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In light of this interest in general-purpose optimization algorithms, it has become im-portant to understand the relationship between how well an algorithm a performs and theoptimization problem f on which it is run. In this paper we present a formal analysis thatcontributes towards such an understanding by addressing questions like the following: Giventhe plethora of black-box optimization algorithms and of optimization problems, how can webest match algorithms to problems (i.e., how best can we relax the black-box nature of thealgorithms and have them exploit some knowledge concerning the optimization problem)? Inparticular, while serious optimization practitioners almost always perform such matching, itis usually on an ad hoc basis; how can such matching be formally analyzed? More generally,what is the underlying mathematical \skeleton" of optimization theory before the \esh" ofthe probability distributions of a particular context and set of optimization problems are im-posed? What can information theory and Bayesian analysis contribute to an understandingof these issues? How a priori generalizable are the performance results of a certain algorithmon a certain class of problems to its performance on other classes of problems? How shouldwe even measure such generalization; how should we assess the performance of algorithmson problems so that we may programmatically compare those algorithms?Broadly speaking, we take two approaches to these questions. First, we investigate whata priori restrictions there are on the pattern of performance of one or more algorithms as oneruns over the set of all optimization problems. Our second approach is to instead focus ona particular problem and consider the e�ects of running over all algorithms. In the currentpaper we present results from both types of analyses but concentrate largely on the �rstapproach. The reader is referred to the companion paper [MW96] for more kinds of analysisinvolving the second approach.We begin in Section 2 by introducing the necessary notation. Also discussed in thissection is the model of computation we adopt, its limitations, and the reasons we chose it.One might expect that there are pairs of search algorithms A and B such that A per-forms better than B on average, even if B sometimes outperforms A. As an example, onemight expect that hill-climbing usually outperforms hill-descending if one's goal is to �nd amaximum of the cost function. One might also expect it would outperform a random searchin such a context.One of the main results of this paper is that such expectations are incorrect. We provetwo NFL theorems in Section 3 that demonstrate this and more generally illuminate theconnection between algorithms and problems. Roughly speaking, we show that for bothstatic and time dependent optimization problems, the average performance of any pair ofalgorithms across all possible problems is exactly identical. This means in particular that ifsome algorithm a1's performance is superior to that of another algorithm a2 over some set ofoptimization problems, then the reverse must be true over the set of all other optimizationproblems. (The reader is urged to read this section carefully for a precise statement of thesetheorems.) This is true even if one of the algorithms is random; any algorithm a1 performsworse than randomly just as readily (over the set of all optimization problems) as it performsbetter than randomly. Possible objections to these results are also addressed in Sections 3.1and 3.2.In Section 4 we present a geometric interpretation of the NFL theorems. In particular,2



we show that an algorithm's average performance is determined by how \aligned" it is withthe underlying probability distribution over optimization problems on which it is run. ThisSection is critical for anyone wishing to understand how the NFL results are consistent withthe well-accepted fact that many search algorithms that do not take into account knowledgeconcerning the cost function work quite well in practiceSection 5.1 demonstrates that the NFL theorems allow one to answer a number of whatwould otherwise seem to be intractable questions. The implications of these answers formeasures of algorithm performance and of how best to compare optimization algorithms areexplored in Section 5.2.In Section 6 we discuss some of the ways in which, despite the NFL theorems, algo-rithms can have a priori distinctions that hold even if nothing is speci�ed concerning theoptimization problems. In particular, we show that there can be \head-to-head" minimaxdistinctions between a pair of algorithms, it i.e., we show that considered one f at a time, apair of algorithms may be distinguishable, even if they are not when one looks over all f 's.In Section 7 we present an introduction to the alternative approach to the formal analysisof optimization in which problems are held �xed and one looks at properties across the spaceof algorithms. Since these results hold in general, they hold for any and all optimizationproblems, and in this are independent of the what kinds of problems one is more or less likelyto encounter in the real world. In particular, these results state that one has no a priorijusti�cation for using a search algorithm's behavior so far on a particular cost functionto predict its future behavior on that function. In fact when choosing between algorithmsbased on their observed performance it does not su�ce to make an assumption about the costfunction; some (currently poorly understood) assumptions are also being made about howthe algorithms in question are related to each other and to the cost function. In addition topresenting results not found in [MW96], this section serves as an introduction to perspectiveadopted in [MW96].We conclude in Section 8 with a brief discussion, a summary of results, and a short listof open problems.We have con�ned as many of our proofs to appendices as possible to facilitate the owof the paper. A more detailed | and substantially longer | version of this paper, a versionthat also analyzes some issues not addressed in this paper, can be found in [WM95].Finally, we cannot emphasize enough that no claims whatsoever are being made inthis paper concerning how well various search algorithms work in practice. The focus ofthis paper is on what can be said a priori, without any assumptions and from mathematicalprinciples alone, concerning the utility of a search algorithm.2 PreliminariesWe restrict attention to combinatorial optimization in which the search space, X , thoughperhaps quite large, is �nite. We further assume that the space of possible \cost" values, Y,is also �nite. These restrictions are automatically met for optimization algorithms run ondigital computers. For example, typically Y is some 32 or 64 bit representation of the real3



numbers in such a case.The size of the spaces X and Y are indicated by jX j and jYj respectively. Optimizationproblems f (sometimes called \cost functions" or \objective functions" or \energy func-tions") are represented as mappings f : X 7! Y. F = YX is then the space of all possibleproblems. F is of size jYjjX j | a very large but �nite number. In addition to static f , weshall also be interested in optimization problems that depend explicitly on time. The extranotation needed for such time-dependent problems will be introduced as needed.It is common in the optimization community to adopt an oracle-based view of computa-tion. In this view, when assessing the performance of algorithms, results are stated in termsof the number of function evaluations required to �nd a certain solution. Unfortunatelythough, many optimization algorithms are wasteful of function evaluations. In particular,many algorithms do not remember where they have already searched and therefore oftenrevisit the same points. Although any algorithm that is wasteful in this fashion can be mademore e�cient simply by remembering where it has been (c.f. tabu search [Glo89, Glo90]),many real-world algorithms elect not to employ this stratagem. Accordingly, from the pointof view of the oracle-based performance measures, there are \artefacts" distorting the ap-parent relationship between many such real-world algorithms.This di�culty is exacerbated by the fact that the amount of revisiting that occurs isa complicated function of both the algorithm and the optimization problem, and thereforecannot be simply \�ltered out" of a mathematical analysis. Accordingly, we have elected tocircumvent the problem entirely by comparing algorithms based on the number of distinctfunction evaluations they have performed. Note that this does not mean that we cannotcompare algorithms that are wasteful of evaluations | it simply means that we comparealgorithms by counting only their number of distinct calls to the oracle.We call a time-ordered set of m distinct visited points a \sample" of size m. Samples aredenoted by dm � f(dxm(1); dym(1)); � � � ; (dxm(m); dym(m))g. The points in a sample are orderedaccording to the time at which they were generated. Thus dxm(i) indicates the X value ofthe ith successive element in a sample of size m and dym(i) is the associated cost or Y value.dym � fdym(1); � � � ; dym(m)g will be used to indicate the ordered set of cost values. The spaceof all samples of size m is Dm = (X �Y)m (so dm 2 Dm) and the set of all possible samplesof arbitrary size is D � [m�0Dm.As an important clari�cation of this de�nition, consider a hill-descending algorithm.This is the algorithm that examines a set of neighboring points in X and moves to the onehaving the lowest cost. The process is then iterated from the newly chosen point. (Often,implementations of hill-descending stop when they reach a local minimum, but they caneasily be extended to run longer by randomly jumping to a new unvisited point once theneighborhood of a local minimum has been exhausted.) The point to note is that becausea sample contains all the previous points at which the oracles was consulted, it includes the(X ;Y) values of all the neighbors of the current point, and not only the lowest cost one thatthe algorithm moves to. This must be taken into account when counting the value of m.Optimization algorithms a are represented as mappings from previously visited sets ofpoints to a single new (i.e., previously unvisited) point in X . Formally, a : d 2 D 7!fxjx 62 dXg. Given our decision to only measure distinct function evaluations even if an4



