; a)Now P (~c; dym j f;m) = P (~c j dym; f;m; a)P (dym j f;m; a). Moreover, the probabil-ity of obtaining a histogram ~c given f , d, m and a, P (~c j dym; f;m), depends onlyon the y values of population dm. ThereforeXf P (~c j f;m; a) = Xf;dym P (~c j dym)P (dym j f;m; a)= Xdym P (~c j dym)Xf P (dym j f;m; a) (2)To prove that the expression in Eq. (2) is independent of a it su�ces to showthat for all m and dym,Pf P (dym j f;m; a) is independent of a, since P (~c j dym) isindependent of a. We will prove this by induction on m.For m = 1 we write the population as d1 = fdx1(a); f(dx1)g where dx1(a) is setby a. The only possible value for dy1 is f(x1), so we have :Xf P (dy1 j f;m = 1; a) =Xf �(dy1; f(dx1(a)))where � is the Kronecker delta function.Now when we sum over all possible cost functions �(dy1; f(dx1(a))) is 1 onlyfor those functions which have cost dy1 at point dx1(a). Therefore that sum equalsjYjjXj�1, independent of dx1(a):Xf P (dy1 j f;m = 1; a) = jYjjXj�1which is independent of a. This bases the induction.We now establish the inductive step, that if Pf P (dym j f;m; a) is indepen-dent of a for all dym, then so also isPf P (dym+1 j f;m+1; a). This will completethe proof of the NFL result. 5



We start by writingP (dm+1 j f;m+ 1; a) = P (fdm+1(1); : : : ; dm+1(m)g; dm+1(m + 1) j f;m+ 1; a)= P (dm; dm+1(m + 1) j f;m+ 1; a)= P (dm+1(m + 1) j dm; f;m+ 1; a)P (dm j f;m+ 1; a)so we haveXf P (dym+1 j f;m+ 1; a) =Xf P (dym+1(m + 1) j dym; f;m+ 1; a)P (dym j f;m+ 1; a):The new y value, dym+1(m + 1), will depend on the new x value, f andnothing else. So we expand over these possible x values, gettingXf P (dym+1 j f;m+1; a) = Xf;x P (dym+1(m + 1) j f; x)P (x j dym; f;m+1; a)�P (dym j f;m+ 1; a)= Xf;x �(dym+1(m + 1); f(x))P (x j dym; f;m+1; a)�P (dym j f;m+ 1; a):Next note that since x = a(dxm; dym), it does not depend directly on f . Con-sequently we expand in dxm to remove the f dependence in P (x j dym; f;m+1; a):Xf P (dym+1 j f;m+1; a) = Xf;x;dxm�(dym+1(m + 1); f(x))P (x j dm; a)P (dxm j dym; f;m+ 1; a)�P (dym j f;m+ 1; a)=Xf;dxm �(dym+1(m + 1); f(a(dm))) � P (dm j f;m; a)where use was made of the fact that P (x j dm; a) = �(x; a(dm)) and the fact thatP (dm j f;m+ 1; a) = P (dm j f;m; a).We do the sum over cost functions f �rst. The cost function is de�ned bothover those points restricted to dxm and those points outside of dxm. P (dm j f;m)will depend on the f values de�ned over points inside dxm while �(dym+1(m +1); f(a(dm))) depends only on the f values de�ned over points outside dxm.(Recall that a(dxm) 62 dxm.) So we haveXf P (dym+1 j f;m+1; a) = Xdxm Xf(x2dxm )P (dm j f;m; a)� Xf(x62dxm )�(dym+1(m+1); f(a(dm))): (3)6



The sum Pf(x62dxm ) contributes a constant, jYjjXj�m�1, equal to the num-ber of functions de�ned over points not in dxm passing through (dxm+1(m +1); f(a(dm))). SoXf P (dym+1 j f;m+1; a) = jYjjXj�m�1 Xf(x2dxm );dxmP (dm j f;m; a)= 1jYj Xf;dxm P (dm j f;m; a)= 1jYjXf P (dym j f;m; a)By hypothesis the right hand side of this equation is independent of a, so theleft hand side must also be. This completes the proof of the NFL result.Note that the no free lunch result implies that if we know nothing about f ,then P (~c jm; a), which is the probability we obtain histogram c after m distinctcost evaluations of algorithm a, is independent of a. This follows fromP (~c jm; a) =Xf P (~c j f;m; a)P (f jm; a) =Xf P (~c j f;m; a)P (f)since the cost function doesn't depend on either m or a. If we know nothingabout f then all f are equally likely, so for all f P (f) = 1=jYjjXj. (More gen-erally, P (f) re
ects our \prior knowledge" concerning f .) Then P (~c jm; a) =(1=jYjjXj)Pf P (c j f;m; a) which is independent of a by the no free lunch the-orem.The NFL theorem illustrates that even if we know something about f (per-haps speci�ed through P (f)) but don't incorporate that knowledge into a thenwe have no assurances the a will be e�ective; we are simply relying on a fortu-itous matching between f and a. This point is formally established in sections3 and 8.2.2 More general kinds of searchThere are two restrictions on the de�nition of search algorithms used so far thatone might �nd objectionable. These are: i) the banning of algorithms that mightrevisit the same points in X after placing them in dx; and ii) the banning ofalgorithms that work stochastically rather than deterministically. Fortunately,the NFL result can easily be extended to include either algorithms that revisitpoints and/or are algorithms that are stochastic. So there is no loss of generalityin our de�nition of a \search algorithm".To see this, say we have a deterministic algorithma : d 2 D ! fx jx 2 Xg, sothat given some (perhaps empty) d, the algorithmmight produce a point x 2 dx.Call such an algorithm \potentially retracing". Given a potentially retracing7



algorithm a, produce a new algorithm a0 by \skipping over all duplications" inthe sequence of fx; yg pairs produced by the potentially retracing algorithm.Formally, for any d, a0(d) is de�ned as the �rst x value from the sequencefa(;); a(d); a(a(d)); : : :g that is not contained in dx. So long as the originalalgorithm a can not get stuck forever in some subset of d, we can always producesuch an a0 from a. (We can �nd no reason to design one's algorithm to not havean \escape mechanism" that ensures that it can not get stuck forever in somesubset of d.) We will say that a0 is a \compacted" version of a.Now any two compacted algorithms are \search algorithms" in the sense theterm is used in the previous subsection. Therefore they obey the NFL resultof that subsection. So the NFL result in Eq. (1) holds even for potentiallyretracing algorithms, if we rede�ne `m' in that equation to be the number ofdistinct points in the dx's produced by the algorithms, in question, and if werede�ne `~c' to be the histogram corresponding to those m distinct points.Moreover, our real-world cost in using an algorithm is usually set by thenumber of distinct evaluations of f(x). So it makes sense to compare potentiallyretracing algorithms not by looking at the d's they produce after being run thesame number of times, but rather by looking at the d's they produce aftersampling f(x) the same number of times. This is consistent with using ourrede�ned m and ~c.Note that the x at which a potentially retracing algorithm breaks out of acycle might be stochastic (e.g simulated annealing). In this case the compactedversion of the algorithm is still well-de�ned. Only rather than being determinis-tic, that compacted algorithm is stochastic. This brings us to the general issueof how to adapt our analysis to address stochastic search algorithms.Let � be a stochastic non-potentially retracting algorithm. Formally, thismeans that � is a mapping taking any d to a (d-dependent) distribution overX that equals zero for all x 2 dx. So � can be viewed as a \hyper-parameter",specifying the function P (dxm+1(m + 1) j dm; �) for all m and d.Given this de�nition of �, we can follow along with the derivation of the NFLresult for deterministic algorithms, just with a replaced by � throughout. Doingso, everything still holds. So that NFL result holds even for stochastic searchalgorithms. Therefore, by the same reasoning used to establish the no-free-lunchresult for potentially retracing deterministic algorithms, the no-free-lunch resultholds for potentially retracing stochastic algorithms.3 A geometric interpretationWe can give a geometric interpretation of the no free lunch theorem by consid-ering the space of possible cost functions. The probability of obtaining somehistogram, ~c, given m distinct cost evaluations using algorithm a is8



