No Free Lunch Theorems for Search

David H. Wolpert (dhw@santafe.edu)
William G. Macready (wgm@santafe.edu)
The Santa Fe Institute
1399 Hyde Park Rd.

Santa Fe, NM, 87501, USA

February 6, 1995

Abstract

We show that all algorithms that search for an extremum of a cost
function perform exactly the same, when averaged over all possible cost
functions. In particular, if algorithm A outperforms algorithm B on some
cost functions, then loosely speaking there must exist exactly as many
other functions where B outperforms A. Starting from this we analyze a
number of the other a priori characteristics of the search problem, like its
geometry and its information-theoretic aspects. This analysis allows us
to derive mathematical benchmarks for assessing a particular search algo-
rithm’s performance. We also investigate minimax aspects of the search
problem,; the validity of using characteristics of a partial search over a
cost function to predict future behavior of the search algorithm on that
cost function, and time-varying cost functions. We conclude with some
discussion of the justifiability of biologically-inspired search methods.

1 Introduction

Many problems can be cast as optimization over a cost function. In such a
problem, we are given a particular mapping f : X — Y (F being the set of
all such mappings). For that f we seek the set of #* € X which give rise to
a particular y* € Y. Most often, we seek the z*’s which extremize f (this
will often be implicitly assumed in this paper). Physical examples of such a
problem include free energy minimization () = R) over spin configurations
(X = {=1,+1}"), or over bond angles (X = {R x R x R}V), etc. Examples
also abound in combinatorial optimization, ranging from number partitioning
to graph coloring to scheduling [1].

There are two common approaches to these optimization problems. The
first is a systematic construction of a good A" value, z’, from good sub-solutions

specifying part of /. The most celebrated method of this type is the branch
and bound algorithm [2]. For this systematic and exhaustive approach to work
in reasonable time, one must have an effective heuristic, h(n), representing the
quality of sub-solutions n. There is extensive theoretical work [3] linking the
cost function to the properties a heuristic must have in order to search efficiently.

A second approach to optimization begins with a population of one or more
complete solutions # € X and the associated) values, and (tries to) itera-
tively improves upon those A values. There are many algorithms of this type,
including hill-climbing, simulated annealing [4], and genetic algorithms [5].

Intuitively, one would expect that for this class of algorithms to work ef-
fectively, the biases in how they try to improve the population (i.e., the biases
in how they search A') must “match” those implicit in the cost function they
are optimizing. However almost always these algorithms are directly applied,
with little or no modification, to any cost function in a wide class of cost func-
tions, with no concern for the particulars of the cost functions at hand. As
we will demonstrate though, the “matching” intuition is true; blind faith in an
algorithm to search effectively across a broad class of problems is rarely justified.

Indeed, one might expect that there are pairs of search algorithms A and B
such that A performs better than B on average, even if B sometimes outperforms
A. As an example, one might expect that hill-climbing usually outperforms hill-
descending if one’s goal is to find a maximum of the cost function. One might
also expect 1t would outperform a random search. In point of fact though,
as our central result demonstrates, this is not the case. If we do not take
into account any particular biases or properties of our cost function, then the
expected performance of all algorithms on that function are ezactly the same.

In short, there are no “free lunches” for effective optimization; any algorithm
performs only as well as the knowledge concerning the cost function put into
the cost algorithm. For this reason we have dubbed our central result a “no free
lunch” (NFL) theorem.

To prove the NFL theorem a framework has to be developed which addresses
the core aspects of search. This framework constitutes the “skeleton” of the op-
timization problem; it is what can be said concerning search before explicit
details of a particular real-world search problem are considered. The construc-
tion of such a skeleton provides a language to ask and answer formal questions
about search, some of which have never before even been asked, never mind
answered. (We pose and answer a number of such questions in this paper.) In
addition, such a skeleton indicates where the real “meat” of optimization lies.
It clarifies what the core issues are that underly the effectiveness of the search
process.

The paper is organized as follows. We begin in Section 2 by presenting
our framework and using it to prove the NFL theorem. We prove the theorem
for both deterministic and stochastic search algorithms. Section 3 then gives
a geometric interpretation of the NFL theorem. In particular, in that section
we provide a geometric meaning of what it means for an algorithm to be well

“matched” to a cost function. It may be argued that the average behavior of
algorithms is not an interesting quantity by which to compare algorithms, and
thus the NFL results are of limited value. We address this potential criticism
in Section 4 by investigating minimax distinctions between algorithms.Section
5 begins exploring some of the questions and answers raised by the framework
developed in Section 2. Some of those answers lead naturally into results con-
cerning the information theoretic aspects of search. Those results demonstrate
the importance of the NFL theorem in analyzing optimization (those results are
derived from the NFL theorem). A myriad of other properties of search may be
investigated using techniques similar to those developed in this section. We list
a sample of these in Section 9.2. In Section 6 we turn to the important problem
of assessing the performance of particular search algorithms. We derive two
“benchmarks” against which to compare such an algorithm’s performance. Not
all search problems are static; in many cases the cost function changes over time.
Section 7 extends our analysis to the case of time dependent cost functions. In
section 8 we provide some theorems valid for any single fixed cost function.
These theorems state that one can not use a search algorithm’s behavior so far
for a particular cost function to predict its future behavior on that function.
Finally, we conclude in Section 9 with the implications and future directions for
our work.

The paper can be read in stages. A first reading might highlight the NFL
theorem and its broad implications. Such a reading should start with Section
2 for an understanding of the NFL theorem, Eq. (1). Section 3 then provides
a geometric understanding of the theorem. Section 4, which considers minimax
distinctions between algorithms, addresses limitations of the NFL theorem. Fi-
nally, Section 9.1 discusses broad implications of the NFL result.

A second reading might explore the potential of the framework we have
developed. Such a reading should include section 5, which uses our framework
to demonstrate some of the information theoretic aspects of search. Section
6 then uses the framework to provide useful benchmarks against which other
algorithms may be compared.

A final reading might investigate extensions of the above ideas. Such a
reading would include section 7, which extends the NFL results to a class of
time-dependent cost functions. It would also include section 8, which probes
what may be learned from a limited amount of search over a single, specific,
cost function. Concluding with Section 9.2 we list many directions for future
extensions.

2 No Free Lunch Theorems for Search

All search algorithms rely on extrapolating from an existing set of m points and
associated cost values, (z,y)™ € (X x ¥)™, to a new, hopefully low cost point,
z' € X. The extrapolation may be either deterministic or stochastic.

For simplicity take A and Y to be finite. Define dp, = {dp, (i)} = {dZ,(¢),d%, ()} €

Dy, for ¢ = 1...m to be a set of m distinct search points and associated cost
values ordered in some way (usually according to the time at which they are
generated) with the ordering index given by . Let us call this a population of
size m.

Let f indicate a single-valued function from A’ to). Note that there are a
finite number of f if || and |Y| are finite. At each stage of a search algorithm,
a new point & € A is chosen based on the preceding members of d; the pair
{«, f(z")} is added to d; and the procedure repeats.

Any search algorithm of the second type discussed in the introduction is
a (perhaps probabilistic) mapping taking any population to a new point in
the search space. For simplicity we assume that the new search point has not
already been visited. (As discussed below, relaxing this assumption does not
affect our results.) Soin particular a deterministic search algorithm is a mapping
a:deD — {z|x¢d}, where D = U,, Dy, and in particular contains the empty
set. For clarity of the exposition, in this paper we will only explicitly consider
such deterministic, non-retracing search algorithms, but, as discussed below, all
our results also apply to stochastic and retracing algorithms.

We are interested in the histogram, ¢, of cost values that an algorithm, a,
obtains on a particular cost function, f, given m distinct cost evaluations. Note
that ¢ is given by the y values of the population, d?,, and is a vector of length
|Y| whose ith component is the number of members in the population d,,, having
cost f;. Once we have ¢ we can use it to assess the quality of the search. For
example if we are searching for minima we might take the minimum value in &
as our performance measure. Consequently, we are interested in the conditional
probability that histogram ¢ will be obtained under m applications of algorithm
a on f. We denote this quantity P(c] f, m, a).