algorithm revisits previously searched points, our de�nition of an algorithm includes allcommon black-box optimization techniques like simulated annealing and evolutionary algo-rithms. (Techniques like branch and bound [LW66] are not included since they rely explicitlyon the cost structure of partial solutions, and we are here interested primarily in black-boxalgorithms.)As de�ned above, a search algorithm is deterministic; every sample maps to a unique newpoint. Of course essentially all algorithms implemented on computers are deterministic1, andin this our de�nition is not restrictive. Nonetheless, it is worth noting that all of our resultsare extensible to non-deterministic algorithms, where the new point is chosen stochasticallyfrom the set of unvisited points. (This point is returned to below.)Under the oracle-based model of computation any measure of the performance of analgorithm after m iterations is a function of the sample dym. Such performance measureswill be indicated by �(dym). As an example, if we are trying to �nd a minimum of f , thena reasonable measure of the performance of a might be the value of the lowest Y value indym: �(dym) = minifdym(i) : i = 1 : : : mg. Note that measures of performance based on factorsother than dym (e.g., wall clock time) are outside the scope of our results.We shall cast all of our results in terms of probability theory. We do so for three reasons.First, it allows simple generalization of our results to stochastic algorithms. Second, evenwhen the setting is deterministic, probability theory provides a simple consistent frameworkin which to carry out proofs.The third reason for using probability theory is perhaps the most interesting. A crucialfactor in the probabilistic framework is the distribution P (f) = P (f(x1); � � � ; f(xjXj)). Thisdistribution, de�ned over F , gives the probability that each f 2 F is the actual optimizationproblem at hand. An approach based on this distribution has the immediate advantage thatoften knowledge of a problem is statistical in nature and this information may be easilyencodable in P (f). For example, Markov or Gibbs random �eld descriptions [KS80] offamilies of optimization problems express P (f) exactly.However exploiting P (f) also has advantages even when we are presented with a singleuniquely speci�ed cost function. One such advantage is the fact that although it may befully speci�ed, many aspects of the cost function are e�ectively unknown (e:g:, we certainlydo not know the extrema of the function.) It is in many ways most appropriate to have thise�ective ignorance reected in the analysis as a probability distribution. More generally,we usually act as though the cost function is partially unknown. For example, we mightuse the same search algorithm for all cost functions in a class (e.g., all traveling salesmanproblems having certain characteristics). In so doing, we are implicitly acknowledging thatwe consider distinctions between the cost functions in that class to be irrelevant or at leastunexploitable. In this sense, even though we are presented with a single particular problemfrom that class, we act as though we are presented with a probability distribution over costfunctions, a distribution that is non-zero only for members of that class of cost functions.P (f) is thus a prior speci�cation of the class of the optimization problem at hand, withdi�erent classes of problems corresponding to di�erent choices of what algorithms we will1In particular, note that random number generators are deterministic given a seed.5



use, and giving rise to di�erent distributions P (f).Given our choice to use probability theory, the performance of an algorithm a iteratedm times on a cost function f is measured with P (dymjf;m; a). This is the conditional proba-bility of obtaining a particular sample dm under the stated conditions. From P (dymjf;m; a)performance measures �(dym) can be found easily.In the next section we will analyze P (dymjf;m; a), and in particular how it can vary withthe algorithm a. Before proceeding with that analysis however, it is worth briey notingthat there are other formal approaches to the issues investigated in this paper. Perhaps themost prominent of these is the �eld of computational complexity. Unlike the approach takenin this paper, computational complexity mostly ignores the statistical nature of search, andconcentrates instead on computational issues. Much (though by no means all) of computa-tional complexity is concerned with physically unrealizable computational devices (Turingmachines) and the worst case amount of resources they require to �nd optimal solutions. Incontrast, the analysis in this paper does not concern itself with the computational engineused by the search algorithm, but rather concentrates exclusively on the underlying statisti-cal nature of the search problem. In this the current probabilistic approach is complimentaryto computational complexity. Future work involves combining our analysis of the statisticalnature of search with practical concerns for computational resources.3 The NFL theoremsIn this section we analyze the connection between algorithms and cost functions. We havedubbed the associated results \No Free Lunch" (NFL) theorems because they demonstratethat if an algorithm performs well on a certain class of problems then it necessarily paysfor that with degraded performance on the set of all remaining problems. Additionally, thename emphasizes the parallel with similar results in supervised learning [Wol96a, Wol96b].The precise question addressed in this section is: \How does the set of problems F1 � Ffor which algorithm a1 performs better than algorithm a2 compare to the set F2 � F forwhich the reverse is true?" To address this question we compare the sum over all f ofP (dymjf;m; a1) to the sum over all f of P (dymjf;m; a2). This comparison constitutes a majorresult of this paper: P (dymjf;m; a) is independent of a when we average over all cost functions:Theorem 1 For any pair of algorithms a1 and a2,Xf P (dymjf;m; a1) =Xf P (dymjf;m; a2):A proof of this result is found in Appendix A. An immediate corollary of this result is that forany performance measure �(dym), the average over all f of P (�(dym)jf;m; a) is independentof a. The precise way that the sample is mapped to a performance measure is unimportant.This theorem explicitly demonstrates that what an algorithm gains in performance onone class of problems it necessarily pays for on the remaining problems; that is the only waythat all algorithms can have the same f -averaged performance.6



A result analogous to Theorem 1 holds for a class of time-dependent cost functions. Thetime-dependent functions we consider begin with an initial cost function f1 that is presentat the sampling of the �rst x value. Before the beginning of each subsequent iteration ofthe optimization algorithm, the cost function is deformed to a new function, as speci�edby a mapping T : F � N ! F .2 We indicate this mapping with the notation Ti. So thefunction present during the ith iteration is fi+1 = Ti(fi). Ti is assumed to be a (potentiallyi-dependent) bijection between F and F . We impose bijectivity because if it did not hold,the evolution of cost functions could narrow in on a region of f 's for which some algorithmsmay perform better than others. This would constitute an a priori bias in favor of thosealgorithms, a bias whose analysis we wish to defer to future work.How best to assess the quality of an algorithm's performance on time-dependent costfunctions is not clear. Here we consider two schemes based on manipulations of the de�nitionof the sample. In scheme 1 the particular Y value in dym(j) corresponding to a particularx value dxm(j) is given by the cost function that was present when dxm(j) was sampled. Incontrast, for scheme 2 we imagine a sample Dym given by the Y values from the presentcost function for each of the x values in dxm. Formally if dxm = fdxm(1); � � � ; dxm(m)g, thenin scheme 1 we have dym = ff1(dxm(1)); � � � ; Tm�1(fm�1)(dxm(m))g, and in scheme 2 we haveDym = ffm(dxm(1)); � � � ; fm(dxm(m))g where fm = Tm�1(fm�1) is the �nal cost function.In some situations it may be that the members of the sample \live" for a long time, onthe time scale of the evolution of the cost function. In such situations it may be appropriateto judge the quality of the search algorithm by Dym; all those previous elements of the sampleare still \alive" at timem, and therefore their current cost is of interest. On the other hand,if members of the sample live for only a short time on the time scale of evolution of the costfunction, one may instead be concerned with things like how well the \living" member(s) ofthe sample track the changing cost function. In such situations, it may make more sense tojudge the quality of the algorithm with the dym sample.Results similar to Theorem 1 can be derived for both schemes. By analogy with thattheorem, we average over all possible ways a cost function may be time-dependent, i.e., weaverage over all T (rather than over all f). Thus we consider PT P (dymjf1; T;m; a) where f1is the initial cost function. Since T only takes e�ect for m > 1, and since f1 is �xed, thereare a priori distinctions between algorithms as far as the �rst member of the population isconcerned. However after rede�ning samples to only contain those elements added after the�rst iteration of the algorithm, we arrive at the following result, proven in Appendix B:Theorem 2 For all dym, Dym, m > 1, algorithms a1 and a2, and initial cost functions f1,XT P (dymjf1; T;m; a1) =XT P (dymjf1; T;m; a2):and XT P (Dymjf1; T;m; a1) =XT P (Dymjf1; T;m; a2):2An obvious restriction would be to require that T doesn't vary with time, so that it is a mapping simplyfrom F to F . An analysis for T 's limited this way is beyond the scope of this paper.7



So in particular, if one algorithm outperforms another for certain kinds of evolution operators,then the reverse must be true on the set of all other evolution operators.Although this particular result is similar to the NFL result for the static case, in generalthe time-dependent situation is more subtle. In particular, with time-dependence there aresituations in which there can be a priori distinctions between algorithms even for thosemembers of the population arising after the �rst. For example, in general there will bedistinctions between algorithms when considering the quantity Pf P (dymjf; T;m; a). To seethis, consider the case where X is a set of contiguous integers and for all iterations T is ashift operator, replacing f(x) by f(x� 1) for all x (with min(x)� 1 � max(x)). For such acase we can construct algorithms which behave di�erently a priori. For example, take a tobe the algorithm that �rst samples f at x1, next at x1+1 and so on, regardless of the valuesin the population. Then for any f , dym is always made up of identical Y values. Accordingly,Pf P (dymjf; T;m; a) is non-zero only for dym for which all values dym(i) are identical. Othersearch algorithms, even for the same shift T , do not have this restriction on Y values. Thisconstitutes an a priori distinction between algorithms.3.1 Implications of the NFL theoremsAs emphasized above, the NFL theorems mean that if an algorithm does particularly well onone class of problems then it most do more poorly over the remaining problems. In particular,if an algorithm performs better than random search on some class of problems then in mustperform worse than random search on the remaining problems. Thus comparisons reportingthe performance of a particular algorithm with particular parameter setting on a few sampleproblems are of limited utility. While sicj results do indicate behavior on the narrow rangeof problems considered, one should be very wary of trying to generalize those results to otherproblems.Note though that the NFL theorem need not be viewed this way, as a way of comparingfunction classes F1 and F2 (or classes of evolution operators T1 and T2, as the case mightbe). It can be viewed instead as a statement concerning any algorithm's performance whenf is not �xed, under the uniform prior over cost functions, P (f) = 1=jFj. If we wish insteadto analyze performance where f is not �xed, as in this alternative interprations of the NFLtheorem, but in contrast with the NFL case f is now chosen from a non-uniform prior, thenwe must analyze explicitly the sumP (dymjm;a) =Xf P (dymjf;m; a)P (f) (1)Since it is certainly true that any class of problems faced by a practitioner will not have a atprior, what are the practical implications of the NFL theorems when viewed as a statementconcerning an algorithm's performance for non-�xed f? This question is taken up in greaterdetail in Section 4 but we make a few comments here.First, if the practitioner has knowledge of problem characteristics but does not incorpo-rate them into the optimization algorithm, then P (f) is e�ectively uniform. (Recall that8