P (~c jm; a) =Xf P (~c jm; a; f)P (f):where P (f) is the prior probability that the optimization problem at hand hascost function f . We can view the right-hand side of this equality as an innerproduct in F :Theorem: De�ne the F-space vectors ~vc;a;m and ~p by ~vc;a;m(f) � P (c jm; a; f)and ~p(f) � P (f). Then P (~c jm; a) = ~vc;a;m � ~p (4)This is an important equation. Any global knowledge you have about theproperties of your cost function goes into the prior ~p over cost functions. ~c canbe viewed as �xed to the histogram you want to obtain (usually one with alow cost value), and m is given by the constraints on the time we have to runour optimization algorithm. Thus the optimal algorithm is that which has thelargest projection onto ~p.Taking this geometric view, the no free lunch result that Pf P (~c j f;m; a)is independent of a has the simple interpretation that for a particular ~c andm, all algorithms a have the same projection onto the diagonal, that is vc;a;m �~1 = cst(~c;m). For deterministic algorithms the components of vc;a;m (i.e., theprobabilities that algorithm a gives histogram ~c on cost function f after mdistinct cost evaluations) are all either 0 or 1 so the no free lunch result alsoimpliesPf P 2(~c jm; a; f) = cst(~c;m). Geometrically, this means that the lengthof ~vc;a;m is independent of a.Thus all vectors ~vc;a;m have the same length and lie on a cone with constantprojection onto ~1. Because the components of ~vc;a;m are binary we might alsoview ~vc;a;m as lying on the subset of the boolean hypercube having the samehamming distance from ~0.In Section 5we calculate two quantities concerning the distribution of ~vc;a;macross vertices of this hypercube.4 Minimax distinctions between algorithmsThe NFL theorem does not address minimax properties of search. For example,say we're considering two deterministic algorithms, a1 and a2. It may verywell be that there exist cost functions f such that a1's histogram is much better(according to some appropriate qualitymeasure) than a2's, but no cost functionsfor which the reverse is true. For the NFL theorem to be obeyed in such ascenario, it would have to be true that there are many more f for which a2's9



algorithm is better than a1's than vice-versa, but it is only slightly better for allthose f . For such a scenario, in a certain sense a1 has better minimax behaviorthan a2; there are f for which a1 beats a2 badly, but none for which a1 doessubstantially worse than a2.It appears though that analyzing minimax properties of algorithms is sub-stantially more di�cult than analyzing average behavior (like in the NFL the-orem). Presently, nothing at all is known about minimax behavior involvingstochastic algorithms. In particular, it is not known if in some sense a stochas-tic version of a deterministic algorithm has better/worse minimax behavior thanthat deterministic algorithm. In fact, even if we stick completely to determinis-tic algorithms, only an extremely preliminary understanding of minimax issueshas been reached.What we do know is the following. Consider the quantityXf Pdym;1;dym;2(z; z0 j f;m; a1; a2);for deterministic algorithms a1 and a2. This quantity is just the number of fsuch that it is both true that a1 produces a population with Y components zand that a2 produces a population with Y components z0. In appendix B, it isproven that this quantity need not be symmetric under interchange of z and z0:Theorem: In general,Xf PdYm;1 ;dYm;2(z; z0 j f;m; a1; a2) 6=Xf PdYm;1;dYm;2(z0; z j f;m; a1; a2): (5)This means that under certain circumstances, even knowing only the Y compo-nents of the populations produced by two algorithms run on the same (unknown)f , we can infer something concerning what algorithm produced each population.Now consider the quantityXf PC1;C2(z; z0 j f;m; a1; a2);again for deterministic algorithms a1 and a2. This quantity is just the number off such that it is both true that a1 produces a histogram z and that a2 producesa histogram z0. It too need not be symmetric under interchange of z and z0(see appendix B). This is a stronger statement then the asymmetry of dY 'sstatement, since any particular histogram corresponds to multiple populations.Amongst other things, currently nothing is known about \how big a prob-lem" these asymmetries are. All of the asymmetries arise when the set of Xvalues a1 has visited overlaps with those that a2 has visited. Given such overlap,and certain properties of how the algorithms generated the overlap, asymmetryarises. A precise speci�cation of those \certain properties" is not yet in hand.10



Nor is it known how generic they are, i.e., for what percentage of pairs of algo-rithms they arise. Although such issues are easy to state (see appendix B), itis not at all clear how best to answer them.Note that neither of these two results directly address issues like whetherthere are f such that a1's histogram is much better than a2's, but not vice-versa.To answer that involves looking over all pairs of histograms such that there isthe same relative quality between both histograms.5 Information theoretic aspects of searchWe �rst calculate the fraction of cost functions which give rise to a speci�chistogram ~c using algorithm a with m distinct cost points. This calculationallows us, for example, to answer the following question:\What fraction of cost functions will give a particular distribution of costvalues after m distinct cost evaluations chosen by using a genetic algorithm?"This may seem an intractable question, but the NFL result allows us toanswer it. It does this because it means that the fraction is independent of thealgorithm! So we can answer the question by using an algorithm for which thecalculation is particularly easy.The algorithm we will use is one which visits points in X in some canonicalorder, say x1; x2; : : : ; xm. Recall that the histogram ~c is speci�ed by giving thefrequencies of occurrence, across the x1; x2; : : : ; xm, for each of the jYj possiblecost values.Now the number of f 's giving the desired histogram under our speci�edalgorithm is just the multinomial giving the number of ways of distributing thecost values in ~c. At the remaining jX j�m points in X the cost can assume anyof the jYj f values.It will be convenient to de�ne ~� � 1m~c. Note that this is invariant if thecontents of all bins in ~c are scaled by the same amount. By the argument of thepreceding paragraph, the fraction we are interested in, �f (~�), is given by thefollowing:Theorem: For any algorithm, the fraction of cost functions that result in thehistogram ~c = m~� is given by�f (~�) = � mc1 c2 ��� cjYj�jYjjXj�mjYjjXj = � mc1 c2 ��� cjYj�jYjm : (6)Accordingly, �f (~�) can be related to the entropy of ~c in the standard wayby using Stirling's approximation to order O(1=m), which is valid when all ofthe ci are large: 11



