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Abstract. All of science relies on past experimentation and hypotheses. Unfortunately,
the science of evolutionary computation is hampered by a general lack of awareness of many
early efforts in the field. This paper offers a review of one such contribution from 1967
which employed self-adaptation, co-evalution, and assessed the utility of recombination in
various settings. The conclusions, reconfirmed in recent literature; indicate that recombina-
tion (uniform or one-point crossover) is best applied in non-epistatic settings, Theorctical
analysis supported the experimental findings and now raises questions concerning commaon
applications of schema theory to describe the behavior of evolutionary algorithms.
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1. Introduction

All scientific endeavors rely on past experimentation and theory. To do science requires an itera-
tive process of posing hypotheses, collecting data, analyzing the data in light of the hypotheses,
and revising the hypotheses. Current theories should be framed in light of what is known to
be true, what is known to be false, and what remains to be discovered. Evidence is required to
suppart or refute theory, Failing to consider prior data, or choosing to ignore it because it does
not fit within the scientist’s “perfect” theory, degrades the integrity of the procedure, leading
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to a less than efficient search for appropriate explanations of studied phenomena — and yet
this occurs all too frequently. Unfortunately, evolutionary eomputation is not immune to this
“selective science.” Indeed, it might serve as a prototypical example for students of history to
examine years from now.

Evolutionary computation has a long and interesting history. Readers of popular science have
been told that the field of study essentially began alone with genetic algorithms in the United
States in the early 1960s (Levy, 1992, pp. 155-162; Waldrop, 1992, pp. 170-174; and others).
Most practitioners of simulated evolution know otherwise, Many students of evolutionary com-
putation have read of efforts in Germany to use evolution strategies to design physical devices
in the mid-1960s (e.g., Rechenberg, 1965; and others), and of earlier evolutionary programming
research in the United States to achieve artificial intelligence using variable-length represen-
tations (e.g., Fogel, 1962, 1964; and others). But these same students have been presented
with considerable misinformation regarding these and other efforts. Certain key publications in
evolutionary computation appear to distort or aggrandize different lines of investigation (e.p.,
Goldberg, 1989; Mitchell, 1996; and others).

For example, Goldberg (1989, pp. 104-106) unfortunately downplayed evolution strategies
as being limited in their “schema processing,” and dismissed evolutionary programming as in-
capable of solving other than very simple problems. It is difficult to explain this dismissal; there
were many publications prior to 1989 investipating both methods theoretically and experimen-
tally that indicated their practicality across diverse problems (e.g., Burgin, 1969; Rechenberg,
1973; Schwefel, 1881; Fogel, 1988; and very many others). Moreover, research in evolution strate-
gies incorporated not only the cut and splice crossover operators common to genetic algorithms,
but other more elaborate forms extending across multiple parents.!

If these sorts of inappropriate judgments were limited in scope merely to evolution strategies
and evolutionary programming, this would present little problem to students of the history of
evolutionary computation. The available literature is replete with examples of these techniques
in multiple conferences and archive publications (e.g., Voigt et al., 1996; Angeline et al., 1997:
Porto et al. 1998; and others), and efforts to downplay their importance in evolutionary compu-
tation are apparent and easily overcome. What is more difficult to overcome are the dismissals of
key early work in evolutionary algorithms where the original authors are no longer active or alive,
particularly when these efforts essentially duplicate and predate canonical genetic algorithms.