P (f) can be viewed as a statement concerning the practitioner's choice of optimization al-gorithms.) In such a case, the NFL theorems establish that there are no formal assurancesthat the algorithm chosen will be at all e�ective.Secondly, while most classes of problems will certainly have some structure which, ifknown, might be exploitable, the simple existence of that structure does not justify choice ofa particular algorithm; that structure must be known and reected directly in the choice ofalgorithm to serve as such a justi�cation. In other words, the simple existence of structureper se, absent a speci�cation of that structure, cannot provide a basis for preferring one al-gorithm over another. Formally, this is established by the existence of NFL-type theorems inwhich rather than average over speci�c cost functions f , one averages over speci�c \kinds ofstructure", i.e., theorems in which one averages P (dym j m;a) over distributions P (f). Thatsuch theorems hold when one averages over all P (f) means that the indistinguishability ofalgorithms associated with uniform P (f) is not some pathological, outlier case. Rather uni-form P (f) is a \typical" distribution as far as indistinguishability of algorithms is concerned.The simple fact that the P (f) at hand is non-uniform cannot serve to determine one's choiceof optimization algorithm.Finally, it is important to emphasize that even if one is considering the case where f isnot �xed, performing the associated average according to a uniform P (f) is not essential forNFL to hold. NFL can also be demonstrated for a range of non-uniform priors. For example,any prior of the form Qx2X P 0(f(x)) (where P 0(y = f(x)) is the distribution of Y values)will also give NFL. The f -average can also enforce correlations between costs at di�erentX values and NFL still obtain. For example if costs are rank ordered (with ties broken insome arbitrary way) and we sum only over all cost functions given by permutations of thoseorders, then NFL still holds.The choice of uniform P (f) was motivated more from theoretical rather pragramatticconcerns, as a way of analyzing the theoretical structure of optimization. Nevertheless, thecautionary observations presented above make clear that an analysis of the uniform P (f)case has a number of rami�cations for practitioners.3.2 Stochastic optimization algorithmsThus far we have considered the case in which algorithms are deterministic. What is the sit-uation for stochastic algorithms? As it turns out, NFL results hold even for such algorithms.The proof of this is straightforward. Let � be a stochastic \non-potentially revisiting"algorithm. Formally, this means that � is a mapping taking any d to a d-dependent distribu-tion over X that equals zero for all x 2 dx. (In this sense � is what in statistics community isknown as a \hyper-parameter", specifying the function P (dxm+1(m+1) j dm; �) for all m andd.) One can now reproduce the derivation of the NFL result for deterministic algorithms,only with a replaced by � throughout. In so doing all steps in the proof remain valid. Thisestablishes that NFL results apply to stochastic algorithms as well as deterministic ones.9



4 A geometric perspective on the NFL theoremsIntuitively, the NFL theorem illustrates that even if knowledge of f (perhaps speci�edthrough P (f)) is not incorporated into a, then there are no formal assurances that a willbe e�ective. Rather, e�ective optimization relies on a fortuitous matching between f and a.This point is formally established by viewing the NFL theorem from a geometric perspective.Consider the space F of all possible cost functions. As previously discussed in regard toEquation (1) the probability of obtaining some dym isP (dymjm;a) =Xf P (dymjm;a; f)P (f):where P (f) is the prior probability that the optimization problem at hand has cost functionf . This sum over functions can be viewed as an inner product in F . More precisely, de�ningthe F -space vectors ~vdym;a;m and ~p by their f components ~vdym;a;m(f) � P (dymjm;a; f) and~p(f) � P (f) respectively, P (dymjm;a) = ~vdym;a;m � ~p: (2)This equation provides a geometric interpretation of the optimization process. dym canbe viewed as �xed to the sample that is desired, usually one with a low cost value, and mis a measure of the computational resources that can be a�orded. Any knowledge of theproperties of the cost function goes into the prior over cost functions, ~p. Then Equation(2) says the performance of an algorithm is determined by the magnitude of its projectiononto ~p, i.e. by how aligned ~vdym;a;m is with the problems ~p. Alternatively, by averaging overdym, it is easy to see that E(dymjm;a) is an inner product between ~p and E(dymjm;a; f). Theexpectation of any performance measure �(dym) can be written similarly.In any of these cases, P (f) or ~p must \match" or be aligned with a to get desiredbehavior. This need for matching provides a new perspective on how certain algorithms canperform well in practice on speci�c kinds of problems. For example, it means that the yearsof research into the traveling salesman problem (TSP) have resulted in algorithms alignedwith the (implicit) ~p describing traveling salesman problems of interest to TSP researchers.Taking the geometric view, the NFL result that Pf P (dymjf;m; a) is independent of a hasthe interpretation that for any particular dym andm, all algorithms a have the same projectiononto the the uniform P (f), represented by the diagonal vector ~1. Formally, vdym;a;m � ~1 =cst(dym;m). For deterministic algorithms the components of vdym;a;m (i.e. the probabilitiesthat algorithm a gives sample dym on cost function f after m distinct cost evaluations) areall either 0 or 1, so NFL also implies that Pf P 2(dym jm;a; f) = cst(dym;m). Geometrically,this indicates that the length of ~vdym;a;m is independent of a. Di�erent algorithms thusgenerate di�erent vectors ~vdym;a;m all having the same length and lying on a cone with constantprojection onto ~1. (A schematic of this situation is shown in Figure 1 for the case whereF is 3-dimensional.) Because the components of ~vc;a;m are binary we might equivalentlyview ~vdym;a;m as lying on the subset the vertices of the Boolean hypercube having the samehamming distance from ~1. 10
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Figure 1: Schematic view of the situation in which function space F is 3-dimensional. Theuniform prior over this space, ~1 lies along the diagonal. Di�erent algorithms a give di�erentvectors v lying in the cone surrounding the diagonal. A particular problem is represented byits prior ~p lying on the simplex. The algorithm that will perform best will be the algorithmin the cone having the largest inner product with ~p.Now restrict attention to algorithms having the same probability of some particular dym.The algorithms in this set lie in the intersection of 2 cones|one about the diagonal, set bythe NFL theorem, and one set by having the same probability for dym. This is in general anjFj�2 dimensional manifold. Continuing, as we impose yet more dym-based restrictions on aset of algorithms, we will continue to reduce the dimensionality of the manifold by focusingon intersections of more and more cones.The geometric view of optimization also suggests alternative measures for determininghow \similar" two optimization algorithms are. Consider again Equation (2). In that thealgorithm directly only gives ~vdym;a;m, perhaps the most straight-forward way to compare twoalgorithms a1 and a2 would be by measuring how similar the vectors ~vdym;a1;m and ~vdym;a2;m are.(E.g., by evaluating the dot product of those vectors.) However those vectors occur on theright-hand side of Equation (2), whereas the performance of the algorithms | which is afterall our ultimate concern | instead occur on the left-hand side. This suggests measuringthe similarity of two algorithms not directly in terms of their vectors ~vdym;a;m, but rather interms of the dot products of those vectors with ~p. For example, it may be the case thatalgorithms behave very similarly for certain P (f) but are quite di�erent for other P (f). Inmany respects, knowing this about two algorithms is of more interest than knowing howtheir vectors ~vdym;a;m compare.As another example of a similarity measure suggested by the geometric perspective,we could measure similarity between algorithms based on similarities between P (f)'s. Forexample, for two di�erent algorithms, one can imagine solving for the P (f) that optimizes11



P (dym j m;a) for those algorithms, in some non-trivial sense.3 We could then use somemeasure of distance between those two P (f) distributions as a gauge of how similar theassociated algorithms are.Unfortunately, exploiting the inner product formula in practice, by going from a P (f)to an algorithm optimal for that P (f), appears to often be quite di�cult. Indeed, evendetermining a plausible P (f) for the situation at hand is often di�cult. Consider, forexample, TSP problems with N cities. To the degree that any practitioner attacks allN -city TSP cost functions with the same algorithm, that practitioner implicitly ignoresdistinctions between such cost functions. In this, that practitioner has implicitly agreedthat the problem is one of how their �xed algorithm does across the set of all N -city TSPcost functions. However the detailed nature of the P (f) that is uniform over this class ofproblems appears to be di�cult to elucidate.On the other hand, there is a growing body of work that does rely explicitly on enu-meration of P (f). For example, applications of Markov random �elds [Gri76, KS80] to costlandscapes yield P (f) directly as a Gibbs distribution.5 Calculational applications of the NFL theoremsIn this section we explore some of the applications of the NFL theorems for performingcalculations concerning optimization. We will consider both calculations of practical andtheoretical interest, and begin with calculations of theoretical interest, in which information-theoretic quantities arise naturally.5.1 Information-theoretic aspects of optimizationFor expository purposes, we simplify the discussion slightly by considering only the histogramof number of instances of each possible cost value produced by a run of an algorithm, andnot the temporal order in which those cost values were generated. (Essentially all real-world performance measures are independent of such temporal information.) We indicatethat histogram with the symbol ~c; ~c has Y components (cY1 ; cY2; � � � ; cYjYj), where ci is thenumber of times cost value Yi occurs in the sample dym.Now consider any question like the following: \What fraction of cost functions give aparticular histogram ~c of cost values after m distinct cost evaluations produced by using aparticular instantiation of an evolutionary algorithm [FOW66, Hol93]?"At �rst glance this seems to be an intractable question. However it turn out that theNFL theorem provides a way to answer it. This is because | according to the NFL theorem| the answer must be independent of the algorithm used to generate ~c. Consequently wecan chose an algorithm for which the calculation is tractable.3In particular, one may want to impose restrictions on P (f). For instance, one may wish to only considerP (f) that are invariant under at least partial relabelling of the elements in X , to preclude there being analgorithm that will assuredly \luck out" and land on minx2Xf(x) on its very �rst query.12