ln� mc1 c2 � � � cjYj� = m lnm� jYjXi=1 ci ln ci + 12hlnm � jYjXi=1 ln cii= mS(~�) + 12h�1� jYj� lnm � jYjXi=1 ln�iiwhere S(~�) = �PjYji=1�i ln�i is the entropy of the histogram ~c. Thus for largeenough m (m � jYj), the fraction of cost functions is given by the followingformula:Corollary: �f (~�) � C(m; jYj) emS(~�)QjYji=1 �1=2i : (7)where C(m; jYj) is a constant depending only on m and jYj.If some of the ~�i are 0, Eq. (7) still holds, only with Y rede�ned to excludethe y's corresponding to the zero-valued ~�i. However Y is de�ned, the normal-ization constant of Eq. (7) can be found by summing over all ~� lying on theunit simplex. The details of such a calculation can be found in [8].We next turn to a related question:\On a given vertex of f-space (i.e., for a given cost function), what is thefraction of all algorithms that give rise to a particular ~c?"For this question, the only salient feature of f is its histogram (formed bylooking across all X ) of cost values. Specify this histogram by ~�; there areNi = �i jX j points in X for which f(x) has the i'th Y value.Call the fraction we are interested in �alg(~�; ~�). It turns out that �alg(~�; ~�)depends to leading order on the Kullback-Liebler \distance" [9] between ~� and~�. To see this, we start with the following intuitively reasonable result, formallyproven in appendix A:Theorem: For a given f with histogram ~N = jX j~�, the fraction of algorithmsthat give rise to a histogram ~c = m~� is given by�alg(~�; ~�) = QjYji=1 �Nici ��jXjm � : (8)The normalization factor in the denominator is simply the number of ways ofselecting m cost values from X .11It can also be determined from the identityP~c �(Pi ci;m)Qi �Nici � = �PiNim �.12



The product of binomials can be approximated via Stirling's equation whenboth Ni and ci are large:ln jYjYi=1�Nici � = jYjXi=1Ni lnNi � ci ln ci � (Ni � ci) ln(Ni � ci) + lnNi� ln(Ni � ci)� ln ci:We assume ci=Ni � 1, which is reasonable when m � jXj. So using theexpansion ln(1� z) = �z � z2=2� : : :, to second order in ci=Ni we haveln jYjYi=1�Nici� = jYjXi=1 ci ln�Nici � � 12 ln ci + ci� ci2Ni�ci � 1 + (ci � 12)� ciNi �2 + � � ��In terms of ~� and ~� we �nally obtain (using m=jX j � 1)ln jYjYi=1�Nici � = mDKL(~�; ~�) +m + jYj ln� mjX j�� jYjXi=1 12 ln(�im) + m2jX j��i�i �(1� �im + � � �);where DKL(~�; ~�) � �Pi �i ln(�i=�i) is the Kullbeck-Liebler distance betweenthe distributions ~� and ~�.Thus the fraction of algorithms is given by the following:Corollary: �alg(~�; ~�) � C(m; jX j; jYj) e�mDKL(~�;~�)QjYji=1�1=2i : (9)where the constant C depends only on m, jX j, and jYj.As before, C can be calculated by summing ~� over the unit simplex.6 Measures of algorithm performanceIn this section we calculate certain \benchmark" performance measures thatallow us to assess the e�cacy of any search algorithm.Consider the case where low cost is preferable to high cost. Then in generalwe are interested in P (min(~c) > � j f;m; a), which is the probability that the13



minimum cost an algorithm a �nds in m distinct evaluations is larger than �,given that the cost function is f . We consider three measures of an algorithm'sperformance that are related to this conditional probability:i) The �rst measure is the average of this probability over all cost functions.ii) The second is the form this conditional probability takes for the randomalgorithm, whose behavior is uncorrelated with the cost function.iii) The third is the fraction of algorithms which, for a particular f and m,result in a ~c whose minimum exceeds �.These measures give us benchmarks which all truly \intelligent" algorithmsshould surpass when used in the real world; any algorithm that doesn't surpassthem is doing a very poor job.Recall that there are jYj distinct cost values. With no loss of generalityassume the i'th cost values equals i. So cost values run from a minimum of 0to a maximum of jYj in integer increments.The �rst of our two benchmarks measures isPf P (min(~c) > � j f;m; a)Pf 1 = Pdym;f P (min(dym) > � j dym)P (dym j f;m; a)jYjjXj (10)where in the last line we have marginalized over y values of populations of sizem and noted that min(c) = min(dym).Now consider Pf P (dym j f;m; a). The summand equals 0 or 1 for all f anddeterministic a. In particular, it equals 1 if the following conditions are meti) f(dxm(1)) = dym(1)ii) f(a[dm(1)]) = dym(2)iii) f(a[dm(1); dm(2)]) = dym(3): : :These restrictions will always �x the value of f(x) at exactly m points. f iscompletely free at all other points. ThereforeXf P (dym j f;m; a) = jYjjXj�m:Using this result in Eq. (10) we �ndXf P (min(~c) > � j f;m) = 1jYjm Xdym P ((min(dym) > � j dym)14



= 1jYjm Xdym3min(dym)>� 1= 1jYjm (jYj � �)m:This establishes the following:Theorem: Xf P (min(~c) > � j f;m) = 
m(�): (11)where 
(�) � 1� �=jYj is the fraction of cost lying above �.In a real world scenario, unless one's algorithm has its best-cost-so-far dropfaster than this, there is no sense in which that algorithm is well-suited tosearching the cost function at hand. The algorithm is doing no better than onewould expect it to for a randomly chosen cost function.Next we calculate the expected minimum of the cost values in the pop-ulation as a function of m for the random algorithm, ~a, which picks pointsin X completely randomly, using no information from the current population.Marginalizing over histograms ~c, the performance of ~a isP (min(~c) � � j f;m; ~a) =X~c P (min(~c) � � j~c)P (~c j f;m; ~a)Now P (~c j f;m; ~a) is the probability of obtaining histogram ~c in m randomdraws from the histogram ~N of the function f . (This can be viewed as thede�nition of ~a.) This probability has been calculated previously as QjYji=1 (Nici )(jXjm )) .SoP (min(~c) � � j f;m; ~a) = 1�jXjm � mXc1=0 � � � mXcjYj=0 �( jYjXi=1 ci;m)P (min(~n) > � j~c)� jYjYi=1�Nici �= 1�jXjm � mXc�=0 � � � mXcjYj=0 �( jYjXi=� ci;m) jYjYi=��Nici �= �PjYji=�Nim ��jXjm � (see footnote one)15