A major result of this work is that P(¢| f,m,a) is independent of a when
we average over all cost functions. In other words,

Theorem: For any pair of algorithms a; and as,
> P(E|fimar) =Y P(E] f,m, a). (1)
f f

An immediate consequence of this result is that the expected histograms,
E(@| f,m,a) = > .cP(¢]| f,m,a), are on average identical between any two
pairs of algorithms. More generally, at the point in their search where they have
both created a population of size m, the performance of any two algorithms
(measured for example as the depth of the minimum found) is, on average,
identical (the average being over all possible cost functions). In particular if a;
has better performance than as over some subset ¢ C F of functions, then as
must perform better on the set of remaining functions F \ ¢. So for example
if simulated annealing outperforms genetic algorithms on some set ¢, genetic
algorithms must outperform simulated annealing on F \ ¢.

2.1 Proof for deterministic search

We now show that Zf P(C] f,m,a) has no dependence on a. Conceptually, the
proof involves the following steps: First, we reduce the distribution over ¢ values
to one over d¥, values. Then we use induction to establish the a-independence
of the distribution over d¥,. The inductive step starts by rearranging the distri-
butions in question. Then f is broken up into two independent parts, one for
z € d, and one for x ¢ d,. These are evaluated separately, giving the desired
result.

Expanding over all possible y components of a population of size m, d,, we
see

> P@E|fomoa)= Y P dY, | f,m,a)
f fdn

Now P(¢,dY%,| f,m) = P(&|dY,, f,m,a) P(dY,| f,m,a). Moreover, the probabil-
ity of obtaining a histogram & given f, d, m and a, P(c| d%,, f, m), depends only
on the y values of population d,;. Therefore

Y P@Efima) =) P(E|d)P(dh | fim,a)
7

fdhn

Y P(E|d) Y P(dl, | fm,a) (2)
5, 1

To prove that the expression in Eq. (2) is independent of a it suffices to show
that for all m and d¥,, Zf P(dY, | f,m,a) is independent of a, since P(&|dY,) is
independent of a. We will prove this by induction on m.

For m = 1 we write the population as dy = {df(a), f(d)} where df(a) is set
by a. The only possible value for ¢¥ is f(z1), so we have :

Y P fim=1,a) = 6(d], f(di(a)))
7 7

where 6 is the Kronecker delta function.

Now when we sum over all possible cost functions 6(d¥, f(di(a))) is 1 only
for those functions which have cost d¥ at point d%(a). Therefore that sum equals
|V[I¥1=1independent of d¥(a):

STP@ | fm=1,a) = | Y]
f

which is independent of a. This bases the induction.

We now establish the inductive step, that if Zf P(dY, | f,m,a) is indepen-
dent of a for all d%,, then so also is Zf P(dy, .| f,m+1,a). This will complete
the proof of the NFL result.

We start by writing

Pldmy1|fim+1a) = P{dnt1(1), ..., dmpri(m)}, dmyr(m+ 1) | fym+1,a)
= Pldm,dmi1(m+1) | f,m+1 a)
= P(dmir(m+1)|dp, fym+1,a) P(dp | f,m+1,a)

so we have

ZP(dan|f,m—|—1,a):ZP(dfn_l_l(m—i—1)|d%1,f,m—|—1,a)P(d3/n|f,m+1,a).
f f

The new y value, dfn_l_l(m + 1), will depend on the new # value, f and
nothing else. So we expand over these possible x values, getting

SOP(dy | fomtlia) = 3 P(d(m+ 1)| f) Pla|dy, fyme+1,a)
f fx
xP(dy, [f,m+1,a)

Za(dgm(m +1), f(x)) P(z|d%,, f,m+1,a)
fx

xP(dy, | fym+1 a).

Next note that since # = a(d%,, d?,), it does not depend directly on f. Con-

m? m
sequently we expand in d?, to remove the f dependence in P(z|d¥,, f,m+1,a):

ZP(d%’&l |f,m—|—1,a) = Z 6(dgn+1(m+ 1),f(x))P(x|dm,a)P(dﬁ1|d3/n,f,m—|— 1,&)
f Joe,df

1,

xP(dy, | f,m+1,a)
= 8(d% 4 (m+ 1), fla(dm))) x P(dm | f,m,a)

f,ds,

where use was made of the fact that P(z | dm, a) = 8(z, a(d,,)) and the fact that
P(dm | fym+1,a) = P(dm | f,m,a).

We do the sum over cost functions f first. The cost function is defined both
over those points restricted to d?, and those points outside of d7,. P(dy, | f, m)
will depend on the f values defined over points inside dy, while 6(dfn+1(m +
1), f(a(dm))) depends only on the f values defined over points outside d,.
(Recall that a(d%,) € d%,.) So we have

ZP(dgnH |f’m+1aa) = Z ZP(dm|f’m’a)
! s, f(wedy,)

XY 8(dh,y (me 1), fla(dn)- (3)

f(edds,)

||X|—m—1

The sum Zf(x(zdr) contributes a constant, | , equal to the num-

ber of functions defined over points not in dj, passing through (dj, ,(m +

1), f(a(dn))). So
ZP(dan | fom+1,a) = |Y|Fl=m=t Z P(dm | fym, a)
f

f(zeds,) dy,

= |y| Z m | f,m, a)

f.dz,

= —ZP(CZ%,Jf,m,Cl)
2

By hypothesis the right hand side of this equation is independent of a, so the
left hand side must also be. This completes the proof of the NFL result.

Note that the no free lunch result implies that if we know nothing about f,
then P(&|m, a), which is the probability we obtain histogram ¢ after m distinct
cost evaluations of algorithm a, is independent of a. This follows from

(¢|m,a) = ZP (@] fym,a) P(f|m,a) = ZP (| f,m,a) P(f)

since the cost function doesn’t depend on either m or a. If we know nothing
about f then all f are equally likely, so for all f P(f) = 1/|Y|I*]. (More gen-
erally, P(f) reflects our “prior knowledge” concerning f.) Then P(c|m,a) =
(1/]Y|1*h Zf P(c| f,m,a) which is independent of @ by the no free lunch the-
orem.

The NFL theorem illustrates that even if we know something about f (per-
haps specified through P(f)) but don’t incorporate that knowledge into a then
we have no assurances the a will be effective; we are simply relying on a fortu-
itous matching between f and a. This point is formally established in sections

3 and 8.

2.2 More general kinds of search

There are two restrictions on the definition of search algorithms used so far that
one might find objectionable. These are: i) the banning of algorithms that might
revisit the same points in A’ after placing them in d%; and ii) the banning of
algorithms that work stochastically rather than deterministically. Fortunately,
the NFL result can easily be extended to include either algorithms that revisit
points and /or are algorithms that are stochastic. So there is no loss of generality
in our definition of a “search algorithm”.

To see this, say we have a deterministic algorithma : d € D — {2 |2 € X'}, so
that given some (perhaps empty) d, the algorithm might produce a point # € d”.
Call such an algorithm “potentially retracing”. Given a potentially retracing

algorithm @, produce a new algorithm a’ by “skipping over all duplications” in
the sequence of {z,y} pairs produced by the potentially retracing algorithm.
Formally, for any d, a’(d) is defined as the first # value from the sequence
{a(0), a(d),a(a(d)), ...} that is not contained in d. So long as the original
algorithm a can not get stuck forever in some subset of d, we can always produce
such an o’ from a. (We can find no reason to design one’s algorithm to not have
an “escape mechanism” that ensures that it can not get stuck forever in some
subset of d.) We will say that o’ is a “compacted” version of a.

Now any two compacted algorithms are “search algorithms” in the sense the
term is used in the previous subsection. Therefore they obey the NFL result
of that subsection. So the NFL result in Eq. (1) holds even for potentially
retracing algorithms, if we redefine ‘m’ in that equation to be the number of
distinct points in the d”’s produced by the algorithms, in question, and if we
redefine ‘@ to be the histogram corresponding to those m distinct points.

Moreover, our real-world cost in using an algorithm is usually set by the
number of distinct evaluations of f(x). So it makes sense to compare potentially
retracing algorithms not by looking at the d’s they produce after being run the
same number of times, but rather by looking at the d’s they produce after
sampling f(x) the same number of times. This is consistent with using our
redefined m and ¢.