Theorem 3 For any algorithm, the fraction of cost functions that result in a particularhistogram ~c = m~� is �f (~�) = � mc1 c2 ��� cjYj�jYjjX j�mjYjjX j = � mc1 c2 ��� cjYj�jYjm :For large enough m this can be approximated as�f(~�) �= C(m; jYj) exp [mS(~�)]QjYji=1 �1=2iwhere S(~�) is the entropy of the distribution ~�, and C(m; jYj) is a constant that does notdepend on ~�.This theorem is derived in Appendix C. If some of the ~�i are 0, the approximation still holds,only with Y rede�ned to exclude the y's corresponding to the zero-valued ~�i. However Yis de�ned, the normalization constant of Equation (3) can be found by summing over all ~�lying on the unit simplex [?].A question related to one addressed in this theorem is the following: \For a given costfunction, what is the fraction �alg of all algorithms that give rise to a particular ~c?" It turnsout that the only feature of f relevant for this question is the histogram of its cost valuesformed by looking across all X . Specify the fractional form of this histogram by ~�: thereare Ni = �i jX j points in X for which f(x) has the i'th Y value.In Appendix D it is shown that to leading order, �alg(~�; ~�) depends on yet anotherinformation theoretic quantity, the Kullback-Liebler distance [CT91] between ~� and ~�:Theorem 4 For a given f with histogram ~N = jX j~�, the fraction of algorithms that giverise to a histogram ~c = m~� is given by�alg(~�; ~�) = QjYji=1 �Nici ��jX jm � : (3)For large enough m this can be written as�alg(~�; ~�) �= C(m; jX j; jYj) e�mDKL(~�;~�)QjYji=1 �1=2iwhere DKL(~�; ~�) is the Kullback-Liebler distnace between the distributions � and �.As before, C can be calculated by summing ~� over the unit simplex.13



5.2 Measures of performanceWe now show how to apply the NFL framework to calculate certain benchmark performancemeasures. These allow both the programmatic (rather than ad hoc) assessment of the e�cacyof any individual optimization algorithm and principled comparisons between algorithms.Without loss of generality, assume that the goal of the search process is �nding a mini-mum. So we are interested in the �-dependence of P (min(~c) > � j f;m; a), by which we meanthe probability that the minimum cost an algorithm a �nds on problem f in m distinctevaluations is larger than �. At least three quantities related to this conditional probabilitycan be used to gauge an algorithm's performance in a particular optimization run:i) The uniform average of P (min(~c) > � j f;m; a) over all cost functions.ii) The form P (min(~c) > � j f;m; a) takes for the random algorithm, which uses no infor-mation from the sample dm.iii) The fraction of algorithms which, for a particular f andm, result in a ~c whose minimumexceeds �.These measures give benchmarks which any algorithm run on a particular cost functionshould surpass if that algorithm is to be considered as having worked well for that costfunction.Without loss of generality assume the that i'th cost value (i.e., Yi equals i. So cost valuesrun from a minimum of 1 to a maximum of jYj, in integer increments. The following resultsare derived in Appendix E.Theorem 5 Xf P (min(~c) > � j f;m) = !m(�)where !(�) � 1 � �=jYj is the fraction of cost lying above �. In the limit of jYj ! 1, thisdistribution obeys the following relationshipPf E(min(~c) j f;m)jYj = 1m+ 1 :Unless one's algorithm has its best-cost-so-far drop faster than the drop associated withthese results, one would be hard-pressed indeed to claim that the algorithm is well-suited tothe cost function at hand. After all, for such performance the algorithm is doing no betterthan one would expect it to for a randomly chosen cost function.Unlike the preceding measure, the measures analyzed below take into account the actualcost function at hand. This is manifested in the dependance of the values of those measureson the vector ~N given by the cost function's histogram ( ~N = jX j~�):14



Theorem 6 For the random algorithm ~a,P (min(~c) � � j f;m;~a) = m�1Yi=0 
(�)� i=jX j1� i=jX j : (4)where 
(�) � PjYji=�Ni=jX j is the fraction of points in X for which f(x) � �. To �rst orderin 1=jX j P (min(~c) > � j f;m; ~a) = 
m(�)�1 � m(m� 1)(1� 
(�))2
(�) 1jX j + � � ��: (5)This result allows the calculation of other quantities of interest for measuring performance,for example the quantityE(min(~c)jf;m; ~a) = jYjX�=1 � [P (min(~c) � � j f;m;~a) � P (min(~c) � �+ 1 j f;m; ~a)]:Note that for many cost functions of both practical and theoretical interest, cost values aredistributed Gaussianly. For such cases, we can use that Gaussian nature of the distributionto facilitate our calculations. In particular, if the mean and variance of the Gaussian are �and � respectively, then we have 
(�) = erfc((���)=p2�)=2, where erfc is the complimentaryerror function.To calculate the third performance measure, note that for �xed f and m, for any (deter-ministic) algorithm a, P (~c > � j f;m; a) is either 1 or 0. Therefore the fraction of algorithmswhich result in a ~c whose minimum exceeds � is given byPa P (min(~c) > � j f;m; a)Pa 1 :Expanding in terms of ~c, we can rewrite the numerator of this ratio as P~c P (min(~c) >�j~c)Pa P (~c j f;m; a). However the ratio of this quantity to Pa 1 is exactly what was calcu-lated when we evaluated measure (ii) (see the beginning of the argument deriving Equation(4)). This establishes the following:Theorem 7 For �xed f and m, the fraction of algorithms which result in a ~c whose minimumexceeds � is given by the quantity on the right-hand sides of Equations (4) and (5).As a particular example of applying this result, consider measuring the value of min(~c)produced in a particular run of your algorithm. Then imagine that when it is evaluated for� equal to this value, the quantity given in Equation (5) is less than 1=2. In such a situationthe algorithm in question has performaed worse than over half of all search algorithms, forthe f and m at hand; hardly a stirring endorsement.None of the discussion above explicitly concerns the dynamics of an algorithm's perfor-mance as m increases. Many aspects of such dynamics may be of interest. As an example, let15



us consider whether, as m grows, there is any change in how well the algorithm's performancecompares to that of the random algorithm.To this end, let the sample generated by the algorithm a after m steps be dm, and de�ney0 � min(dym). Let k be the number of additional steps it takes the algorithm to �nd anx such that f(x) < y0. Now we can estimate the number of steps it would have taken therandom search algorithm to search X � dX and �nd a point whose y was less than y0. Theexpected value of this number of steps is 1=z(d) � 1, where z(d) is the fraction of X � dxmfor which f(x) < y0. Therefore k+1� 1=z(d) is how much worse a did than would have therandom algorithm, on average.Next imagine letting a run for many steps over some �tness function f and plotting howwell a did in comparison to the random algorithm on that run, as m increased. Considerthe step where a �nds its n'th new value of min(~c). For that step, there is an associated k(the number of steps until the next min(dym)) and z(d). Accordingly, indicate that step onour plot as the point (n; k + 1� 1=z(d)). Put down as many points on our plot as there aresuccessive values of min(~c(d)) in the run of a over f .If throughout the run a is always a better match to f than is the random search algorithm,then all the points in the plot will have their ordinate values lie below 0. If the randomalgorithm won for any of the comparisons though, that would mean a point lying above 0.In general, even if the points all lie to one side of 0, one would expect that as the searchprogresses there is corresponding (perhaps systematic) variation in how far away from 0 thepoints lie. That variation tells one when the algorithm is entering harder or easier parts ofthe search.Note that even for a �xed f , by using di�erent starting points for the algorithm onecould generate many of these plots and then superimpose them. This allows a plot ofthe mean value of k + 1 � 1=z(d) as a function of n along with an associated error bar.Similarly, one could replace the single number z(d) characterizing the random algorithmwith a full distribution over the number of required steps to �nd a new minimum. In theseand similar ways, one can generate a more nuanced picture of an algorithm's performancethan is provided by any of the single numbers given by the performance measure discussedabove.6 Minimax distinctions between algorithmsThe NFL theorems do not direclty address minimax properties of search. For example, saywe're considering two deterministic algorithms, a1 and a2. It may very well be that thereexist cost functions f such that a1's histogram is much better (according to some appropriateperformance measure) than a2's, but no cost functions for which the reverse is true. For theNFL theorem to be obeyed in such a scenario, it would have to be true that there are manymore f for which a2's histogram is better than a1's than vice-versa, but it is only slightlybetter for all those f . For such a scenario, in a certain sense a1 has better \head-to-head"minimax behavior than a2; there are f for which a1 beats a2 badly, but none for which a1does substantially worse than a2. 16