For example, Bremermann (1962), following Bremermann (1958) which concentrated on a
mutation-based evolutionary algorithm, offered an optimization procedure with the following
elements:

e Simulated chromosomes using binary or floating point representations
s A population of parents that give rise to offspring
s Recombination of pairs or more than two parents

"Fogel et al. {1966} also proposed a multiple parent majority logic operator within evolutionary programming
acting on finite state machines. This was not put in practice, however, due to memory limitations on the size of
the resulting offspring machine,
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s An ability to handle problems with linear constraints

And this was not the extent of Hans Bremermann’s contribution. Indeed the early period of
evolutionary computation owes much to Bremermann and Rogson (1964), Bremermann et al.
(1965, 1966), Bremermann (1967, 1968, 1970, 1973), and his students {e.g. Goguen and Goguen,
1967). Despite over 35 years of contributions up until his death in 1996, few who are active in
evolutionary computation are aware of the magnitude of Bremermann's work and the degree to
which it anticipated future developments in genetic algorithms. For example, Mitchell (1996, p.
3) described the introduction of a population-based algorithm using recombination, mutation,
and selection in Holland (1975) as a “major innovation,” yet Bremermann offered this more than
a decade earlier.” Moreover, Goldberg (1989, p. 104) stated (unfortunately in error) that Bre-
mermann merely proposed a recombination operator but did not present experimental results,
In fact, Bremermann (1962) did indeed offer results of experiments that nsed both recombination
and mutation to evolve solutions to linear systems of equations and linear programming prob-
lems: the results were even particularized by the machine time reguired and a recognition that
the difficulty of the search problem in linear systems was dependent on the condition number of
the matrix,

Bremermann is not alone in this oversight. Alex Fraser's undertakings have also been largely
ignored by the evolutionary computation community, and yet Fraser (1957a) proposed an algo-
rithm consisting of:

Simulated chromosomes using a binary representation

A population of parents that give rise to offspring
¢ Recombination of parents via a generalized n-point crossover operator

Explicit construction of linkage groups of genes

Selection based on maximizing, minimizing, or stabilizing against extreme values

The possibility of varying the number of progeny per parent

Fraser continued to investigate artificial evolution to study properiies of genetic adaptive systems
throughout the late 1950s and 1960s (e.g., Fraser, 1957b, 1960a, 1960b, 1962; Fraser and Burnell,
1967a, 1967b; and others), culminating in an explicit recognition of evolution as a mechanism
for generating purposive behavior (Fraser, 1968), and the textbook Fraser and Burnell {(1970).
Almost 20 years later, Goldberg (1989, p. 90) reported that “...there was no recognition in
Fraser's writing that nature’s search algorithm of choice might be useful in artificial settings. It
remained for [John] Holland and his students to apply geneticlike operators to artificial problems
in adaptation.” But this characterization does not appear to do justice to the magnitude of the
contribution and the understanding of genetic adaptive systems that Fraser offered. And there

Enfitchell (1996, p. 3) went further to suggest that Holland (1975) was the first attempt to put computational
evolution on a firm theoretical footing, but earlier Bremermann (1958) and Bremermann et al. (1966) offered
theory describing the optimum probability of mutation to maximize the rate of convergence in selected problems.
Rechenberg (1973) also offered theoretical results on optimum settings for the standard deviation of zerc-mean
Caussian mutation in evolution strategies, and there were several other prior efforts to describe computational
evolution mathematically (e.g. Goguen and Goguen, 1967; Reed et al., 1967; and others),
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were other experiments in simulated genetic adaptive systems that have received essentially no
attention whatsoever (e.g., Barker, 1958; Crosby, 1963; and others).

Fortunately, many of these original contributions can be found in libraries and read in their
original form, Further, some of the pioneers of these contributions are still available to recount
their activities and detail the intended direction of their work. Fogel (1998) provides an edited set
of selected readings that includes many of the above-mentioned examples, as well as Box (1957),
Friedberg (1958), Friedman (1956}, and others, based on the editor’s communications with these
pioneers and their colleagues collected over the past four years. This research suggests that the
idea to simulate evolution on a computer for addressing engineering problems or studying general
adaptive systems arose as many as 10 times, independently, over the course of two decades.
Indeed, the field of evolutionary computation has no single “father,” but rather a population of
parents.