Note that the x at which a potentially retracing algorithm breaks out of a
cycle might be stochastic (e.g simulated annealing). In this case the compacted
version of the algorithm is still well-defined. Only rather than being determinis-
tic, that compacted algorithm is stochastic. This brings us to the general issue
of how to adapt our analysis to address stochastic search algorithms.

Let ¢ be a stochastic non-potentially retracting algorithm. Formally, this
means that ¢ is a mapping taking any d to a (d-dependent) distribution over
X that equals zero for all x € d”. So ¢ can be viewed as a “hyper-parameter”,
specifying the function P(dy, i (m + 1) |dp, o) for all m and d.

Given this definition of ¢, we can follow along with the derivation of the NFL
result for deterministic algorithms, just with a replaced by ¢ throughout. Doing
so, everything still holds. So that NFL result holds even for stochastic search
algorithms. Therefore, by the same reasoning used to establish the no-free-lunch
result for potentially retracing deterministic algorithms, the no-free-lunch result
holds for potentially retracing stochastic algorithms.

3 A geometric interpretation

We can give a geometric interpretation of the no free lunch theorem by consid-
ering the space of possible cost functions. The probability of obtaining some
histogram, ¢, given m distinct cost evaluations using algorithm a is

P(&|m,a) = P(Z|m,a, [)P(f).
f

where P(f) is the prior probability that the optimization problem at hand has
cost function f. We can view the right-hand side of this equality as an inner
product in F:

Theorem: Define the F-space vectors U, ¢ m and gby ve o m(f) = P(c|m,a, f)
and p(f) = P(f). Then

P(e|m,a) = Ve am - P (4)

This is an important equation. Any global knowledge you have about the
properties of your cost function goes into the prior p over cost functions. ¢ can
be viewed as fixed to the histogram you want to obtain (usually one with a
low cost value), and m is given by the constraints on the time we have to run
our optimization algorithm. Thus the optimal algorithm is that which has the
largest projection onto p.

Taking this geometric view, the no free lunch result that Zf P(C| f,m,a)
is independent of @ has the simple interpretation that for a particular ¢ and
m, all algorithms a have the same projection onto the diagonal, that is ve qm
1= est(¢,m). For deterministic algorithms the components of v, 4 (i.e., the
probabilities that algorithm a gives histogram & on cost function f after m
distinct cost evaluations) are all either 0 or 1 so the no free lunch result also
implies Zf P2(&|m, a, f) = est(c, m). Geometrically, this means that the length
of ¥, 4m is independent of a.

Thus all vectors @. 4 » have the same length and lie on a cone with constant
projection onto 1. Because the components of . 4 » are binary we might also
view ¥, 4m as lying on the subset of the boolean hypercube having the same
hamming distance from 0.

In Section 5we calculate two quantities concerning the distribution of . 4 m
across vertices of this hypercube.

4 Minimax distinctions between algorithms

The NFL theorem does not address minimax properties of search. For example,
say we're considering two deterministic algorithms, a; and as. It may very
well be that there exist cost functions f such that a;’s histogram is much better
(according to some appropriate quality measure) than as’s, but no cost functions
for which the reverse is true. For the NFL theorem to be obeyed in such a
scenario, 1t would have to be true that there are many more f for which as’s

algorithm is better than a;’s than vice-versa, but it is only slightly better for all
those f. For such a scenario, in a certain sense a; has better minimax behavior
than as; there are f for which a; beats as badly, but none for which a; does
substantially worse than as.

It appears though that analyzing minimax properties of algorithms is sub-
stantially more difficult than analyzing average behavior (like in the NFL the-
orem). Presently, nothing at all is known about minimax behavior involving
stochastic algorithms. In particular, it is not known if in some sense a stochas-
tic version of a deterministic algorithm has better/worse minimax behavior than
that deterministic algorithm. In fact, even if we stick completely to determinis-
tic algorithms, only an extremely preliminary understanding of minimax issues
has been reached.

What we do know is the following. Consider the quantity

m,

Zpdfn,pdy 2(z,z' | f,m, a1, as),
f

for deterministic algorithms a; and as. This quantity is just the number of f
such that it 1s both true that a; produces a population with)} components z
and that as produces a population with V components z’. In appendix B, it is
proven that this quantity need not be symmetric under interchange of z and z':

Theorem: In general,

Zpdﬁ,pdy 2(z,z' | f,m a1, a0) # Zpdi,pdfn,Q(Z/’Z | fym,aq, as). (5)
f f

m,

This means that under certain circumstances, even knowing only the } compo-

nents of the populations produced by two algorithms run on the same (unknown)

f, we can infer something concerning what algorithm produced each population.
Now consider the quantity

ZP01,C2(ZaZ/ | famaalaClZ)a
f

again for deterministic algorithms a; and as. This quantity is just the number of
f such that it is both true that a; produces a histogram z and that as produces
a histogram z’. It too need not be symmetric under interchange of z and 2’
(see appendix B). This is a stronger statement then the asymmetry of d¥’s
statement, since any particular histogram corresponds to multiple populations.

Amongst other things, currently nothing is known about “how big a prob-
lem” these asymmetries are. All of the asymmetries arise when the set of X
values a; has visited overlaps with those that as has visited. Given such overlap,
and certain properties of how the algorithms generated the overlap, asymmetry
arises. A precise specification of those “certain properties” is not yet in hand.

10

Nor is it known how generic they are, i.e., for what percentage of pairs of algo-
rithms they arise. Although such issues are easy to state (see appendix B), it
is not at all clear how best to answer them.

Note that neither of these two results directly address issues like whether
there are f such that a;’s histogram is much better than as’s, but not vice-versa.
To answer that involves looking over all pairs of histograms such that there is
the same relative quality between both histograms.

5 Information theoretic aspects of search

We first calculate the fraction of cost functions which give rise to a specific
histogram ¢ using algorithm a with m distinct cost points. This calculation
allows us, for example, to answer the following question:

“What fraction of cost functions will give a particular distribution of cost
values after m distinct cost evaluations chosen by using a genetic algorithm?”

This may seem an intractable question, but the NFL result allows us to
answer it. It does this because it means that the fraction is independent of the
algorithm! So we can answer the question by using an algorithm for which the
calculation is particularly easy.

The algorithm we will use is one which visits points in X’ in some canonical
order, say x1, @9, ..., Zy. Recall that the histogram ¢'is specified by giving the
frequencies of occurrence, across the @1, s, ... &y, for each of the || possible
cost values.

Now the number of f’s giving the desired histogram under our specified
algorithm is just the multinomial giving the number of ways of distributing the
cost values in &. At the remaining |X'| — m points in X' the cost can assume any
of the |Y| f values.

It will be convenient to define & = %E’. Note that this is invariant if the
contents of all bins in ¢’ are scaled by the same amount. By the argument of the
preceding paragraph, the fraction we are interested in, p;(&), is given by the
following:

Theorem: For any algorithm, the fraction of cost functions that result in the
histogram ¢ = m& is given by

(oo o VI)
_,: 1¢2 c — €1 C2 4) 6
pf(Oé) |y||X| Iy ()

Accordingly, ps(&) can be related to the entropy of ¢ in the standard way
by using Stirling’s approximation to order O(1/m), which is valid when all of
the ¢; are large:

11

[l

4
1n<c1c27~n) = mlnm—Zcilnci—l—%[lnm—;lnci]

. clyl el
1 [l

= mS(@)+ 5[(1 — 1Y) Inm — Zlnai]
i=1

where S(&) = — ZP:}|1 a; In ay; is the entropy of the histogram &. Thus for large

enough m (m > |Y|), the fraction of cost functions is given by the following
formula:

Corollary:
(@)~ Cm, 1)) =)
pr(d) = C(m, _—
! [T o)

where C'(m,|Y|) is a constant depending only on m and |Y|.

If some of the &; are 0, Eq. (7) still holds, only with Y redefined to exclude
the y’s corresponding to the zero-valued &;. However Y is defined, the normal-
ization constant of Eq. (7) can be found by summing over all & lying on the
unit simplex. The details of such a calculation can be found in [8].

We next turn to a related question:

“On a given vertex of f-space (i.e., for a given cost function), what is the
fraction of all algorithms that give rise to a particular &7”

For this question, the only salient feature of f is its histogram (formed by
looking across all X') of cost values. Specify this histogram by 5; there are
N; = 3; |X] points in X for which f(z) has the ’th Y value.