Formally, we say that there exists head-to-head minimax distinctions between two algo-rithms a1 and a2 i� there exists a k such that for at least one cost function f , the di�erenceE(~c j f;m; a1)�E(~c j f;m; a2) = k, but there is no other f for which E(~c j f;m; a2)�E(~c jf;m; a1) = k. (A similar de�nition can be used if one is instead interested in �(~c) or dymrather than ~c.)It appears that analyzing head-to-head minimax properties of algorithms is substantiallymore di�cult than analyzing average behavior (like in the NFL theorem). Presently, verylittle is known about minimax behavior involving stochastic algorithms. In particular, it isnot known if there are any senses in which a stochastic version of a deterministic algorithmhas better/worse minimax behavior than that deterministic algorithm. In fact, even if westick completely to deterministic algorithms, only an extremely preliminary understandingof minimax issues has been reached.What we do know is the following. Consider the quantityXf Pdym;1 ;dym;2(z; z0 j f;m; a1; a2);for deterministic algorithms a1 and a2. (By PA(a) is meant the distribution of a randomvariable A evaluated at A = a.) For deterministic algorithms, this quantity is just thenumber of f such that it is both true that a1 produces a population with Y components zand that a2 produces a population with Y components z0.In Appendix F, it is proven by example that this quantity need not be symmetric underinterchange of z and z0:Theorem 8 In general,Xf Pdym;1 ;dym;2(z; z0 j f;m; a1; a2) 6=Xf Pdym;1 ;dym;2(z0; z j f;m; a1; a2): (6)This means that under certain circumstances, even knowing only the Y components of thepopulations produced by two algorithms run on the same (unknown) f , we can infer some-thing concerning what algorithm produced each population.Now consider the quantityXf PC1;C2(z; z0 j f;m; a1; a2);again for deterministic algorithms a1 and a2. This quantity is just the number of f such thatit is both true that a1 produces a histogram z and that a2 produces a histogram z0. It tooneed not be symmetric under interchange of z and z0 (see Appendix F). This is a strongerstatement then the asymmetry of dy 's statement, since any particular histogram correspondsto multiple populations.It would seem that neither of these two results directly implies that there are algorithmsa1 and a2 such that for some f a1's histogram is much better than a2's, but for no f 's is thereverse is true. To investigate this problem involves looking over all pairs of histograms (one17



pair for each f) such that there is the same relationship between (the performances of thealgorithms, as reected in) the histograms. Simply having an inequality between the sumspresented above does not seem to directly imply that the relative performances betweenthe associated pair of histograms is asymmetric. (To formally establish this would involvecreating scenarios in which there is an inequality between the sums, but no head-to-headminimax distinctions. Such an analysis is beyond the scope of this paper.)On the other hand, having the sums equal does carry obvious implications for whetherthere are head-to-head minimax distinctions. For example, if both algorithms are determinis-tic, then for any particular f Pdym;1 ;dym;2(z1; z2 j f;m; a1; a2) equals 1 for one (z1; z2) pair, and 0for all others. In such a case,Pf Pdym;1 ;dym;2(z1; z2 j f;m; a1; a2) is just the number of f that re-sult in the pair (z1; z2). So Pf Pdym;1 ;dym;2(z; z0 j f;m; a1; a2) =Pf Pdym;1 ;dym;2(z0; z j f;m; a1; a2)implies that there are no head-to-head minimax distinctions between a1 and a2. The conversedoes not appear to hold however.4As a preliminary analysis of whether there can be head-to-head minimax distinctions, wecan exploit the result in Appendix F, which concerns the case where jX j = jYj = 3. First,de�ne the following performance measures of two-element populations, Q(dy2):i) Q(y2; y3) = Q(y3; y2) = 2.ii) Q(y1; y2) = Q(y2; y1) = 0.iii) Q of any other argument = 1.In Appendix F we show that for this scenario there exist pairs of algorithms a1 and a2 suchthat for one f a1 generates the histogram fy1; y2g and a2 generates the histogram fy2; y3g,but there is no f for which the reverse occurs (i.e., there is no f such that a1 generates thehistogram fy2; y3g and a2 generates fy1; y2g).So in this scenario, with our de�ned performance measure, there are minimax distinc-tions between a1 and a2. For one f the performance measures of algorithms a1 and a2 arerespectively 0 and 2. The di�erence in the Q values for the two algorithms is 2 for that f .However there are no other f for which the di�erence is -2. For this Q then, algorithm a2 isminimax superior to algorithm a1.It is not currently known what restrictions on Q(dym) are needed for there to be minimaxdistinctions between the algorithms. As an example, it may well be that for Q(dym) =minifdym(i)g there are no minimax distinctions between algorithms.More generally, at present nothing is known about \how big a problem" these kinds ofasymmetries are. All of the examples of asymmetry considered here arise when the set of4Consider the grid of all (z; z0) pairs. Assign to each grid point the number of f that result in that gridpoint's (z; z0) pair. Then our constraints are i) by the hypothesis that there are no head-to-head minimaxdistinctions, if grid point (z1; z2) is assigned a non-zero number, then so is (z2; z1); and ii) by the no-free-lunch theorem, the sum of all numbers in row z equals the sum of all numbers in column z. These twoconstraints do not appear to imply that the distribution of numbers is symmetric under interchange of rowsand columns. Although again, like before, to formally establish this point would involve explicitly creatingsearch scenarios in which it holds. 18



X values a1 has visited overlaps with those that a2 has visited. Given such overlap, andcertain properties of how the algorithms generated the overlap, asymmetry arises. A precisespeci�cation of those \certain properties" is not yet in hand. Nor is it known how genericthey are, i.e., for what percentage of pairs of algorithms they arise. Although such issues areeasy to state (see Appendix F), it is not at all clear how best to answer them.However consider the case where we are assured that in m steps the populations of twoparticular algorithms have not overlapped. Such assurances hold, for example, if we arecomparing two hill-climbing algorithms that start far apart (on the scale of m) in X . Itturns out that given such assurances, there are no asymmetries between the two algorithmsfor m-element populations. To see this formally, go through the argument used to provethe NFL theorem, but apply that argument to the quantity Pf Pdym;1 ;dym;2(z; z0 j f;m; a1; a2)rather than P (~c j f;m; a). Doing this establishes the following:Theorem: If there is no overlap between dxm;1 and dxm;2, thenXf Pdym;1 ;dym;2(z; z0 j f;m; a1; a2) =Xf Pdym;1 ;dym;2(z0; z j f;m; a1; a2): (7)An immediate consequence of this theorem is that under the no-overlap conditions, thequantity Pf PC1;C2(z; z0 j f;m; a1; a2) is symmetric under interchange of z and z0, as areall distributions determined from this one over C1 and C2 (e.g., the distribution over thedi�erence between those C's extrema).Note that with stochastic algorithms, if they give non-zero probability to all dxm, thereis always overlap to consider. So there is always the possibility of asymmetry betweenalgorithms if one of them is stochastic.7 P (f )-independent resultsAll work to this point has largely considered the behavior of various algorithms across a widerange of problems. In this section we introduce the kinds of results that can be obtainedwhen we reverse roles and consider the properties of many algorithms on a single problem.More results of this type are found in [MW96]. The results of this section, although lesssweeping than the NFL results, hold no matter what the real world's distribution over costfunctions is.Let a and a0 be two search algorithms. De�ne a \choosing procedure" as a rule thatexamines the samples dm and d0m, produced by a and a0 respectively, and based on thosepopulations, decides to use either a or a0 for the subsequent part of the search. As anexample, one \rational" choosing procedure is to use a for the subsequent part of the searchif and only it has generated a lower cost value in its sample than has a0. Conversely wecan consider a \irrational" choosing procedure that went with the algorithm that had notgenerated the sample with the lowest cost solution.At the point that a choosing procedure takes e�ect the cost function will have beensampled at d[ � dm [d0m. Accordingly, if d>m refers to the samples of the cost function that19