= ��(�)jXjm ��jXjm � (12)This establishes the following:Theorem: For the random algorithm ~a,P (min(~c) � � j f;m;~a) = m�1Yi=0 �(�)� i=jX j1� i=jX j : (13)where �(�) �PjYji=�Ni=jX j is the fraction of points in X for which f(x) � �.To �rst order in 1=jX j this gives the following result:Corollary:P (min(c) > � j f;m;~a) = 
m(�)�1� m(m � 1)(1�
(�))2
(�) 1jX j + : : :�: (14)This equation provides a useful benchmark against which any algorithmmay be compared. Note in particular that for many cost functions cost valuesare distributed Gaussianly. For such a case, if the mean and variance of theGaussian are � and � respectively, then 
(�) = erfc((���)=p2�)=2, where erfcis the complimentary error function.Finally, to calculate the third performance measure, note that for �xed fand m, for any (deterministic) algorithm a, P (~c > � j f;m; a) is either 1 or 0.Therefore the fraction of algorithms which result in a ~c whose minimum exceeds� is given by Pa P (min(~c) > � j f;m; a)Pa 1 :Expanding in terms of ~c, we can rewrite the numerator of this ratio asP~c P (min(~c) > � j ~c) Pa P (~c j f;m; a). However the ratio of this quantityto Pa 1 is exactly what we calculated when we evaluated measure ii) (see thebeginning of the argument deriving Eq. (13)). This establishes the following:Theorem: For �xed f and m, the fraction of algorithms which result in a ~cwhose minimum exceeds � is given by the quantity on the right-hand sides ofEqs. (13) and (14).So in particular, consider the scenario where, when evaluated for � equalto the minimum of the ~c produced in a particular run of your algorithm, thequantity given in Eq. (14) is less than 1/2. For such a scenario, your algorithmhas done worse than over half of all search algorithms, for the f and m at hand.16



7 Time-dependent cost functionsHere we establish a set of no free lunch results for a certain class of time-dependent cost functions. The time-dependent functions we are concerned withstart with an initial cost function that is present when we sample the �rst xvalue. Then just before the beginning of each subsequent iteration of the searchalgorithm, the cost function is deformed to a new function, as speci�ed by themapping T : F � N ! F .2 We write the function present during the samplingof the ith point as fi+1 = Ti(fi). We assume that at each step i, Ti is a bijectionbetween F and F . (Note the mapping induced by T from F to F can vary withthe iteration number.) If this weren't the case, the evolution of cost functionscould narrow in on a region of f 's for which some algorithm, \by luck" as itwere, happens to sample x values that lie near the extremizing x.One di�culty with analyzing time-dependent cost functions is how to as-sess the quality of the search algorithm. In general there are two histogram-based schemes, involving two di�erent populations of y values. As before, thepopulation dym is an ordered set of y values corresponding to the x values indxm. The particular y value in dym matching a particular x value in dxm isgiven by the cost function that was present when x was sampled. In con-trast, the population Dym is de�ned to be the y values from the present costfunction for each of the x values in dxm. Formally if dxm = fdxm(1); � � � ; dxm(m)gthen we have dym = ff1(dxm(1)); � � � ; Tm�1(fm�1)(dxm(m))g. Similarly, we haveDym = fTm�1(fm�1)(dxm(1)); � � � ; Tm�1(fm�1)(dxm(m))g.In some situations it may be that the members of the population \live" fora long time, on the time scale of the evolution of the cost function. In suchsituations it may be appropriate to judge the quality of the search algorithmwith the histogram induced byDym; all those previous elements of the populationare still alive, and therefore their (current) �tness is of interest. On the otherhand, if members of the population live for only a short time on the time scaleof evolution of the cost function, one may instead be concerned with thingslike how well the living member(s) of the population track the changing costfunction. In that kind of situation, it may make more sense to judge the qualityof the search algorithm with the histogram induced by dym.Here we derive NFL results for both criteria. In analogy with the NFLtheorem, we wish to average over all possible ways a cost function may betime-dependent, i.e., we wish to avenge over all T (rather than over all f , asin the NFL theorem). So consider the sum PT P (~c j; f1; T;m; a) where f1 isthe initial cost function. Note �rst that since T only kicks in for m > 1, andsince f1 is �xed, there are a priori distinctions between algorithms as far asthe �rst member of the population is concerned. So consider only histogramsconstructed from those elements of the population beyond the �rst. We will2An obvious restriction would be to require that T doesn't vary with time, so that it is amapping simply from F to F. An analysis for T 's limited this way is beyond the scope of thispaper however. 17



prove the following:Theorem: For all ~c, m > 1, algorithms a1 and a2, and initial cost functions f1,XT P (~c j f1; T;m; a1) =XT P (~c j f1; T;m; a2): (15)We will show that this results holds whether ~c is constructed from dym orfrom Dym. In analogy with the proof of the NFL theorem, we will do this byestablishing the a-independence of PT P (~c j f; T;m; a).We will begin by replacing each T in the sum with a set of cost functions, fi,one for each iteration of the algorithm. To do this, we start with the following:XT P (~c j f; T;m; a) = XT Xdxm Xf2���fm P (~c j ~f ; dxm; T;m; a)�P (f2 � � �fm; dxm j f1; T;m; a)= Xdxm Xf2���fm P (~c j ~f ; dxm)P (dxm j ~f ;m; a)�XT P (f2 � � �fm j f1; T;m; a);where we have indicated the sequence of cost functions, fi, by the vector ~f =(f1; � � � ; fm).Next we decompose the sum over all possible T into a series of sums. Eachsum in the series is over the values T can take for one particular iteration of thealgorithm. More formally, using fi+1 = Ti(fi), we writeXT P (~c j f; T; m ; a) =Xdxm Xf2���fm P (~c j ~f ; dxm)P (dxm j ~f ;m; a)�XT1 �(f2; T1(f1)) � � �XTm�1 �(fm; Tm�1(Tm�2(� � �T1(f1)))):(Note that PT P (~c j f; T;m; a) is independent of the values of Ti>m�1, so wecan absorb those values into an overall a-independent proportionality constant.)Now look at the innermost sum, over Tm�1, for some �xed values of theouter sum indices T1 : : :Tm�2. Now for �xed values of the outer sum indicesTm�1(Tm�2(� � �T1(f1))) is just some �xed cost function. Accordingly the in-nermost sum over Tm�1 is simply the number of bijections of F that map that�xed cost function to fm. This is just a constant, (jFj � 1)!.So we can do the Tm�1 sum, and arrive atXT P (~c j f; T; m ; a1) /Xdxm Xf2���fm P (~c j ~f ; dxm)P (dxm j ~f ;m; a)18



�XT1 �(f2; T1(f1)) � � �XTm�2 �(fm�1; Tm�2(Tm�3(� � �T1(f1)))):Now we can do the sum over Tm�2, in the exact same manner we just didthe sum over Tm�1. In fact, all the sums over all Ti can be done, leaving uswith XT P (~c j f; T;m ; a1) /Xdxm Xf2 ���fm P (~c j ~f ; dxm)P (dxm j ~f ;m; a)= Xdxm Xf2���fm P (~c j ~f ; dxm)P (dxm j f1 � � �fm�1;m; a): (16)(In the last step we have exploited the statistical independence of dxm and fm.)To proceed further we must decide if we are interested in histograms formedfrom Dym or dym. We begin with analysis of the Dym case. For this case P (~c j~f; dxm) = P (~c j fm; dxm), since Dym only re
ects cost values from the last costfunction, fm. Plugging this in we getXT P (~c j f; T;m; a1) / Xdxm Xf2 ���fm�1 P (dxm j f1 � � �fm�1;m; a)Xfm P (~c j fm; dxm)The �nal sum over fm is a constant equal to the number of ways of generatingthe histogram c from cost values drawn from fm. This constant will involve themultinomial coe�cient � mc1���cm� and some other factors. The important point isthat it is independent of the particular dxm. Because of this we can evaluate thesum over dxm and thereby eliminate the a dependence.XT P (~c j f; T;m; a) / Xf2���fm�1Xdxm P (dxm j f1 � � �fm�1;m; a) / 1This completes the proof of Eq. (15) for the case where ~c is constructed fromDym.Next we turn the case where we are interested not in Dym but in dym. Thiscase is considerably more di�cult since we can not simplify P (~c j ~f ; dxm) andthus can not decouple the sums over fi. Nevertheless, the NFL result still holds.To see this we begin by expanding Eq. (16) over possible dym values.XT P (~c j f; T;m; a) / Xdxm Xf2���fmXdym P (~c j dym)P (dym j ~f ; dxm)�P (dxm j f1 � � �fm�1;m; a)19