Call the fraction we are interested in pag(d, 5) It turns out that pag(d, B)
depends to leading order on the Kullback-Liebler “distance” [9] between & and

-

5. To see this, we start with the following intuitively reasonable result, formally
proven in appendix A:

Theorem: For a given f with histogram N = |X|5, the fraction of algorithms
that give rise to a histogram ¢ = m& is given by

LI
paig(d,) = FT)C (8)
m
The normalization factor in the denominator is simply the number of ways of
selecting m cost values from X'.!

1Tt can also be determined from the identity 265(21‘ ci,m) Hl (N’) = (Z, N’).

Cq m

12

The product of binomials can be approximated via Stirling’s equation when
both N; and ¢; are large:

Dl M
th(Z) = E NZ'IIINZ'—Cilnci—(Ni—Ci)ln(Ni—CZ')—I—IHNZ'
&) N
i=1 i=1
—In(N; —¢;) = Ing;.

We assume ¢;/N; < 1, which is reasonable when m < |X|. So using the
expansion In(1 — z) = —z — 2% /2 — .., to second order in ¢;/N; we have

[Y] Y|
N; N; 1
lnH(q) = E ciln(c—i)—§lnci+ci

i=1 i=1
C; 1

—Q—M(ci—l-l-(ci— 5)(;—1)24-)

In terms of @ and J we finally obtain (using m/|X¥| < 1)

2N, . m
ln”(c') = mDgr(d,)—|—m—|—|y|ln(—|X|)
i=1 >t
lyll m
~ 2 gl + g (50—t)

-

where D (&, 3) = —), o In(B;/ey;) is the Kullbeck-Liebler distance between

the distributions & and 3.
Thus the fraction of algorithms is given by the following:

Corollary:

L e—mDKL(&ﬁ‘)
palg(a,ﬁ) 2 C(m,|X|,|y|)W (9)

i=1 ¢

where the constant C' depends only on m, |X]|, and |V
As before, C' can be calculated by summing & over the unit simplex.

6 Measures of algorithm performance

In this section we calculate certain “benchmark” performance measures that
allow us to assess the efficacy of any search algorithm.

Consider the case where low cost is preferable to high cost. Then in general
we are interested in P(min(€) > €| f,m, a), which is the probability that the

13

minimum cost an algorithm a finds in m distinct evaluations is larger than e,
given that the cost function is f. We consider three measures of an algorithm’s
performance that are related to this conditional probability:

i) The first measure is the average of this probability over all cost functions.

ii) The second is the form this conditional probability takes for the random
algorithm, whose behavior is uncorrelated with the cost function.

iii) The third is the fraction of algorithms which, for a particular f and m,
result in a ¢ whose minimum exceeds e.

These measures give us benchmarks which all truly “intelligent” algorithms
should surpass when used in the real world; any algorithm that doesn’t surpass
them 1s doing a very poor job.

Recall that there are |Y| distinct cost values. With no loss of generality
assume the ¢’th cost values equals 7. So cost values run from a minimum of 0
to a maximum of |Y| in integer increments.

The first of our two benchmarks measures is

> P(min(é) > e[fym,a) 3 g o P(min(dy,) > ¢|df,) P(d}, | f,m, a)
il o |V[1¥]

where in the last line we have marginalized over y values of populations of size
m and noted that min(¢) = min(dY,).

Now consider Zf P(dY, | f,m,a). The summand equals 0 or 1 for all f and
deterministic . In particular, it equals 1 if the following conditions are met

1) fld, (1) = d5,(1)
i) flaldm(1)]) = d5,,(2)
i) f(aldm (1), dm(2)]) = d,(3)

(10)

These restrictions will always fix the value of f(xz) at exactly m points. f is
completely free at all other points. Therefore

S P(dl, | fm,a) = [YIVI
f
Using this result in Eq. (10) we find

> P(min(é) > €| f,m) = # > P((min(dY,) > €| d¥,)
f d¥,

14

R

d¥, 5min(d¥,)>¢
1

= W(|y| - E)m.

This establishes the following:

Theorem:

ST P(min(@ > | fm) = 77(e). (11)
f

where v(¢) = 1 — ¢/|Y| is the fraction of cost lying above e.

In a real world scenario, unless one’s algorithm has its best-cost-so-far drop
faster than this, there is no sense in which that algorithm is well-suited to
searching the cost function at hand. The algorithm is doing no better than one
would expect it to for a randomly chosen cost function.

Next we calculate the expected minimum of the cost values in the pop-
ulation as a function of m for the random algorithm, a, which picks points
in X' completely randomly, using no information from the current population.
Marginalizing over histograms ¢, the performance of a is

P(min(@ > ¢| f,m,@) = 3 Pmin(?) > €|9) P(F] £,m.)

Now P(c| f,m,a) is the probability of obtaining histogram & in m random
draws from the histogram N of the function f. (This can be viewed as the
HIJ’I (N,)

{lz?il))l :

definition of a.) This probability has been calculated previously as
So

[l

Pmin(@) > €| f,m,a) = —= > > 8> ci,m)P(min(ii) > €|)

PSRN ORDE
)
= e S e (V)

ce=0 C|y|:0 i=¢ i=¢

(see footnote one)

()
()
(12)
This establishes the following:
Theorem: For the random algorithm a,

P(min(¢) > €| fym,a) = 1__[TM (13)

where 7 (¢) = ZP:}L N;/|X] is the fraction of points in A’ for which f(z) > e.
To first order in 1/|X| this gives the following result:

Corollary:

. am m(m—1)(1 =Q(e)) 1
P(min(e) > €| f,m,a) = (e)(l— 20(0 m—i—) (14)

This equation provides a useful benchmark against which any algorithm
may be compared. Note in particular that for many cost functions cost values
are distributed Gaussianly. For such a case, if the mean and variance of the
Gaussian are g and o respectively, then Q(e) = erfe((e — p)/v/20)/2, where erfc
1s the complimentary error function.

Finally, to calculate the third performance measure, note that for fixed f
and m, for any (deterministic) algorithm a, P(¢ > ¢ | f,m,a) is either 1 or 0.
Therefore the fraction of algorithms which result in a ¢ whose minimum exceeds
€ 18 given by

>, P(min(é) > €| f,m,a)
2l '

Expanding in terms of ¢, we can rewrite the numerator of this ratio as
Y2 P(min(é) > e | ¢) >, P(c| f,m,a). However the ratio of this quantity
to >_, 1 is exactly what we calculated when we evaluated measure ii) (see the
beginning of the argument deriving Eq. (13)). This establishes the following:

Theorem: For fixed f and m, the fraction of algorithms which result in a &
whose minimum exceeds € is given by the quantity on the right-hand sides of

Eqgs. (13) and (14).

So in particular, consider the scenario where, when evaluated for e equal
to the minimum of the ¢ produced in a particular run of your algorithm, the
quantity given in Eq. (14) is less than 1/2. For such a scenario, your algorithm
has done worse than over half of all search algorithms, for the f and m at hand.

16

7 Time-dependent cost functions

Here we establish a set of no free lunch results for a certain class of time-
dependent cost functions. The time-dependent functions we are concerned with
start with an initial cost function that is present when we sample the first x
value. Then just before the beginning of each subsequent iteration of the search
algorithm, the cost function is deformed to a new function, as specified by the
mapping T : F x N' — F.? We write the function present during the sampling
of the ith point as fi11 = T;(f;). We assume that at each step ¢, T; is a bijection
between F and F. (Note the mapping induced by 7" from F to F can vary with
the iteration number.) If this weren’t the case, the evolution of cost functions
could narrow in on a region of f’s for which some algorithm, “by luck” as it
were, happens to sample x values that lie near the extremizing z.

One difficulty with analyzing time-dependent cost functions is how to as-
sess the quality of the search algorithm. In general there are two histogram-
based schemes, involving two different populations of y values. As before, the
population d¥, is an ordered set of y values corresponding to the « values in
d7 . The particular y value in d¥, matching a particular « value in d}, is
given by the cost function that was present when x was sampled. In con-
trast, the population DY, is defined to be the y values from the present cost
function for each of the z values in d%,. Formally if d%, = {d%,(1),---,d%,(m)}
then we have d¥, = {f1(d%, (1)), -+, Tm—1(fm—1)(dr,(m))}. Similarly, we have
DY, = (Tt U I (1), Tt (e) (1)) .