come after using the choosing algorithm, then the user is interested in the remaining sampled>m. As always, without loss of generality it is assumed that the search algorithm chosenby the choosing procedure does not return to any points in d[.5The following theorem, proven in Appendix G, establishes that there is no a priorijusti�cation for using any particular choosing procedure. Loosely speaking, no matter whatthe cost function, without special consideration of the algorithm at hand, simply observinghow well that algorithm has done so far tells us nothing a priori about how well it would doif we continue to use it on the same cost function. For simplicity, in stating the result weonly consider deterministic algorithms.Theorem 9 Let dm and d0m be two �xed samples of size m, that are generated when thealgorithms a and a0 respectively are run on the (arbitrary) cost function at hand. Let A andB be two di�erent choosing procedures. Let k be the number of elements in c>m. ThenXa;a0 P (c>m j f; d; d0; k; a; a0; A) =Xa;a0 P (c>m j f; d; d0; k; a; a0; B):Implicit in this result is the assumption that the sum excludes those algorithms a and a0that do not result in d and d0 respectively when run on f .In the precise form it is presented above, the result may appear misleading, since ittreats all populations equally, when for any given f some populations will be more likelythan others. However even if one weights populations according to their probability ofoccurrence, it is still true that, on average, the choosing procedure one uses has no e�ect onlikely c>m. This is established by the following result, proven in Appendix H:Theorem 10 Under the conditions given in the preceding theorem,Xa;a0 P (c>m j f;m; k; a; a0; A) =Xa;a0 P (c>m j; f;m; k; a; a0; B):These results show that no assumption for P (f) alone justi�es using some choosingprocedure as far as subsequent search is concerned. To have an intelligent choosing procedure,one must take into account not only P (f) but also the search algorithms one is choosingamong. This conclusion may be surprising. In particular, note that it means that there is nointrinsic advantage to using a rational choosing procedure, which continues with the betterof a and a0, rather than using a irrational choosing procedure which does the opposite.These results also have interesting implications for degenerate choosing procedures A �falways use algorithm ag, and B � falways use algorithm a0g. As applied to this case, they5a can know to avoid the elements it has seen before. However a priori, a has no way to avoid the elementsit hasn't seen yet but that a0 has (and vice-versa). Rather than have the de�nition of a somehow dependon the elements in d0� d (and similarly for a0), we deal with this problem by de�ning c>m to be set only bythose elements in d>m that lie outside of d[. (This is similar to the convention we exploited above to dealwith potentially retracing algorithms.) Formally, this means that the random variable c>m is a function ofd[ as well as of d>m. It also means there may be fewer elements in the histogram c>m than there are in thepopulation d>m. 20



mean that for �xed f1 and f2, if f1 does better (on average) with the algorithms in some setA, then f2 does better (on average) with the algorithms in the set of all other algorithms.In particular, if for some favorite algorithms a certain \well-behaved" f results in betterperformance than does the random f , then that well-behaved f gives worse than randombehavior on the set all remaining algorithms. In this sense, just as there are no universallye�cacious search algorithms, there are no universally benign f which can be assured ofresulting in better than random performance regardless of one's algorithm.In fact, things may very well be worse than this. In supervised learning, there is arelated result [Wol96a]. Translated into the current context that result suggests that if onerestricts our sums to only be over those algorithms that are a good match to P (f), then it isoften the case that\stupid" choosing procedures | like the irrational procedure of choosingthe algorithm with the less desirable ~c | outperform \intelligent" ones. What the set ofalgorithms summed over must be for a rational choosing procedure to be superior to anirrational is not currently known.8 ConclusionsA framework has been presented in which to compare general-purpose optimization algo-rithms. A number of NFL theorems were derived that demonstrate the danger of comparingalgorithms by their performance on a small sample of problems. These same results also in-dicate the importance of incorporating problem-speci�c knowledge into the behavior of thealgorithm. A geometric interpretation was given showing what it means for an algorithm tobe well-suited to solving a certain class of problems. The geometric perspective also suggestsa number of measures to compare the similarity of various optimization algorithms.More direct calculational applications of the NFL theorem were demonstrated by inves-tigating certain information theoretic aspects of search, as well as by developing a numberof benchmark measures of algorithm performance. These benchmark measures should proveuseful in practice.We provided an analysis of the ways that algorithms can di�er a priori despite theNFL theorems. We have also provided an introduction to a variant of the framework thatfocuses on the behavior of a range of algorithms on speci�c problems (rather than speci�calgorithms over a range of problems). This variant leads directly to reconsideration of manyissues addressed by computational complexity, as detailed in [MW96].Much future work clearly remains | the reader is directed to [WM95] for a list of someof it. Most important is the development of practical applications of these ideas. Can the ge-ometric viewpoint be used to construct new optimization techniques in practice? We believethe answer to be yes. At a minimum, as Markov random �eld models of landscapes becomemore wide-spread, the approach embodied in this paper should �nd wider applicability.AcknowledgmentsWe would like to thank Raja Das, David Fogel, Tal Grossman, Paul Helman, Bennett Lev-itan, Una-May O'Rielly and the reviewers for helpful comments and suggestions. WGMthanks the Santa Fe Institute for funding and DHW thanks the Santa Fe Institute and TXN21
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the past performance of an algorithm has no bearing on its future performance. Accordingly,under such a sum, all algorithms perform equally.The proof is by induction. The induction is based on m = 1 and the inductive step isbased on breaking f into two independent parts, one for x 2 dxm and one for x 62 dxm. Theseare evaluated separately, giving the desired result.For m = 1 we write the sample as d1 = fdx1 ; f(dx1)g where dx1 is set by a. The onlypossible value for dy1 is f(dx1), so we have :Xf P (dy1 j f;m = 1; a) =Xf �(dy1; f(dx1))where � is the Kronecker delta function.Summing over all possible cost functions, �(dy1; f(dx1)) is 1 only for those functions whichhave cost dy1 at point dx1 . Therefore that sum equals jYjjX j�1, independent of dx1:Xf P (dy1 j f;m = 1; a) = jYjjX j�1which is independent of a. This bases the induction.The inductive step requires that if Pf P (dymjf;m; a) is independent of a for all dym, thenso also is Pf P (dym+1jf;m+ 1; a). Establishing this step completes the proof.We begin by writingP (dym+1jf;m+ 1; a) = P (fdym+1(1); : : : ; dym+1(m)g; dym+1(m+ 1)jf;m+ 1; a)= P (dym; dym+1(m+ 1)jf;m+ 1; a)= P (dym+1(m+ 1)jdm; f;m+ 1; a)P (dymjf;m+ 1; a)and thusXf P (dym+1jf;m+ 1; a) =Xf P (dym+1(m+ 1)jdym; f;m+ 1; a)P (dymjf;m+ 1; a):The new y value, dym+1(m + 1), will depend on the new x value, f and nothing else. So weexpand over these possible x values, obtainingXf P (dym+1jf;m+1; a) =Xf;x P (dym+1(m+ 1)jf; x)P (xjdym; f;m+1; a)P (dymjf;m+ 1; a)=Xf;x �(dym+1(m+ 1); f(x))P (xjdym; f;m+1; a)P (dymjf;m+ 1; a):Next note that since x = a(dxm; dym), it does not depend directly on f . Consequently weexpand in dxm to remove the f dependence in P (xjdym; f;m+1; a):Xf P (dym+1jf;m+1; a) = Xf;x;dxm�(dym+1(m+ 1); f(x))P (xjdm; a)P (dxmjdym; f;m+ 1; a)� P (dymjf;m+ 1; a)= Xf;dxm �(dym+1(m+ 1); f(a(dm))) � P (dmjf;m; a)23



where use was made of the fact that P (xjdm; a) = �(x; a(dm)) and the fact that P (dmjf;m+1; a) = P (dmjf;m; a).The sum over cost functions f is done �rst. The cost function is de�ned both over thosepoints restricted to dxm and those points outside of dxm. P (dmjf;m; a) will depend on the fvalues de�ned over points inside dxm while �(dym+1(m+ 1); f(a(dm))) depends only on the fvalues de�ned over points outside dxm. (Recall that a(dxm) 62 dxm.) So we haveXf P (dym+1jf;m+1; a) =Xdxm Xf(x2dxm)P (dmjf;m; a) Xf(x62dxm)�(dym+1(m+1); f(a(dm))): (8)The sum Pf(x62dxm) contributes a constant, jYjjX j�m�1, equal to the number of functionsde�ned over points not in dxm passing through (dxm+1(m+ 1); f(a(dm))). SoXf P (dym+1jf;m+1; a) = jYjjX j�m�1 Xf(x2dxm);dxmP (dmjf;m; a)= 1jYj Xf;dxm P (dmjf;m; a)= 1jYjXf P (dymjf;m; a)By hypothesis the right hand side of this equation is independent of a, so the left hand sidemust also be. This completes the proof.B NFL proof for time-dependent cost functionsIn analogy with the proof of the static NFL theorem, the proof for the time-dependent caseproceeds by establishing the a-independence of the sum PT P (cj f; T;m; a), where here c iseither dym or Dym.To begin, replace each T in this sum with a set of cost functions, fi, one for each iterationof the algorithm. To do this, we start with the following:XT P (cjf; T;m; a) =XT Xdxm Xf2���fm P (cj~f; dxm; T;m; a)P (f2 � � � fm; dxm j f1; T;m; a)=Xdxm Xf2���fm P (~c j ~f; dxm)P (dxm j ~f;m; a)XT P (f2 � � � fm j f1; T;m; a);where the sequence of cost functions, fi, has been indicated by the vector ~f = (f1; � � � ; fm).In the next step, the sum over all possible T is decomposed into a series of sums. Each sumin the series is over the values T can take for one particular iteration of the algorithm. Moreformally, using fi+1 = Ti(fi), we writeXT P (cjf; T;m; a) =Xdxm Xf2���fm P (~c j ~f; dxm)P (dxm j ~f ;m; a)�XT1 �(f2; T1(f1)) � � �XTm�1 �(fm; Tm�1(Tm�2(� � � T1(f1)))):24