= Xdym P (~c j dym)Xdxm Xf2���fm P (dxm j f1 � � �fm�1;m; a)� mYi=1 �(dym(i); fi(dxm(i))) (17)The sum over the inner-most cost function, fm, only has an e�ect on the�(dym(i); fi(dxm(i))) term. So it contributes Pfm �(dym(m); fm(dxm(m))). This isa constant, equal to jYjjXj�1. We are left withXT P (~c j f; T;m; a) / Xdym P (~c j dym)Xdxm Xf2���fm�1 P (dxm j f1 � � �fm�1;m; a)�m�1Yi=1 �(dym(i); fi(dxm(i))):The sum over dxm(m) is now trivial, so we haveXT P (~c j f; T;m; a)/ Xdym P (~c j dym) Xdxm(1)� � � Xdxm(m�1) Xf2���fm�1 P (dxm�1 j f1 � � �fm�2;m; a)�m�1Yi=1 �(dym(i); fi(dxm(i))):Now note that the above equation is of the exact same form as Eq. (17),only with a remaining population of size m�1 rather than m. Consequently, inan exactly analogous manner to the scheme we used to evaluate the sums overfm and dxm(m) that existed in Eq. (17), we can evaluate our sums over fm�1and dxm(m� 1). Doing so simply generates more a-independent proportionalityconstants. Continuing in this manner, we evaluate all the sums over the fi andarrive atXT P (~c j f; T;m; a1) / Xdym P (~c j dym) Xdxm(1)P (dxm(1) j m; a) �(dym(1); f1(dxm(1))):Now there is still algorithm-dependence in this result. However it is a trivialdependence; as previously discussed, it arises completely from how the algorithmselects the �rst x point in its population, dxm(1). Since we consider only thosepoints in the population that are generated subsequent to the �rst, our resultsays that there is no distinctions between algorithms. (Alternatively, we couldconsider all points in the population, even the �rst, and still get an NFL result,if in addition to summing over all T we sum over all f1.) So even in the case20



where we are interested in dym the NFL result stills hold, subject to the minorcaveats delineated above.There are others way of assessing the quality of the search algorithm besideshistograms based on Dym or dym. For example, one may wish to not considerhistograms at all; one may judge the quality of the search by the �tness of themost recent member of the population.Similarly, there are other sums one could look at besides those over T . Forexample, one may wish to characterize what the aspects are of the relation-ship between a and T that determine Pf P (~c j f; T;m; a). In fact, in generalthere can be a priori distinctions between algorithms as far as this quantity isconcerned.As an example of such distinctions, say that for all iterations of the searchalgorithm, T is the shift operator, replacing f(x) by f(x � 1) for all x (withmin(x)� 1 � max(x), and with X implicitly taken to be a contiguous set ofintegers). For this T , if a is the algorithm that �rst samples f at x1, nextat x1 + 1, etc., regardless of the values in the population, then for any f , thehistogram induced by dym is always made up of identical Y values. Accordingly,Pf P (~c j f; T;m; a) = 0 for any ~c containing counts in more than one Y valuebin. For other search algorithms, even for the same shift T , there is not thisrestriction on the set of allowed ~c. SoPf P (~c j f; T;m; a) is not independent ofa in general.Indeed, consider the shift same T , but used with a di�erent algorithm, â.This new algorithm looks at the Y value of the its �rst sample point x1, and ifthat value is low, it samples at x1 + 1, exactly like algorithm a. On the otherhand, if that value is high, it samples some point other than x1+1. In general,if one's goal is to �nd minimal Y values, â can be expected to outperform a,even when one averages over all f .8 Fixed cost function resultsOne obvious di�culty with the NFL results discussed above is that one canalways argue \oh, well in the real world P (f) is not uniform, so the NFL resultsdo not apply, and therefore I'm okay in using my favorite search algorithm".Of course, the premise does not follow from the proposition. Uniform P (f) isa typical P (f). (The uniform average of all P (f) is the uniform P (f).) Sothe actual P (f) might just as easily be one for which your algorithm is poorlysuited as one for which it is well suited. Ultimately, the only way to justify one'ssearch algorithm is to argue in favor of a particular P (f), and then argue thatyour algorithm is well suited to that P (f). This is the only (!) legitimate wayof defending a particular search algorithm against the implications of the NFLtheorems.Nonetheless, it is clearly of interest to derive NFL-type results that are inde-21



pendent of P (f). Certain such results apply to ways of choosing between searchalgorithms, and involve averaging over those search algorithms while keepingthe cost function �xed. Although less sweeping than the NFL results, theseresults hold no matter what the real world's distribution over cost functions is.Let a and a0 be two search algorithms. De�ne a \choosing procedure" asone that examines two populations d and d0, produced by a and a0 respectively,and based on those populations, decides to use either a or a0 for the subsequentpart of the search. As an example, one choosing procedure is to choose a if andonly the least cost element in d has lower cost than the least cost element in d0.As another example, a \stupid" choosing procedure would choose a if and onlythe least cost element in d has higher cost than the least cost element in d0.At the point that you use a choosing procedure, you will have sampled thecost function at all the points in d[ � d [ d0. Accordingly, if d>m refers tothe samples of the cost function that come after using the choosing algorithm,then the histogram the user is interested in is the histogram c>m which is thehistogram formed from d>m. In addition, for all the usual reasons, we canassume that the search algorithm chosen by the choosing procedure does notreturn to any points in d[, without loss of generality3.The following theorem, proven in appendix C, tells us we have no a priorijusti�cation for using any particular choosing algorithm. Loosely speaking, nomatter what the cost function, observing how well an algorithm has done so fartells us nothing about how well it would do if we continue to use it on the samecost function. (For simplicity, we only consider deterministic algorithms.)Theorem: Let d and d0 be two �xed populations both of size m, that aregenerated when the algorithms a and a0 respectively are run on the cost function.Let A and B be two di�erent choosing procedures. Let k be the number ofelements in c>m. ThenXa;a0 P (c>m j f; d; d0; k; a; a0; A) =Xa;a0 P (c>m j f; d; d0; k; a; a0; B): (18)(It is implicit in this theorem that the sum excludes those algorithms a and a0that do not result in d and d0 respectively when run on f .)One might think that the preceding theorem is misleading, since it treats allpopulations equally, when for any given f some populations will be more likely3a can know to avoid the elements it has seen before. However a priori, a has no way toavoid the elements it hasn't seen yet but that a0 has (and vice-versa). Rather than have thede�nition of a somehow depend on the elements in d0 � d (and similarly for a0), we deal withthis problem by de�ning c>m to be set only by those elements in d>m that lie outside ofd[. (This is similar to the procedure we developed above to deal with potentially retracingalgorithms.) Formally, this means that the random variable c>m is a function of d[ as wellas of d>m. It also means there may be fewer elements in the histogram c>m than there arein the population d>m. 22