In some situations it may be that the members of the population “live” for
a long time, on the time scale of the evolution of the cost function. In such
situations it may be appropriate to judge the quality of the search algorithm
with the histogram induced by DY ; all those previous elements of the population
are still alive, and therefore their (current) fitness is of interest. On the other
hand, if members of the population live for only a short time on the time scale
of evolution of the cost function, one may instead be concerned with things
like how well the living member(s) of the population track the changing cost
function. In that kind of situation, it may make more sense to judge the quality
of the search algorithm with the histogram induced by d¥,.

Here we derive NFL results for both criteria. In analogy with the NFL
theorem, we wish to average over all possible ways a cost function may be
time-dependent, i.e., we wish to avenge over all T' (rather than over all f, as
in the NFL theorem). So consider the sum > . P(¢ |, f1,T,m, a) where f; is
the initial cost function. Note first that since 7' only kicks in for m > 1, and
since fi 1s fixed, there are a priori distinctions between algorithms as far as
the first member of the population is concerned. So consider only histograms
constructed from those elements of the population beyond the first. We will

2 An obvious restriction would be to require that 7' doesn’t vary with time, so that it is a
mapping simply from F to F. An analysis for T’s limited this way is beyond the scope of this
paper however.

17

prove the following:

Theorem: For all &, m > 1, algorithms a; and a5, and initial cost functions fi,
> P(E| f1,Tym a1) = > P(E| fr,T,m, az). (15)
T T

We will show that this results holds whether & is constructed from d¥, or
from DY, . In analogy with the proof of the NFL theorem, we will do this by
establishing the a-independence of ", P(¢| f,T,m, a).

We will begin by replacing each T in the sum with a set of cost functions, f;,
one for each iteration of the algorithm. To do this, we start with the following:

ZP(E’|f,T,m,a) = ZZ Z c|f,dm,Tma)

T dy, fofm
XP(fZ"'fma x |f1,T,7’TL,Cl)

Z Y PEIFdy)Pd, | fim,a)

e f2fm
XZP(fom |f1aTamaa)a
T

where we have indicated the sequence of cost functions, f;, by the vector f:
(fi, 5 fm)-

Next we decompose the sum over all possible T into a series of sums. Each
sum in the series is over the values T' can take for one particular iteration of the
algorithm. More formally, using fiy1 = T;(fi), we write

Y PEIS T, ma) Z Y. PE@E|fidy)P(dy, | fym,a)
T

o farfm

XZ(S fz,Tl f1 Z 6 fma m— 1 Tin- 2(Tl(fl))))

(Note that > . P(¢| f,T,m,a) is independent of the values of T;5pm_1, so we
can absorb those values into an overall a-independent proportionality constant.)

Now look at the innermost sum, over T,,_1, for some fixed values of the
outer sum indices 77 ...1,,—>. Now for fixed values of the outer sum indices
To—1(Tm—2(---T1(f1))) is just some fixed cost function. Accordingly the in-
nermost sum over 7;,_1 is simply the number of bijections of F that map that
fixed cost function to f,,. This is just a constant, (|F|— 1)L

So we can do the T,,_1 sum, and arrive at

S OPES T, mar) ZZ (@ fod)P(dy, | fom,a)
T

e f2fm

18

XZ(S fz,Tl f1 Z 6 fm 1, T 2(m— 3(Tl(fl))))

Now we can do the sum over T,,_s, in the exact same manner we just did
the sum over 7,,_1. In fact, all the sums over all 7; can be done, leaving us
with

> PE| ST m) ZZ (2| f.d5)Pd5, | fom,a)
T o f2fm

ZZ @| Fodz)P(d, | froe fnor,moa). (16)

o farfm

(In the last step we have exploited the statistical independence of d%, and f,.)

To proceed further we must decide if we are interested in histograms formed
from DY or dY%,. We begin with analysis of the DY case. For this case P(¢ |
f,dﬁl) = P(C| fm,d%,), since DY only reflects cost values from the last cost
function, f,,. Plugging this in we get

> P(E|f,T,m,a1) Z S P | e fmer,mia) Y PE| i, d)
T

e f2rfm—1 fm

The final sum over f,, is a constant equal to the number of ways of generating
the histogram ¢ from cost values drawn from f,,,. This constant will involve the
multinomial coefficient (1~T~7~1c) and some other factors. The important point is
that it is independent of the particular d7,. Because of this we can evaluate the
sum over dy, and thereby eliminate the a dependence.

SOP@E £, Toma) o< > Y P | i fn1,m,a) x 1
T

forfm—1 di,

This completes the proof of Eq. (15) for the case where &is constructed from
Dy

Next we turn the case where we are interested not in DY, but in d¥,. This
case is considerably more difficult since we can not simplify P(¢ | f, d”) and
thus can not decouple the sums over f;. Nevertheless, the NFL result still holds.
To see this we begin by expanding Eq. (16) over possible d¥, values.

Yo PESToma) o Y T Y PP, |].d3)

az, farfm d¥,
xP(dy, | fr fme1,m,)

19

ZPc|dy Z Z P, | fi fm—1,m, a)

w2 fm

X Hé(d%@(i), fildn () (17)

The sum over the inner-most cost function, f,,, only has an effect on the
6(dy,(4), fi(dy, (7)) term. So it contributes 3, é(dy,(m), fm(dy,(m))). This is
a constant, equal to |V|I*!=1. We are left with

ZP(E’|f,T,ma ZPc|dy Z Z m | S fme1, mya)
T

w2 fmot
x H 8(d¥, (1), fi(dy,(2)))-

The sum over d¥ (m) is now trivial, so we have
S P(@E | £,T,m,a)
T
x ZPc|dy Z Z Z dypo1 | f1o frnm2,m, a)

dz, (1) dg,(m-1) fo fm-1
x [T 8 @), fild5, ().

Now note that the above equation is of the exact same form as Eq. (17),
only with a remaining population of size :m — 1 rather than m. Consequently, in
an exactly analogous manner to the scheme we used to evaluate the sums over
fm and d%,(m) that existed in Eq. (17), we can evaluate our sums over fp,_1
and d¥, (m —1). Doing so simply generates more a-independent proportionality
constants. Continuing in this manner, we evaluate all the sums over the f; and
arrive at

Y PEISTymar) o Y P@E[d) Y Pdy,(1) [m,a)6(d, (1), fi(dy,(1)).

d7. (1)

Now there is still algorithm-dependence in this result. However it is a trivial
dependence; as previously discussed, it arises completely from how the algorithm
selects the first # point in its population, dZ,(1). Since we consider only those
points in the population that are generated subsequent to the first, our result
says that there is no distinctions between algorithms. (Alternatively, we could
consider all points in the population, even the first, and still get an NFL result,
if in addition to summing over all 7" we sum over all f;.) So even in the case

20

where we are interested in d¥, the NFL result stills hold, subject to the minor
caveats delineated above.

There are others way of assessing the quality of the search algorithm besides
histograms based on DY, or d¥% . For example, one may wish to not consider
histograms at all; one may judge the quality of the search by the fitness of the
most recent member of the population.

Similarly, there are other sums one could look at besides those over T'. For
example, one may wish to characterize what the aspects are of the relation-
ship between a and 7' that determine Zf P(c| f,T,m,a). In fact, in general
there can be a priori distinctions between algorithms as far as this quantity is
concerned.

As an example of such distinctions, say that for all iterations of the search
algorithm, T is the shift operator, replacing f(x) by f(z — 1) for all z (with
min(z) — 1 = max(z), and with X implicitly taken to be a contiguous set of
integers). For this T, if a is the algorithm that first samples f at #;, next
at #1 + 1, etc., regardless of the values in the population, then for any f, the
histogram induced by d¥, is always made up of identical Y values. Accordingly,
Zf P(c| f,T,m,a) = 0 for any ¢ containing counts in more than one Y value
bin. For other search algorithms, even for the same shift 7', there is not this
restriction on the set of allowed ¢. So Zf P(c| f,T,m,a) is not independent of
a in general.