Note that PT P (cjf; T;m; a) is independent of the values of Ti>m�1, so those values can beabsorbed into an overall a-independent proportionality constant.Consider the innermost sum over Tm�1, for �xed values of the outer sum indices T1 : : : Tm�2.For �xed values of the outer indices Tm�1(Tm�2(� � � T1(f1))) is just a particular �xed cost func-tion. Accordingly, the innermost sum over Tm�1 is simply the number of bijections of F thatmap that �xed cost function to fm. This is the constant, (jFj�1)!. Consequently, evaluatingthe Tm�1 sum yieldsXT P (cj f; T;m; a1) /Xdxm Xf2 ���fm P (cj~f; dxm)P (dxm j ~f;m; a)�XT1 �(f2; T1(f1)) � � �XTm�2 �(fm�1; Tm�2(Tm�3(� � �T1(f1)))):The sum over Tm�2 can be accomplished in the same manner Tm�1 is summed over. In fact,all the sums over all Ti can be done, leavingXT P (cjf; T;m; a1) /Xdxm Xf2���fm P (Dymj~f; dxm)P (dxm j ~f;m; a)=Xdxm Xf2���fm P (cj~f ; dxm)P (dxm j f1 � � � fm�1;m; a): (9)In this last step the statistical independence of c and fm has been used.Further progress depends on whether c represents dym or Dym. We begin with analysis ofthe Dym case. For this case P (cj~f ; dxm) = P (Dymjfm; dxm), since Dym only reects cost valuesfrom the last cost function, fm. Using this result givesXT P (Dymj f; T;m; a1) /Xdxm Xf2���fm�1 P (dxmjf1 � � � fm�1;m; a)Xfm P (Dymjfm; dxm)The �nal sum over fm is a constant equal to the number of ways of generating the sampleDym from cost values drawn from fm. The important point is that it is independent ofthe particular dxm. Because of this the sum over dxm can be evaluated eliminating the adependence. XT P (Dymjf; T;m; a)/ Xf2���fm�1Xdxm P (dxm j f1 � � � fm�1;m; a) / 1This completes the proof of Theorem 2 for the case of Dym.The proof of Theorem 2 is completed by turning to the dym case. This is considerablymore di�cult since P (~c j ~f; dxm) can not be simpli�ed so that the sums over fi can not bedecoupled. Nevertheless, the NFL result still holds. This is proven by expanding Equation(9) over possible dym values.XT P (dymjf; T;m; a) /Xdxm Xf2���fmXdym P (dymjdym)P (dym j ~f ; dxm)P (dxm j f1 � � � fm�1;m; a)=Xdym P (dymjdym)Xdxm Xf2���fm P (dxm j f1 � � � fm�1;m; a) mYi=1 �(dym(i); fi(dxm(i)))(10)25



The innermost sum over fm only has an e�ect on the �(dym(i); fi(dxm(i))) term so it contributesPfm �(dym(m); fm(dxm(m))). This is a constant, equal to jYjjX j�1. This leavesXT P (dymj f; T;m; a) /Xdym P (dymjdym)Xdxm Xf2���fm�1 P (dxm j f1 � � � fm�1;m; a)m�1Yi=1 �(dym(i); fi(dxm(i))):The sum over dxm(m) is now simple,XT P (dymjf; T;m; a) /Xdym P (dymjdym) Xdxm(1)� � � Xdxm(m�1) Xf2���fm�1 P (dxm�1 j f1 � � � fm�2;m; a)� m�1Yi=1 �(dym(i); fi(dxm(i))):The above equation is of the same form as Equation (10), only with a remaining populationof size m� 1 rather than m. Consequently, in an analogous manner to the scheme used toevaluate the sums over fm and dxm(m) that existed in Equation (10), the sums over fm�1 anddxm(m� 1) can be evaluated. Doing so simply generates more a-independent proportionalityconstants. Continuing in this manner, all sums over the fi can be evaluated to �ndXT P (~c j f; T;m; a1) /Xdym P (~c j dym) Xdxm(1)P (dxm(1) j m;a) �(dym(1); f1(dxm(1))):There is algorithm-dependence in this result but it is the trivial dependence discussed pre-viously. It arises from how the algorithm selects the �rst x point in its population, dxm(1).Restricting interest to those points in the sample that are generated subsequent to the �rst,this result shows that there are no distinctions between algorithms. Alternatively, summingover the initial cost function f1, all points in the sample could be considered while stillretaining an NFL result.C Proof of �f resultAs noted in the discussion leading up to Theorem 3 the fraction of functions giving a speci�edhistogram ~c = m~� is independent of the algorithm. Consequently, a simple algorithm isused to prove the theorem. The algorithm visits points in X in some canonical order,say x1; x2; : : : ; xm. Recall that the histogram ~c is speci�ed by giving the frequencies ofoccurrence, across the x1; x2; : : : ; xm, for each of the jYj possible cost values. The numberof f 's giving the desired histogram under this algorithm is just the multinomial giving thenumber of ways of distributing the cost values in ~c. At the remaining jX j �m points in Xthe cost can assume any of the jYj f values giving the �rst result of Theorem 3.The expression of �f (~�) in terms of the entropy of ~� follows from an application ofStirling's approximation to order O(1=m), which is valid when all of the ci are large. In this26



case the multinomial is written:ln mc1 c2 � � � cjYj! �= m lnm� jYjXi=1 ci ln ci + 12�lnm� jYjXi=1 ln ci��= mS(~�) + 12��1� jYj� lnm� jYjXi=1 ln�i�from which the theorem follows by exponentiating this result.D Proof of �alg resultIn this section the proportion of all algorithms that give a particular ~c for a particular f iscalculated. The calculation proceeds in several steps:Since X is �nite there are �nite number of di�erent samples. Therefore any (determinis-tic) a is a huge { but �nite { list indexed by all possible d's. Each entry in the list is the xthe a in question outputs for that d-index.Consider any particular unordered set of m (X ;Y) pairs where no two of the pairs sharethe same x value. Such a set is called an unordered path �. Without loss of generality, fromnow on we implicitly restrict the discussion to unordered paths of length m. A particular� is in or from a particular f if there is a unordered set of m (x; f(x)) pairs identical to �.The numerator on the right-hand side of Equation (3) is the number of unordered paths inthe given f that give the desired ~c.The number of unordered paths in f that give the desired ~c - the numerator on theright-hand side of Equation (3) - is proportional to the number of a's that give the desired~c for f and the proof of this claim constitutes a proof of Equation (3).) Furthermore, theproportionality constant is independent of f and ~c.Proof: The proof is established by constructing a mapping � : a 7! � taking in an a thatgives the desired ~c for f , and producing a � that is in f and gives the desired ~c. Showingthat for any � the number of algorithms a such that �(a) = � is a constant, independent of�; f , and ~c. and that � is single-valued will complete the proof.Recalling that that every x value in an unordered path is distinct any unordered path �gives a set of m! di�erent ordered paths. Each such ordered path �ord in turn provides a setof m successive d's (if the empty d is included) and a following x. Indicate by d(�ord) thisset of the �rst m d's provided by �ord.>From any ordered path �ord a \partial algorithm" can be constructed. This consistsof the list of an a, but with only the m d(�ord) entries in the list �lled in, the remainingentries are blank. Since there are m! distinct partial a's for each � (one for each ordered pathcorresponding to �), there are m! such partially �lled-in lists for each �. A partial algorithmmay or may not be consistent with a particular full algorithm. This allows the de�nitionof the inverse of �: for any � that is in f and gives ~c, ��1(�) � (the set of all a that areconsistent with at least one partial algorithm generated from � and that give ~c when run onf). 27



To complete the �rst part of the proof it must be shown that for all � that are in f andgive ~c, ��1(�) contains the same number of elements, regardless of �, f , or c. To that end,�rst generate all ordered paths induced by � and then associate each such ordered path witha distinct m-element partial algorithm. Now how many full algorithms lists are consistentwith at least one of these partial algorithm partial lists? How this question is answered isthe core of this appendix. To answer this question, reorder the entries in each of the partialalgorithm lists by permuting the indices d of all the lists. Obviously such a reordering won'tchange the answer to our question.Reordering is accomplished by interchanging pairs of d indices. First, interchange anyd index of the form ((dxm(1); dym(1)); : : : ; (dxm(i � m); dym(i � m))) whose entry is �lled inin any of our partial algorithm lists with d0(d) � ((dxm(1); z); : : : ; (dxm(i); z)), where z issome arbitrary constant Y value and xj refers to the j'th element of X . Next, create somearbitrary but �xed ordering of all x 2 X : (x1; : : : ; xjX j). Then interchange any d0 index ofthe form ((dxm(1); z; : : : ; (dxm(i � m); z) whose entry is �lled in in any of our (new) partialalgorithm lists with d00(d0) � ((x1; z); : : : ; (xm; z)). Recall that all the dxm(i) must be distinct.By construction, the resultant partial algorithm lists are independent of �, ~c and f , as is thenumber of such lists (it's m!). Therefore the number of algorithms consistent with at leastone partial algorithm list in ��1(�) is independent of �, c and f . This completes the �rstpart of the proof.For the second part, �rst choose any 2 unordered paths that di�er from one another, Aand B. There is no ordered path Aord constructed from A that equals an ordered path Bordconstructed from B. So choose any such Aord and any such Bord. If they disagree for thenull d, then we know that there is no (deterministic) a that agrees with both of them. Ifthey agree for the null d, then since they are sampled from the same f , they have the samesingle-element d. If they disagree for that d, then there is no a that agrees with both ofthem. If they agree for that d, then they have the same double-element d. Continue in thismanner all the up to the (m� 1)-element d. Since the two ordered paths di�er, they musthave disagreed at some point by now, and therefore there is no a that agrees with both ofthem. Since this is true for any Aord from A and any Bord from B, we see that there is no ain ��1(A) that is also in ��1(B). This completes the proof.To show the relation to the Kullback-Liebler distance the product of binomials is ex-panded with the aid of Stirlings approximation when both Ni and ci are large:ln jYjYi=1 Nici ! �= jYjXi=1�12 ln 2� +Ni lnNi � ci ln ci � (Ni � ci) ln(Ni � ci) +12�lnNi � ln(Ni � ci)� ln ci�:We it has been assumed that ci=Ni � 1, which is reasonable when m � jXj. Expandingln(1� z) = �z � z2=2 � � � � , to second order givesln jYjYi=1 Nici ! �= jYjXi=1 ci ln�Nici �� 12 ln ci + ci � 12 ln 2� � ci2Ni�ci � 1 + � � ��28