than others. However even if one weights populations according to their proba-bility of occurrence, it is still true that, on average, the choosing procedure oneuses has no e�ect on likely c>m. This is established by the following corollary.Corrolary: Under the conditions given in the preceding theorem,Xa;a0 P (c>m j f;m; k; a; a0; A) =Xa;a0 P (c>m j; f;m; k; a; a0; B): (19)Proof: Let \proc" refer to our choosing procedure. We are interested inXa;a0 P (c>m j f;m; k; a; a0; proc) = Xa;a0 ;d;d0 P (c>m j f; d; d0; k; a; a0; proc)�P (d; d0 j f; k;m; a; a0; proc):Pull the sum over d and d0 outside the sum over a and a0. Consider any termin that sum (i.e., any particular pair of values of d and d0). For that term,P (d; d0 j f; k;m; a; a0; proc) is just 1 for those a and a0 that result in d and d0respectively when run on f , and 0 otherwise. (Recall that we are assuming thata and a0 are deterministic.) This means that the P (d; d0 j f; k;m; a; a0; proc)factor simply restricts our sum over a and a0 to the a and a0 considered in ourtheorem. Accordingly, our theorem tell us that the summand of the sum over dand d0 is the same for choosing procedures A and B. Therefore the full sum isthe same for both procedures. QED.These results tell us that there is no assumption for P (f) that, by itself,justi�es using some choosing procedure as far as subsequent search is concerned.To have an intelligent choosing procedure, one must take into account not onlyP (f) but also the search algorithms one will be choosing among.In fact, things may very well be worse than this. In supervised learning,there is a result related to the theorem above [10]. Translated into the currentcontext that result suggests that if one restricts the sums to only be over thosealgorithms that are a good match to P (f), then stupid choosing procedures {like choosing the algorithm with the less desirable ~c { outperform \smart" ones(which are the ones everyone uses in practice). An investigation of what exactlythe set of algorithms summed over must be for a smart choosing procedure tobe superior to a dumb one is beyond the scope of this paper. But clearly thereare many subtle issues to disentangle.9 Discussion and Future Work9.1 DiscussionIn this paper we present a framework for investigating search. This frameworkserves as a \skeleton" for the search problem; it tells us what we can know23



about search before \
eshing in" the details of a particular real world searchproblem. Phrased di�erently, it provides a language in which to describe searchalgorithms, and in which to ask (and answer) questions about them.Ultimately, of course, the only important question is, \How do I �nd goodsolutions for my given cost function f?" The proper answer to this questionis to start with the given f , determine certain salient features of it, and thenconstruct a search algorithm, a, speci�cally tailored to match those features.The inverse procedure - far more popular in some communities - is to investigatehow speci�c algorithms perform on di�erent f 's. This inverse procedure is onlyof interest to the degree that it helps us with our primary procedure, of goingfrom (features concerning) f to an appropriate a.Note that often the \salient features" concerning f can be stated in termsof a distribution P (f). To understand this, �rst note that we do in fact knowf exactly. But at the same time, there is much about f that we need to knowthat is e�ectively unknown to us (e.g., f 's extrema). In this, it is as though f ispartially unknown. The very nature of the search process is to admit that youdon't \know" f in full. As a result, it makes sense to (implicitly or otherwise)replace f with a distribution P (f). In this, the search problem reduces to �ndinga good a for a particular P (f) - exactly the issue addressed in Section 3 of thispaper.As an example of all this, it is well known that generic methods (like sim-ulated annealing and genetic algorithms) are unable to compete with carefullyhand-crafted solutions for speci�c search problems. The Traveling Salesman(TSP) problem is an excellent example of such a situation; the best search algo-rithms for the TSP problem are hand-tailored for it [12]. Linear programmingproblems are another example; the simplex algorithm is a search algorithmspeci�cally designed to solve cost functions of a particular type. In both ofthese situations, the procedure followed by the researcher is to: identify salientaspects of f (e.g., it is a TSP problem, or it is a linear programming problem);throw away all other knowledge concerning f and thereby e�ectively replace fwith a P (f); and then use a search algorithm explicitly known to work well forthat P (f).In our investigation of the search problem from this match-f-to-a perspec-tive, the �rst question we addressed was whether it may be that some algorithmA performs better than B, on average. Our answer to this question, given bythe NFL theorem is that this is impossible. An important implication of thisresult is the following. If a genetic algorithm outperforms simulated annealing(for example) over some class of cost functions �, then over the remaining costfunctions F n �, simulated annealing must outperform the genetic algorithm.It should be noted that this applies even if one considers \adaptive" search al-gorithms [6, 7] which modify their search strategy based on properties of thepopulation of (X ��Y) pairs observed so far in the search, and which performthis \adaptation" without regard to any knowledge concerning salient featuresof f . 24



It is important to bear in mind exactly what all of this does (not) implyabout the relationship between natural selection in the biological world andoptimization (i.e. genetic algorithms). To this end, consider the extremelysimpli�ed view in which natural selection is viewed as optimization over a cost or\�tness" function. We further simplifymatters by assuming the �tness functionis static over time.In this paper we measure an algorithm's performance based on all X valuesit has sampled since it began, and therefore we don't allow an algorithm toresample points it had already visited. Our NFL theorem states that all algo-rithms are equivalent by this measure. However one might consider di�erentmeasures. In particular, we may be interested in the evolution through timeof \generations" consisting of temporally contiguous subsets of our population,generations that are updated by our search algorithm. In such a scenario, itdoes make sense to resample points already visited. Moreover, our NFL theoremdoes not apply to this alternative kind of performance measure. For example,according to this alternative performance measure, an algorithm that resamplesold points in X that are �t and adds them to the current generation will alwaysdo better than one that resamples old points that are not �t.Now when we examine the biological world around us, we are implicitly usingthis second kind of measure; we only see the organisms from the current genera-tion. In addition, natural selection means that only (essential characteristics of)good points in X are kept around from one generation to the next. Accordingly,using this second kind of performance measure, one expects that the average�tness across a generation improves with time. (Or would if the environment- i.e., cost function - didn't change in time, etc.) This is nothing more thanthe tautology that natural selection improves the �tness of the members of ageneration.However this empirical evidence that natural selection performs well accord-ing to this second measure does not mean anything concerning its performanceaccording to the �rst measure. In particular, it does not mean that if we wish todo a search, and are able to keep around all points sampled so far, that we haveany reason to believe that natural selection is an e�ective search strategy. Nordoes it mean that natural selection works well as far as the tail of the measurebased on the entire population is concerned. Yet it is precisely that tail that isof interest in the engineering world.In short, the empirical evidence of the biological world does not indicatein any sense that natural selection is an e�ective search strategy, even in thebiological world. We simply have not had a chance to observe the behavior ofalternative strategies. For all we know, the strategy of breeding only the least �tmembers of the population may have done a better job at �nding the extremaof the cost function faced by biological organisms. The experiment just has notbeen done. The breed-the-worst strategy will in general result in worse recentgenerations, but using that strategy implies nothing about the quality of thepopulations over the long term. If however, we relax the unrealistic assumption25