Indeed, consider the shift same 7', but used with a different algorithm, a.
This new algorithm looks at the) value of the its first sample point #1, and if
that value is low, it samples at x; + 1, exactly like algorithm a. On the other
hand, if that value is high, it samples some point other than z; + 1. In general,
if one’s goal is to find minimal) values, @ can be expected to outperform a,
even when one averages over all f.

8 Fixed cost function results

One obvious difficulty with the NFL results discussed above is that one can
always argue “oh, well in the real world P(f) is not uniform, so the NFL results
do not apply, and therefore I'm okay in using my favorite search algorithm”.
Of course, the premise does not follow from the proposition. Uniform P(f) is
a typical P(f). (The uniform average of all P(f) is the uniform P(f).) So
the actual P(f) might just as easily be one for which your algorithm is poorly
suited as one for which it is well suited. Ultimately, the only way to justify one’s
search algorithm is to argue in favor of a particular P(f), and then argue that
your algorithm is well suited to that P(f). This is the only (!) legitimate way
of defending a particular search algorithm against the implications of the NFL
theorems.

Nonetheless, it is clearly of interest to derive NFL-type results that are inde-

21

pendent of P(f). Certain such results apply to ways of choosing between search
algorithms, and involve averaging over those search algorithms while keeping
the cost function fixed. Although less sweeping than the NFL results, these
results hold no matter what the real world’s distribution over cost functions is.

Let @ and a’ be two search algorithms. Define a “choosing procedure” as
one that examines two populations d and d’, produced by a and a’ respectively,
and based on those populations, decides to use either a or a’ for the subsequent
part of the search. As an example, one choosing procedure is to choose a if and
only the least cost element in d has lower cost than the least cost element in d’.
As another example, a “stupid” choosing procedure would choose a if and only
the least cost element in d has higher cost than the least cost element in d’.

At the point that you use a choosing procedure, you will have sampled the
cost function at all the points in dy, = d U d’. Accordingly, if ds,, refers to
the samples of the cost function that come after using the choosing algorithm,
then the histogram the user is interested in is the histogram e¢~,, which is the
histogram formed from ds,,. In addition, for all the usual reasons, we can
assume that the search algorithm chosen by the choosing procedure does not
return to any points in d, without loss of generality>.

The following theorem, proven in appendix C, tells us we have no « prior:
justification for using any particular choosing algorithm. Loosely speaking, no
matter what the cost function, observing how well an algorithm has done so far
tells us nothing about how well it would do if we continue to use it on the same
cost function. (For simplicity, we only consider deterministic algorithms.)

Theorem: Let d and d be two fixed populations both of size m, that are
generated when the algorithms a and a’ respectively are run on the cost function.
Let A and B be two different choosing procedures. Let k be the number of
elements in ¢s,,. Then

> Plesm | fid,d kya,d A= Plesm|f,d,d k,a,d, B). (18)

a,a’ a,a’

(Tt is implicit in this theorem that the sum excludes those algorithms @ and &’
that do not result in d and d’ respectively when run on f.)

One might think that the preceding theorem is misleading, since it treats all
populations equally, when for any given f some populations will be more likely

3a can know to avoid the elements it has seen before. However a priori, a has no way to

avold the elements it hasn’t seen yet but that o’ has (and vice-versa). Rather than have the
definition of a somehow depend on the elements in d’ — d (and similarly for a’), we deal with
this problem by defining c¢sy; to be set only by those elements in ds,, that lie outside of
du. (This is similar to the procedure we developed above to deal with potentially retracing
algorithms.) Formally, this means that the random variable cs,, is a function of dy as well
as of dgn,. It also means there may be fewer elements in the histogram cs,, than there are
in the population d~,.

22

than others. However even if one weights populations according to their proba-
bility of occurrence, it is still true that, on average, the choosing procedure one
uses has no effect on likely ¢s,,. This 1s established by the following corollary.

Corrolary: Under the conditions given in the preceding theorem,

ZP(c>m | fym,k,a,a A) = ZP(c>m |, fym, k,a,d B). (19)

a,a’ a,a’

Proof: Let “proc” refer to our choosing procedure. We are interested in

ZP(c>m | fym,k,a,a’ proc) = Z Plesm | fod,d' k,a,d,proc)

a,a’ a,a’ d,d’

xP(d,d"| f,k,m,a,d proc).

Pull the sum over d and d’ outside the sum over @ and a’. Consider any term
in that sum (i.e., any particular pair of values of d and d'). For that term,
P(d,d"| f,k,m,a,d proc) is just 1 for those a and @' that result in d and d
respectively when run on f, and 0 otherwise. (Recall that we are assuming that
a and a’ are deterministic.) This means that the P(d,d'|f, k, m,a,d, proc)
factor simply restricts our sum over a and @’ to the a and a’ considered in our
theorem. Accordingly, our theorem tell us that the summand of the sum over d
and d’ is the same for choosing procedures A and B. Therefore the full sum is
the same for both procedures. QED.

These results tell us that there is no assumption for P(f) that, by itself,
justifies using some choosing procedure as far as subsequent search is concerned.
To have an intelligent choosing procedure, one must take into account not only
P(f) but also the search algorithms one will be choosing among.

In fact, things may very well be worse than this. In supervised learning,
there is a result related to the theorem above [10]. Translated into the current
context that result suggests that if one restricts the sums to only be over those
algorithms that are a good match to P(f), then stupid choosing procedures —
like choosing the algorithm with the less desirable ¢ — outperform “smart” ones
(which are the ones everyone uses in practice). An investigation of what exactly
the set of algorithms summed over must be for a smart choosing procedure to
be superior to a dumb one is beyond the scope of this paper. But clearly there
are many subtle issues to disentangle.

9 Discussion and Future Work

9.1 Discussion

In this paper we present a framework for investigating search. This framework
serves as a “skeleton” for the search problem; 1t tells us what we can know

23

about search before “fleshing in” the details of a particular real world search
problem. Phrased differently, it provides a language in which to describe search
algorithms, and in which to ask (and answer) questions about them.

Ultimately, of course, the only important question is, “How do I find good
solutions for my given cost function f7” The proper answer to this question
is to start with the given f, determine certain salient features of it, and then
construct a search algorithm, a, specifically tailored to match those features.
The inverse procedure - far more popular in some communities - 1s to investigate
how specific algorithms perform on different f’s. This inverse procedure is only
of interest to the degree that it helps us with our primary procedure, of going
from (features concerning) f to an appropriate a.

Note that often the “salient features” concerning f can be stated in terms
of a distribution P(f). To understand this, first note that we do in fact know
f exactly. But at the same time, there 1s much about f that we need to know
that is effectively unknown to us (e.g., f’s extrema). In this, it is as though f is
partially unknown. The very nature of the search process 1s to admit that you
don’t “know” f in full. As a result, it makes sense to (implicitly or otherwise)
replace f with a distribution P(f). In this, the search problem reduces to finding
a good a for a particular P(f) - exactly the issue addressed in Section 3 of this
paper.

As an example of all this, it is well known that generic methods (like sim-
ulated annealing and genetic algorithms) are unable to compete with carefully
hand-crafted solutions for specific search problems. The Traveling Salesman
(TSP) problem is an excellent example of such a situation; the best search algo-
rithms for the TSP problem are hand-tailored for it [12]. Linear programming
problems are another example; the simplex algorithm is a search algorithm
specifically designed to solve cost functions of a particular type. In both of
these situations, the procedure followed by the researcher is to: identify salient
aspects of f (e.g., it is a TSP problem, or it is a linear programming problem);
throw away all other knowledge concerning f and thereby effectively replace f
with a P(f); and then use a search algorithm explicitly known to work well for
that P(f).

In our investigation of the search problem from this match- f-to-a perspec-
tive, the first question we addressed was whether it may be that some algorithm
A performs better than B, on average. Our answer to this question, given by
the NFL theorem is that this 1s impossible. An important implication of this
result is the following. If a genetic algorithm outperforms simulated annealing
(for example) over some class of cost functions ®, then over the remaining cost
functions F \ @, simulated annealing must outperform the genetic algorithm.
It should be noted that this applies even if one considers “adaptive” search al-
gorithms [6, 7] which modify their search strategy based on properties of the
population of (¥ — —)Y) pairs observed so far in the search, and which perform
this “adaptation” without regard to any knowledge concerning salient features

of f.