When considering the advances made between the early years of evolutionary computation
and current lines of inquiry, several concepts and innovations might be considered. For example:

e Self-adoeptation, where the evolutionary algorithm evolves the manner in which it searches
for solutions online

e Co-evolution, where individual solutions are measured in light of their interactions with
other selutions in the extant population, as opposed to a static evaluation function

e [lemes, where a population is divided into multiple smaller groups allowing for niching to
subproblems and migration of individuals between these groups

s Emergence, where a complex adaptive system generates intricate “emergent” behavior
from simple locally interactive rules

and certainly other concepts could be offered. But in fact none of these are recent inventions:
Self-adaptation appeared as early as Reed et al. (1967), co-evolution was offered in Barricelli
(1963), demes were offered in Bossert (1967), and the identification of emergent patterns in
an artificial life setting dates back to possibly the earliest efforts in evolutionary computation
{Barricelli, 1954).

It is difficult to imagine what the attempts to simulate evolution on computers from the
early 1950s must have involved. Even the “large” IBM computers that were used in evolutionary
experiments in Friedberg (1958) and Fogel et al. (1965) were only about one-half the speed of
an Apple IT, with archaic programming by punch cards and no effective debugging tools. When
it was first invented, evolutionary computation was an idea about three decades ahead of its
time.

The history of evolutionary computation can be usefully applied to guide current investi-
sations, Indeed, the field’s direction might have been quite different if more consideration had
been given to particular early efforts. Perhaps more attention could have been focused on using
multiparent recombination (using more than two parents), following Kaufman (1967), Bremer-
mann (1962), Bremermann et al. (1966), Fogel et al. (1966, p. 21), and others. The study of
emergent properties and artificial life might have benefited from greater regard for the artificial
ecosystems experiments of Conrad and Pattee (1970). Moreover, several early contributions
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provided counterexamples to theoretical arguments and speculations offered mainly within the
development of genetic algorithms (e.g., an unquestioned advantage to using crossover in evo-
lutionary algorithms). One such paper was Reed et al. (1967), a truly remarkable contribution
that will be reviewed in some detail here.

2. Simulation of Biological Evolution and
Machine Learning

2.1. Owverview

Jon Reed, Robert Toombs, and Nils Aall Barricelli published some of the earliest experiments
in three distinct areas: co-evolution in gaming, self-adaptation, and comparing the effectiveness
of different operators. Their paper: “Simulation of Biological Evolution and Machine Learning”
appeared in the prominent Journal of Theorelical Biology (vol. 17, pp. 319-342, 1967). The
framework included the evolution of probabilistic strategies for playing a simplified game of
poker using parameters to affect the probabilities of crossover and mutation. The recombination
operators included the now familiar one-point crossover, as well as uniform crossover, which was
popularized 22 years later in Syswerda (1989). Across a series of different environments with
continuous and discrete parameters, Reed et al. (1967) offered the first consistent evidence that
recombination could be used to advantage on problems that were highly separable and were
coded in a low cardinality alphabet. Their results also indicated that crossover (in the form of
discrete recombination) provided no advantage in the cases of continuous parameters or strong
interfering interactions between parameters (epistasis).

The poker game centered on hands comprising a single card, which could either be high or
low. Three betting options were provided: pass, low bet, and high bet, these being of two,
three, or seven units, respectively. The strategies for playing the game were composed of eight
parameters, four of which defined probabilities for making various types of wagers, with the
other four determining the mutation probabilities and the associated effective step size, as well
as the potential for a strategy to crossover with another strategy. These self-adaptive (or so-
called “strategy”) parameters were also subject to random variation. In a particular setting
for which an optimum strategy could be determined via the game theory of Von Neumann,
the evolutionary simulation converged on mearly optimal plans, confirming the utility of the
self-adaptive method.