that the �tness function is constant over time then it is possible that there maybe disadvantages to a breed-the-worst policy.To summarize, by the NFL theorem, any generation-based scheme that keepsonly the worst members of the population for the next generation is equivalentto one that keeps the best members, on average. However, the �tness of themembers of the generations will di�er between the two search algorithms. Thisraises some obvious questions for future research: Averaged over all f , howbig would one expect the di�erence to be? For a �xed f , and two randomsearch algorithms that are \directed" di�erently in who they classify in beingthe current generation, how big would one expect the di�erence to be? Howdoes this last calculation compare with the calculation made above of what thebest member of the population will (likely) be for a random algorithm as mgrows?9.2 Future workIt is perhaps �tting for a paper about e�ective search that we conclude with abrief listing of other research directions we believe warrant further investigation.The most important continuation of this work is to turn our framework intoa practical tool to solve real problems. This would involve two steps. First weneed a method of incorporating broad kinds of knowledge concerning f into theanalysis. In this paper we have used P (f) to do this, but perhaps there are otherways that we should also consider. For example, it is not yet clear how to (oreven whether one should) encapsulate in a P (f) the knowledge concerning thecost function that is implicit in the heuristics of Branch and Bound strategies.How do incorporate how the cost, f of a complete solution is accrued throughthe assemblage of sub-solutions?The second step in this suggested program is to determine how best toconvert knowledge concerning f into an optimal a. The goal in its broadestsense is to design a system that can take in such knowledge concerning f andthen solve for the optimal a given that knowledge. One would then use that ato search the f .In its fullest sense, this program may well involve many years of work.Nonetheless, there are many important questions related to this program thatshould be analyzable using only the tools developed in this paper. Many ofthem were presented in the text. Others, particularly well-suited to help usunderstand the connection between P (f) and an optimal a, are: How fast doesthe cost histogram ~c associated with a particular algorithm converge to the his-togram of the cost values f takes on across all of X? As P (f) changes fromthe diagonal in f space (i.e., from being uniform over all f), need some a's behurt? Could the average over all a's improve? For what P (f)'s besides thediagonal are all algorithms equal? Given two particular algorithms (rather thanall algorithms), for what P (f) is the performance of the algorithms equal? In26



particular, if P (f) is uniform over some subset � � F and zero outside �,4what are the equivalence classes of search algorithms with identical expectedbehavior?Another interesting series of questions concerns di�erences between stochas-tic and deterministic algorithms. Are there potential advantages to stochas-tic algorithms? In particular, does it make sense to \expand" any stochas-tic algorithm � in terms of deterministic algorithms a? I.e., can one writeP (c j f;m; �) =Pa ka;�P (cjf;m; a) for some expansion coe�cients ka;�? If so,it suggests that as P (f) moves from the diagonal the performance of �'s willneither improve nor degrade as much as that of a's. So it may be that stochasticalgorithms have certain minimax advantages over deterministic ones.AcknowledgmentsWe would like to thank Unamay O'Reilly for helpful conversation, and the SFIfor funding. Dhw would also like to thank TXN Inc. for funding.References[1] M.R. Garey, D.S. Johnson, Computers and Intractability, Freeman (1979).[2] E.L. Lawler, D.E. Wood, Operations Research, 14(4), 699-719, (1966).[3] J. Pearl, Heuristics, intelligent search strategies for computer problem solv-ing, Addison-Wesley, (1984).[4] S. Kirkpatrick, C. D. Gelatt Jr., M. P. Vecchi, Science, 220, 671, (1983).[5] J. Holland, Adaptation in Natural and Arti�cial Systems, University ofMichigan Press, Ann Arbor, (1975).[6] L. Ingber, Adaptive Simulated Annealing, Software package documenta-tion, ftp.caltech.edu:/pub/ingber/asa.Z.[7] D. Yuret, M. de la Maza, Dynamic Hill-Climbing: Overcoming the limi-tations of optimization techniques in The Second Turkish Symposium onArti�cial Intelligence and Neural Networks, pp208-212, (1993).[8] C.E.M. Strauss, D.H. Wolpert, D.R. Wolf. Alpha, Evidence, and theEntropic Prior in Maximum Entropy and Bayesian Methods, ed. AliMohammed-Djafari, pp113-120, (1992).[9] T. Cover, J. Thomas, Elements of Information Theory, John Wiley &Sons, (1991).4As an example, � might be the set of correlated cost functions as in [13].27



[10] D H. Wolpert, O�-training set error and a priori distinctions betweenlearning algorithms, Technical Report SFI-TR-95-01-003, Santa Fe Insti-tute, 1995.[11] D H. Wolpert, On Over�tting Avoidance as Bias, Technical Report SFI-TR-92-03-5001, Santa Fe Institute, 1992.[12] Gerhard Reinelt, The Traveling Salesman, computational solutions forTSP applications, Springer Verlag Berlin Heidelberg (1994).[13] P.F. Stadler, Europhys. Lett. 20, pp479-482, (1992).A Proof related to information theoretic as-pects of searchWe want to calculate the proportion of all algorithms that give a particular ~cfor a particular f . We proceed in several steps.1) Since X is �nite, populations are �nite. Therefore any (deterministic) ais a huge - but �nite - list. That list is indexed by all possible d's (aside fromthose that extend over the entire input space). Each entry in the list is the xthe a in question outputs for that d-index.2) Consider any particular unordered set of m x�y pairs where no two of thepairs share the same x value. Such a set is an \unordered path" �. (Withoutloss of generality, from now on we implicitly restrict the discussion to unorderedpaths of length m.) A particular � is \in" or \from" a particular f if thereis a unordered set of m (x; f(x)) pairs identical to �. The numerator on theright-hand side of Eq. (8) is the number of unordered paths in the given f thatgive the desired ~c.3) Claim: The number of unordered paths in f that give the desired ~c - thenumerator on the right-hand side of Eq. (8) - is proportional to the number ofa's that give the desired ~c for f . (The proof of this claim will constitute a proofof Eq. (8).) Furthermore, the proportionality constant is independent of f and~c. 4) Proof: We will construct a mapping � : a ! �. � takes in an a thatgives the desired ~c for f , and from it produces a � that is in f and gives thedesired ~c. We will then show that for any � the number of algorithms a suchthat �(a) = � is a constant, independent of �; f , and ~c. The proof will then becompleted by showing that � is single-valued, i.e., by showing that there is noa who has as image under mapping � more than one �.5) Any unordered path � gives a set of m! di�erent ordered paths in theobvious manner. (Note that every x value in an unordered path is distinct.)Each such ordered path �ord in turn provides a set of m successive d's (if oneincludes the null d) and a following x. Indicate by d(�ord) this set of the �rst28