24

It is important to bear in mind exactly what all of this does (not) imply
about the relationship between natural selection in the biological world and
optimization (i.e. genetic algorithms). To this end, consider the extremely
simplified view in which natural selection is viewed as optimization over a cost or
“fitness” function. We further simplify matters by assuming the fitness function
is static over time.

In this paper we measure an algorithm’s performance based on all X’ values
it has sampled since it began, and therefore we don’t allow an algorithm to
resample points it had already visited. Qur NFL theorem states that all algo-
rithms are equivalent by this measure. However one might consider different
measures. In particular, we may be interested in the evolution through time
of “generations” consisting of temporally contiguous subsets of our population,
generations that are updated by our search algorithm. In such a scenario, it
does make sense to resample points already visited. Moreover, our NFL theorem
does not apply to this alternative kind of performance measure. For example,
according to this alternative performance measure, an algorithm that resamples
old points in X’ that are fit and adds them to the current generation will always
do better than one that resamples old points that are not fit.

Now when we examine the biological world around us, we are implicitly using
this second kind of measure; we only see the organisms from the current genera-
tion. In addition, natural selection means that only (essential characteristics of)
good points in A" are kept around from one generation to the next. Accordingly,
using this second kind of performance measure, one expects that the average
fitness across a generation improves with time. (Or would if the environment
- i.e., cost function - didn’t change in time, etc.) This is nothing more than
the tautology that natural selection improves the fitness of the members of a
generation.

However this empirical evidence that natural selection performs well accord-
ing to this second measure does not mean anything concerning its performance
according to the first measure. In particular, it does not mean that if we wish to
do a search, and are able to keep around all points sampled so far, that we have
any reason to believe that natural selection is an effective search strategy. Nor
does it mean that natural selection works well as far as the tail of the measure
based on the entire population is concerned. Yet it is precisely that tail that is
of interest in the engineering world.

In short, the empirical evidence of the biological world does not indicate
in any sense that natural selection is an effective search strategy, even in the
biological world. We simply have not had a chance to observe the behavior of
alternative strategies. For all we know, the strategy of breeding only the least fit
members of the population may have done a better job at finding the extrema
of the cost function faced by biological organisms. The experiment just has not
been done. The breed-the-worst strategy will in general result in worse recent
generations, but using that strategy implies nothing about the quality of the
populations over the long term. If however, we relax the unrealistic assumption

25

that the fitness function is constant over time then it is possible that there may
be disadvantages to a breed-the-worst policy.

To summarize, by the NFL theorem, any generation-based scheme that keeps
only the worst members of the population for the next generation is equivalent
to one that keeps the best members, on average. However, the fitness of the
members of the generations will differ between the two search algorithms. This
raises some obvious questions for future research: Averaged over all f, how
big would one expect the difference to be? For a fixed f, and two random
search algorithms that are “directed” differently in who they classify in being
the current generation, how big would one expect the difference to be? How
does this last calculation compare with the calculation made above of what the
best member of the population will (likely) be for a random algorithm as m
grows?

9.2 Future work

It is perhaps fitting for a paper about effective search that we conclude with a
brief listing of other research directions we believe warrant further investigation.

The most important continuation of this work is to turn our framework into
a practical tool to solve real problems. This would involve two steps. First we
need a method of incorporating broad kinds of knowledge concerning f into the
analysis. In this paper we have used P(f) to do this, but perhaps there are other
ways that we should also consider. For example, it is not yet clear how to (or
even whether one should) encapsulate in a P(f) the knowledge concerning the
cost function that is implicit in the heuristics of Branch and Bound strategies.
How do incorporate how the cost, f of a complete solution i1s accrued through
the assemblage of sub-solutions?

The second step in this suggested program is to determine how best to
convert knowledge concerning f into an optimal a. The goal in its broadest
sense is to design a system that can take in such knowledge concerning f and
then solve for the optimal a given that knowledge. One would then use that a
to search the f.

In its fullest sense, this program may well involve many years of work.
Nonetheless, there are many important questions related to this program that
should be analyzable using only the tools developed in this paper. Many of
them were presented in the text. Others, particularly well-suited to help us
understand the connection between P(f) and an optimal a, are: How fast does
the cost histogram ¢ associated with a particular algorithm converge to the his-
togram of the cost values f takes on across all of X7 As P(f) changes from
the diagonal in f space (i.e., from being uniform over all f), need some a’s be
hurt? Could the average over all a’s improve? For what P(f)’s besides the
diagonal are all algorithms equal? Given two particular algorithms (rather than
all algorithms), for what P(f) is the performance of the algorithms equal? In

26

particular, if P(f) is uniform over some subset ® C F and zero outside ®,*
what are the equivalence classes of search algorithms with identical expected
behavior?

Another interesting series of questions concerns differences between stochas-
tic and deterministic algorithms. Are there potential advantages to stochas-
tic algorithms? In particular, does it make sense to “expand” any stochas-
tic algorithm o in terms of deterministic algorithms a? l.e., can one write
Plc| fym,0) =3, kaosPlc|f, m, a) for some expansion coefficients k4,7 If so,
it suggests that as P(f) moves from the diagonal the performance of ¢’s will
neither improve nor degrade as much as that of a’s. So it may be that stochastic
algorithms have certain minimax advantages over deterministic ones.

Acknowledgments
We would like to thank Unamay O’Reilly for helpful conversation, and the SFI
for funding. Dhw would also like to thank TXN Inc. for funding.

References

[1] M.R. Garey, D.S. Johnson, Computers and Intractability, Freeman (1979).
[2] E.L. Lawler, D.E. Wood, Operations Research, 14(4), 699-719, (1966).

[3] J. Pearl, Heuristics, intelligent search stralegies for computer problem solv-

ing, Addison-Wesley, (1984).
[4] S. Kirkpatrick, C. D. Gelatt Jr., M. P. Vecchi, Science, 220, 671, (1983).

[5] J. Holland, Adaptation in Natural and Artificial Systems, University of
Michigan Press, Ann Arbor, (1975).

[6] L. Ingber, Adaptive Simulated Annealing, Software package documenta-
tion, ftp.caltech.edu:/pub/ingber/asa.Z.

[7] D. Yuret, M. de la Maza, Dynamic Hill-Climbing: Overcoming the limi-
tations of optimization techniques in The Second Turkish Symposium on
Artificial Intelligence and Neural Networks, pp208-212, (1993).

[8] C.E.M. Strauss, D.H. Wolpert, D.R. Wolf. Alpha, Evidence, and the
Entropic Prior in Mazimum Entropy and Bayesian Methods, ed. Ali
Mohammed-Djafari, pp113-120, (1992).

[9] T. Cover, J. Thomas, Elements of Information Theory, John Wiley &
Sons, (1991).

*As an example, ® might be the set of correlated cost functions as in [13].

27

[10] D H. Wolpert, Off-training set error and a priori distinclions between
learning algorithms, Technical Report SFI-TR-95-01-003, Santa Fe Insti-
tute, 1995.

[11] D H. Wolpert, On Ouerfitling Avoidance as Bias, Technical Report SFI-
TR-92-03-5001, Santa Fe Institute, 1992.

[12] Gerhard Reinelt, The Traveling Salesman, computational solutions for
TSP applications, Springer Verlag Berlin Heidelberg (1994).

[13] P.F. Stadler, Furophys. Lett. 20, pp479-482, (1992).

A Proof related to information theoretic as-
pects of search

We want to calculate the proportion of all algorithms that give a particular &
for a particular f. We proceed in several steps.

1) Since X is finite, populations are finite. Therefore any (deterministic) a
is a huge - but finite - list. That list is indexed by all possible d’s (aside from
those that extend over the entire input space). Fach entry in the list is the »
the a in question outputs for that d-index.

2) Consider any particular unordered set of m x —y pairs where no two of the
pairs share the same # value. Such a set is an “unordered path” x. (Without
loss of generality, from now on we implicitly restrict the discussion to unordered
paths of length m.) A particular 7 is “in” or “from” a particular f if there
is a unordered set of m (x, f(z)) pairs identical to w. The numerator on the
right-hand side of Eq. (8) is the number of unordered paths in the given f that
give the desired ¢

3) Claim: The number of unordered paths in f that give the desired ¢ - the
numerator on the right-hand side of Eq. (8) - is proportional to the number of
a’s that give the desired ¢ for f. (The proof of this claim will constitute a proof
of Eq. (8).) Furthermore, the proportionality constant is independent of f and
é.