Using m=jX j � 1 then in terms of ~� and ~� one �ndsln jYjYi=1 Nici ! �= �mDKL(~�; ~�) +m�m ln� mjX j�� jYj2 ln 2�� jYjXi=1 12 ln(�im) + m2jX j��i�i �(1� �im+ � � � );whereDKL(~�; ~�) � Pi �i ln(�i=�i) is the Kullback-Liebler distance between the distributions~� and ~�. Exponentiating this expression yields the second result in Theorem 4.E Benchmark measures of performanceThe result for each benchmark measure is established in turn.The �rst measure is Pf P (min(dym)jf;m; a). ConsiderXf P (min(dym)jf;m; a) (11)for which the summand equals 0 or 1 for all f and deterministic a. It is 1 only ifi) f(dxm(1)) = dym(1)ii) f(a[dm(1)]) = dym(2)iii) f(a[dm(1); dm(2)]) = dym(3)and so on. These restrictions will �x the value of f(x) at m points while f remains free atall other points. Therefore Xf P (dym j f;m; a) = jYjjX j�m:Using this result in Equation (11) we �ndXf P (min(dym) > � j f;m) = 1jYjm Xdym P (min(dym) > � j dym) = 1jYjm Xdym3min(dym)>� 1= 1jYjm (jYj � �)m:which is the result quoted in Theorem 5.In the limit as jYj gets large write Pf E(min(~c)jf;m) = PjYj�=1 �[!m(� � 1) � !m(�)] andsubstitute in for !(�) = 1 � �=jYj. Replacing � with � + 1 turns the sum into PjYj�1�=0 [� +1] [(1� �!Yj)m � (1 � �+1jYj )m]. Next, write jYj = b=� for some b and multiply and divide thesummand by �. Since jYj ! 1 then �! 0. To take the limit of �! 0, apply L'hopital's29



rule to the ratio in the summand. Next use the fact that � is going to 0 to cancel termsin the summand. Carrying through the algebra, and dividing by b=�, we get a Riemannsum of the form mb2 R b0 dx x(1 � x=b)m�1. Evaluating the integral gives the second result inTheorem 5.The second benchmark concerns the behavior of the random algorithm. Marginalizingover the Y values of di�erent histograms ~c, the performance of ~a isP (min(~c) � � j f;m; ~a) =X~c P (min(~c) � � j~c)P (~c j f;m; ~a)Now P (~c j f;m; ~a) is the probability of obtaining histogram ~c inm random draws from thehistogram ~N of the function f . This can be viewed as the de�nition of ~a. This probabilityhas been calculated previously as QjYji=1 �Nici �=�jX jm �. SoP (min(~c) � � j f;m;~a) = 1�jX jm � mXc1=0 � � � mXcjYj=0 �( jYjXi=1 ci;m)P (min(~c) � �j~c) jYjYi=1 Nici != 1�jX jm � mXc�=0 � � � mXcjYj=0 �( jYjXi=� ci;m) jYjYi=� Nici != �PjYji=�Nim ��jX jm � � �
(�)jX jm ��jX jm �which is Equation (4) of Theorem 6.F Proof related to minimax distinctions between algo-rithmsThe proof is by example.Consider three points in X , x1; x2, and x3, and three points in Y , y1; y2, and y3.1) Let the �rst point a1 visits be x1, and the �rst point a2 visits be x2.2) If at its �rst point a1 sees a y1 or a y2, it jumps to x2. Otherwise it jumps to x3.3) If at its �rst point a2 sees a y1, it jumps to x1. If it sees a y2, it jumps to x3.Consider the cost function that has as the Y values for the three X values fy1; y2; y3g,respectively.For m = 2, a1 will produce a population (y1; y2) for this function, and a2 will produce(y2; y3).The proof is completed if we show that there is no cost function so that a1 produces apopulation containing y2 and y3 and such that a2 produces a population containing y1 andy2. There are four possible pairs of populations to consider:30



i) [(y2; y3); (y1; y2)];ii) [(y2; y3); (y2; y1)];iii) [(y3; y2); (y1; y2)];iv) [(y3; y2); (y2; y1)].Since if its �rst point is a y2 a1 jumps to x2 which is where a2 starts, when a1's �rst point isa y2 its second point must equal a2's �rst point. This rules out possibilities i) and ii).For possibilities iii) and iv), by a1's population we know that f must be of the formfy3; s; y2g, for some variable s. For case iii), s would need to equal y1, due to the �rst pointin a2's population. However for that case, the second point a2 sees would be the value at x1,which is y3, contrary to hypothesis.For case iv), we know that the s would have to equal y2, due to the �rst point in a2'spopulation. However that would mean that a2 jumps to x3 for its second point, and wouldtherefore see a y2, contrary to hypothesis.Accordingly, none of the four cases is possible. This is a case both where there is nosymmetry under exchange of dy's between a1 and a2, and no symmetry under exchange ofhistograms. QED.G Fixed cost functions and choosing proceduresSince any deterministic search algorithm is a mapping from d � D to x � X , any searchalgorithm is a vector in the space XD. The components of such a vector are indexed by thepossible populations, and the value for each component is the x that the algorithm producesgiven the associated population.Consider now a particular population d of size m. Given d, we can say whether anyother population of size greater than m has the (ordered) elements of d as its �rst m (or-dered) elements. The set of those populations that do start with d this way de�nes a set ofcomponents of any algorithm vector a. Those components will be indicated by a�d.The remaining components of a are of two types. The �rst is given by those populationsthat are equivalent to the �rst M < m elements in d for some M . The values of thosecomponents for the vector algorithm a will be indicated by a�d. The second type consists ofthose components corresponding to all remaining populations. Intuitively, these are popu-lations that are not compatible with d. Some examples of such populations are populationsthat contain as one of their �rst m elements an element not found in d, and populations thatre-order the elements found in d. The values of a for components of this second type will beindicated by a?d.Let proc be either A or B. We are interested inXa;a0 P (c>m j f; d1; d2; k; a; a0; proc) = Xa?d;a0?d0 Xa�d;a0�d0 Xa�d;a0�d0 P (c>mjf; d; d0; k; a; a0; proc):31



The summand is independent of the values of a?d and a0?d for either of our two d's. Inaddition, the number of such values is a constant. (It is given by the product, over allpopulations not consistent with d, of the number of possible x each such population couldbe mapped to.) Therefore, up to an overall constant independent of d, d0, f , and proc, thesum equals Xa�d;a0�d0 Xa�d;a0�d0 P (c>m j f; d; d0; a�d; a0�d0 ; a�d; a0�d0; proc):By de�nition, we are implicitly restricting the sum to those a and a0 so that our summandis de�ned. This means that we actually only allow one value for each component in a�d(namely, the value that gives the next x element in d), and similarly for a0�d0. Therefore thesum reduces to Xa�d;a0�d0 P (c>m j f; d; d0; a�d; a0�d0; proc):Note that no component of a�d lies in dx[. The same is true of a0�d0. So the sum over a�d isover the same components of a as the sum over a0�d0 is of a0. Now for �xed d and d0, proc'schoice of a or a0 is �xed. Accordingly, without loss of generality, the sum can be rewrittenas Xa�d P (c>m j f; d; d0; a�d)with the implicit assumption that c>m is set by a�d. This sum is independent of proc.H Proof of Theorem 9Let proc refer to a choosing procedure. We are interested inXa;a0 P (c>m j f;m; k; a; a0; proc) = Xa;a0;d;d0 P (c>m j f; d; d0; k; a; a0; proc)� P (d; d0 j f; k;m; a; a0; proc):The sum over d and d0 can be moved outside the sum over a and a0. Consider any term in thatsum (i.e., any particular pair of values of d and d0). For that term, P (d; d0 j f; k;m; a; a0; proc)is just 1 for those a and a0 that result in d and d0 respectively when run on f , and 0otherwise. (Recall the assumption that a and a0 are deterministic.) This means that theP (d; d0 j f; k;m; a; a0; proc) factor simply restricts our sum over a and a0 to the a and a0considered in our theorem. Accordingly, our theorem tell us that the summand of the sumover d and d0 is the same for choosing procedures A and B. Therefore the full sum is thesame for both procedures. 32