m d's provided by �ord. (Note that any �ord is itself a population, but to avoidconfusion we avoid referring to it as such.)6) For any ordered path �ord we can construct a \partial algorithm". Thisconsists of the list of an a, but with only the m d(�ord) entries in the list �lledin; the remaining entries are blank. (We say that m is the \length" of thepartial algorithm.) Since there are m! distinct partial a's for each � (one foreach ordered path corresponding to �), we have m! such partially �lled-in listsfor each �.7) In the obvious manner we can talk about whether a particular partialalgorithm is \consistent" with a particular full algorithm. This allows us tode�ne (the inverse of) �: for any � that is in f and gives ~c, ��1(�) � (the setof all a that are consistent with at least one partial algorithm generated from �and that give ~c when run on f).8) To complete the �rst part of our proof we must show that for all � thatare in f and give ~c, ��1(�) contains the same number of elements, regardless of�, f , or c. To that end, �rst generate all ordered paths induced by � and thenassociate each such ordered path with a distinct m-element partial algorithm.Our question is how many full algorithms lists are consistent with at least oneof these partial algorithm partial lists. (How this question is answered is thecore of this appendix.)9) To answer this question, reorder the entries in each of the partial algorithmlists by permuting the indices d of all the lists. Obviously such a reordering won'tchange the answer to our question.9) We will perform the permuting by interchanging pairs of d indices. First,interchange any d index of the form ((dX(1); dY (1)); : : : ; (dX(i � m); dY (i �m))) whose entry is �lled in in any of our partial algorithm lists with d0(d) �((dX(1); z); : : : ; (dX(i); z)), where z is some arbitrary constant Y value and xjrefers to the j'th element of X . Next, create some arbitrary but �xed orderingof all x 2 X : (x1; : : : ; xjcalXj). Then interchange any d0 index of the form((dX(1); z; : : : ; (dX(i � m); z) whose entry is �lled in in any of our (new) partialalgorithm lists with d00(d0) � ((x1; z); : : : ; (xm; z)). (Recall that all the dX(i)must be distinct.)10) By construction, the resultant partial algorithm lists are independentof �, ~c and f , as is the number of such lists (it's m!). Therefore the numberof algorithms consistent with at least one partial algorithm list in ��1(�) isindependent of �, c and f . This completes the �rst part of the proof.11) For the second part, �rst choose any 2 unordered paths that di�er fromone another, A and B. There is no ordered path Aord constructed from A thatequals an ordered path Bord constructed from B. So choose any such Aord andany such Bord . If they disagree for the null d, then we know that there is no(deterministic) a that agrees with both of them. If they agree for the null d,then since they are sampled from the same f , they have the same single-elementd. If they disagree for that d, then there is no a that agrees with both of them.If they agree for that d, then they have the same double-element d. Continue29



in this manner all the up to the (m�1)-element d. Since the two ordered pathsdi�er, they must have disagreed at some point by now, and therefore there isno a that agrees with both of them.12) Since this is true for any Aord from A and any Bord from B, we see thatthere is no a in ��1(A) that is also in ��1(B). This completes the proof.B Proof related to minimax distinctions be-tween algorithmsThe proofs are by example.Consider three points in X , x1; x2, and x3, and three points in Y , y1; y2, andy3.1) Let the �rst point a1 visits be x1, and the �rst point a2 visits be x2.2) If at its �rst point a1 sees a y1 or a y2, it jumps to x2. Otherwise it jumpsto x3.3) If at its �rst point a2 sees a y1, it jumps to x1. If it sees a y2, it jumps tox3.Consider the cost function that has as the Y values for the three X valuesfy1; y2; y3g, respectively.For m = 2, a1 will produce a population (y1; y2) for this function, and a2will produce (y2; y3).The proof is completed if we show that there is no cost function so thata1 produces a population containing y2 and y3 and such that a2 produces apopulation containing y1 and y2.There are four possible pairs of populations to consider:i) [(y2; y3); (y1; y2)];ii) [(y2; y3); (y2; y1)];iii) [(y3; y2); (y1; y2)];iv) [(y3; y2); (y2; y1)].Since if its �rst point is a y2 a1 jumps to x2 which is where a2 starts, when a1's�rst point is a y2 its second point must equal a2's second point. This rules outpossibilities i) and ii).For possibilities iii) and iv), by a1's population we know that f must be ofthe form fy3; s; y2g, for some variable s. For case iii), s would need to equaly1, due to the �rst point in a2's population. However for that case, the secondpoint a2 sees would be the value at x1, which is y3, contrary to hypothesis.30



For case iv), we know that the s would have to equal y2, due to the �rstpoint in a2's population. However that would mean that a2 jumps to x3 for itssecond point, and would therefore see a y2, contrary to hypothesis.Accordingly, none of the four cases is possible. This is a case both wherethere is no symmetry under exchange of dy's between a1 and a2, and no sym-metry under exchange of histograms. QED.C Proof related to NFL results for �xed costfunctionsSince any (deterministic) search algorithm is a mapping from d � D to x � X ,any search algorithm is a vector in the space XD. The components of such avector are indexed by the possible populations, and the value for each componentis the x that the algorithm produces given the associated population.Consider now a particular population d of size m. Given d, we can saywhether any other population of size greater than m has the (ordered) elementsof d as its �rst m (ordered) elements. The set of those populations that do startwith d this way de�nes a set of components of any algorithm vector a. Thosecomponents will be indicated by a�d.The remaining components of a are of two types. The �rst is given by thosepopulations that are equivalent to the �rst M < m elements in d for some M .The values of those components for the vector algorithm a will be indicated bya�d. The second type consists of those components corresponding to all remain-ing populations. Intuitively, these are populations that are not compatible withd. Some examples of such populations are populations that contain as one oftheir �rst m elements an element not found in d, and populations that re-orderthe elements found in d. The values of a for components of this second typewill be indicated by a?d.Let proc be either A or B. We are interested inXa;a0 P (c>m j f; d1; d2; k ; a; a0; proc)=Xa?d;a0?d0 Xa�d ;a0�d0 Xa�d ;a0�d0 P (c>m j f; d; d0; k; a; a0; proc):The summand is independent of the values of a?d and a0?d for either of ourtwo d's. In addition, the number of such values is a constant. (It is given by theproduct, over all populations not consistent with d, of the number of possible xeach such population could be mapped to.) Therefore, up to an overall constantindependent of d, d0, f , and proc, our sum equals31



Xa�d ;a0�d0 Xa�d ;a0�d0 P (c>m j f; d; d0; a�d; a0�d0 ; a�d; a0�d0 ; proc):By de�nition, we are implicitly restricting the sum to those a and a0 so thatour summand is de�ned. This means that we actually only allow one value foreach component in a�d (namely, the value that gives the next x element in d),and similarly for a0�d0 . Therefore our sum reduces toXa�d;a0�d0 P (c>m j f; d; d0; a�d; a0�d0 ; proc):Note that no component of a�d lies in dx[. The same is true of a0�d0 . So oursum over a�d is over the same components of a as the sum over a0�d0 is of a0.Now for �xed d and d0, proc's choice of a or a0 is �xed. Accordingly, withoutloss of generality, we can rewrite our sum asXa�d P (c>m j f; d; d0; a�d);with the implicit assumption that c>m is set by a�d. This sum is independentof proc. QED.
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