4) Proof: We will construct a mapping ¢ : ¢ — w. ¢ takes in an a that
gives the desired ¢ for f, and from it produces a 7 that is in f and gives the
desired ¢. We will then show that for any 7 the number of algorithms a such
that ¢(a) = 7 is a constant, independent of m, f, and & The proof will then be
completed by showing that ¢ is single-valued, i.e., by showing that there is no
a who has as image under mapping ¢ more than one 7.

5) Any unordered path 7 gives a set of m! different ordered paths in the
obvious manner. (Note that every value in an unordered path is distinct.)
Fach such ordered path m,.4 in turn provides a set of m successive d’s (if one
includes the null d) and a following . Indicate by d(m,rq) this set of the first

28

m d’s provided by morq. (Note that any m,.q is itself a population, but to avoid
confusion we avoid referring to it as such.)

6) For any ordered path m,.4 we can construct a “partial algorithm”. This
consists of the list of an a, but with only the m d(m,-4) entries in the list filled
in; the remaining entries are blank. (We say that m is the “length” of the
partial algorithm.) Since there are m! distinct partial a’s for each = (one for
each ordered path corresponding to), we have m! such partially filled-in lists
for each 7.

7) In the obvious manner we can talk about whether a particular partial
algorithm is “consistent” with a particular full algorithm. This allows us to
define (the inverse of) ¢: for any 7 that is in f and gives & ¢~1(7) = (the set
of all @ that are consistent with at least one partial algorithm generated from =
and that give & when run on f).

8) To complete the first part of our proof we must show that for all = that
are in f and give ¢, $~1(7) contains the same number of elements, regardless of
7, f, or c. To that end, first generate all ordered paths induced by = and then
associate each such ordered path with a distinct m-element partial algorithm.
Our question is how many full algorithms lists are consistent with at least one
of these partial algorithm partial lists. (How this question is answered is the
core of this appendix.)

9) To answer this question, reorder the entries in each of the partial algorithm
lists by permuting the indices d of all the lists. Obviously such a reordering won’t
change the answer to our question.

9) We will perform the permuting by interchanging pairs of d indices. First,
interchange any d index of the form ((dx(1),dy(1)),...,(dx(i < m),dy(i <
m))) whose entry is filled in in any of our partial algorithm lists with d'(d) =
((dx(1),%),...,(dx(i), 2)), where z is some arbitrary constant) value and «;
refers to the j’th element of A'. Next, create some arbitrary but fixed ordering
of all # € X: (x1,...,2caix|). Then interchange any d’ index of the form
((dx(1),z,...,(dx(i < m),z) whose entry is filled in in any of our (new) partial
algorithm lists with d”(d') = ((#1,2), ..., (#m,2)). (Recall that all the dx(¢)
must be distinct.)

10) By construction, the resultant partial algorithm lists are independent
of m, & and f, as is the number of such lists (it’s m!). Therefore the number
of algorithms consistent with at least one partial algorithm list in ¢=1(7) is
independent of 7, ¢ and f. This completes the first part of the proof.

11) For the second part, first choose any 2 unordered paths that differ from
one another, A and B. There is no ordered path A,.; constructed from A that
equals an ordered path B,.; constructed from B. So choose any such A,,.; and
any such B,.;. If they disagree for the null d, then we know that there is no
(deterministic) a that agrees with both of them. If they agree for the null d,
then since they are sampled from the same f, they have the same single-element
d. If they disagree for that d, then there is no a that agrees with both of them.
If they agree for that d, then they have the same double-element d. Continue

29

in this manner all the up to the (1m — 1)-element d. Since the two ordered paths
differ, they must have disagreed at some point by now, and therefore there is
no a that agrees with both of them.

12) Since this is true for any A,rq from A and any B,rq from B, we see that
there is no a in ¢=1(A4) that is also in ¢~1(B). This completes the proof.

B Proof related to minimax distinctions be-
tween algorithms

The proofs are by example.
Consider three points in X', 1, x2, and 23, and three points in Y, y1, y2, and

Ys3-
1) Let the first point a; visits be @1, and the first point as visits be za.

2) If at its first point a; sees a gy or a ya, it jumps to x3. Otherwise it jumps
to x3.

3) If at its first point as sees a yy, it jumps to z1. If it sees a ys, it jumps to
3.

Consider the cost function that has as the Y values for the three X values
{y1, Y2, ys}, respectively.

For m = 2, a; will produce a population (y1,y2) for this function, and as
will produce (y2, ys).

The proof is completed if we show that there is no cost function so that
a1 produces a population containing y» and ys and such that as produces a
population containing y; and ys.

There are four possible pairs of populations to consider:

i)
ii)

iii)

Ya2,Y3), (Y1, Y2)];

Y3,Y2), (Y1, Y2);

v

[(y2, 93), (y1, 92)]
[(y2, 93), (y2, y1)];
[(ys, 92), (y1, 92)];
[))]

(y3,92), (Y2, 11

Since if its first point is a y2 a1 jumps to xs which is where as starts, when ay’s
first point is a y, its second point must equal as’s second point. This rules out
possibilities i) and ii).

For possibilities iii) and iv), by a;’s population we know that f must be of
the form {ys, s, y2}, for some variable s. For case iii), s would need to equal
y1, due to the first point in as’s population. However for that case, the second
point ag sees would be the value at x1, which is ys, contrary to hypothesis.

30

For case iv), we know that the s would have to equal ya, due to the first
point in as’s population. However that would mean that as jumps to x5 for its
second point, and would therefore see a ys, contrary to hypothesis.

Accordingly, none of the four cases is possible. This is a case both where
there is no symmetry under exchange of d¥’s between a; and as, and no sym-
metry under exchange of histograms. QED.

C Proof related to NFL results for fixed cost
functions

Since any (deterministic) search algorithm is a mapping from d C D to & C X,
any search algorithm is a vector in the space X'P. The components of such a
vector are indexed by the possible populations, and the value for each component
is the & that the algorithm produces given the associated population.

Consider now a particular population d of size m. Given d, we can say
whether any other population of size greater than m has the (ordered) elements
of d as its first m (ordered) elements. The set of those populations that do start
with d this way defines a set of components of any algorithm vector a. Those
components will be indicated by a>g.

The remaining components of a are of two types. The first is given by those
populations that are equivalent to the first M < m elements in d for some M.
The values of those components for the vector algorithm a will be indicated by
acq. The second type consists of those components corresponding to all remain-
ing populations. Intuitively, these are populations that are not compatible with
d. Some examples of such populations are populations that contain as one of
their first m elements an element not found in d, and populations that re-order
the elements found in d. The values of a for components of this second type
will be indicated by a_g .

Let proc be either A or B. We are interested in

ZP(C>m |fa dla dZa]C,Cl, Cl/,pTOC)

= Z Z Z Plesm | fod,d' k,a,d proc).

i i i
A—a,a__ 5y aCdvaCd/ anvagd/

The summand is independent of the values of a_4 and o’ , for either of our
two d’s. In addition, the number of such values is a constant. (It is given by the
product, over all populations not consistent with d, of the number of possible x
each such population could be mapped to.) Therefore, up to an overall constant
independent of d, d’, f, and proc, our sum equals

31

Z Z P(esm | £, d, d/,a;d,algd,,acd,alcd,,proc).

i i
aCdvaCd/ anvagd/

By definition, we are implicitly restricting the sum to those a and a’ so that
our summand is defined. This means that we actually only allow one value for
each component in acq (namely, the value that gives the next x element in d),

and similarly for af-;. Therefore our sum reduces to

Z P(esm | £, d, d’,a;d,algd,,proc).

/
agdyagd/

Note that no component of a54 lies in df}. The same is true of a4 ;. So our
sum over asq is over the same components of a as the sum over a5, is of a'.
Now for fixed d and d’, proc’s choice of a or a' is fixed. Accordingly, without
loss of generality, we can rewrite our sum as

ZP(C>m |fa da d/a Cl;d),

a;d

with the implicit assumption that c,, is set by a54. This sum is independent
of proc. QED.

32