Another basic contribution of the paper was the extension of evaluating solutions based on
how well they compare with other members of the population, as opposed to a fixed fitness fune-
tion that was provided a priori. This had been explored in an earlier paper by Barricelli (1963),
as well as later in Fogel and Burgin (1969), but did not gain real attention again until Axelrod
(1987). Other notable contributions of Reed et al. (1967) include the use of a population of as
many as 10,000 individuals, which is large even by current standards, and a form of tournament
selection to determine which strategies would become parents for the next generation.
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2.2. Detailed Description

More specifically, in the first experimental design, the representation for each player in a pop-
ulation was taken as eight positive mumbers, wherein four parameters affected the individual's
mutation and crossover properties and the other four defined the betting probabilities under dif-
ferent circumstances. Hach strategy was evaluated in a series of 20 games against an opponent
from the population. A game consisted of each player receiving one card. There were two types,
high cards and low cards, with the probability of receiving a high card described as k. This was
taken as h = 0.5 initially. Three different bets were allowed: pass, low bet, or high bet. These
bets cost two, three, and seven units, respectively. If the two players bet differently, the player
with the higher wager won that hand. If the players bet the same amount, the player with the
higher card won; otherwise, the hand was a draw,

Four betting probabilities determined the players’ strategies, namely the probabilities of (1)
betting pass with a low hand (Lp), (2) betting pass with a high hand (Hp), (3) betting low
with a low hand (L), and (4) betting low with a high hand (H}). The other possible plays are
functions of these parameters. Accompanying these parameters were four additional variables,
@, b, ¢, d, which defined the manner in which the player would generate an of spring. The value
{1 — a) was the probability that one of the eight parameters would be replaced by a random
number. The value (1 — ¢) was a probability given to each of the four betting parameters to
undergo an increment of size d. Finally, b served as a tag for whether or not the individual would
undergo crossover, Depending on the experimental framework, conditions were considered where
(1) only patierns with b > 0.5 were crossed, initially with uniform recombination, (2) crossover
was obligatory regardless of the value of b, or (3) crossover was not allowed, again regardless
of the value of b. The population consisted of 50 parents, which generated 50 offspring in each
generation.

For h = 0.5, the optimum strategies could be determined from game theory (i.e., always bet
high with a high card, low with a low card, and never pass), and Reed et al. (1967) remarked
that in all three cases of handling crossover, the high hand betting probabilities were nearly
optimized in fewer than 200 generations. The low hand betting probabilities were not as well
optimized, but these were considered less important for the quality of play. “The quality of the
game was fully competitive with average human players uninformed about game theory” (Reed
et al., 1967). The fastest rate of optimization was observed when only patterns with b > 0.5
were recombined, but interestingly the rate of optimization when crossover was inhibited was
greater than when it was mandatory.

The experimental framework was then modified to assess the emergent behavior when betting
and variation parameters were taken from a small finite alphabet. The population size was
increased to 500 players. Each player consisted of eight parameters encoded in 36 bits. These
included: (1) a crossover parameter (3 bits), (2) the probability of betting high with a high
card (5 bits), (3) the probability of betting low with a high card if no high bet is made (5 bits),
(4) mutation probability (3 bits), (5) probability of betting high on a low card (5 bits), (6)
probability of betting low with a low card if no high bet is made (5 bits), (7) mutation size
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(5 bits), and 5 additional bits remaining for other assignment. The number of bits determined
the degree of precision for each parameter. Although the implementation of mutation lLere
was slightly different than as described above, self-adaptation was still used (the mutations
could affect the mutation parameters), and crossover was adopted in a one-point cut and splice
procedure {(as was later popularized in genetic algorithms). The quality of each strategy was
again determined using 20 games played against an opponent selected from the population, but
selection immediately eliminated the loser in any pairwise competition and replaced it by a copy
(subject to mutation and crossing) of the winner. Again, the three different rules for crossover
(free, mandatory, prohibited) were compared. The results (Fig. 1) indicated that the most rapid
optimization occurred when crossing over was prohibited.
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Figure 1. The mean number of optimized betting strategies as a function of the number of
generations averaged over three trials. The dotted line signifies the rate of optimization when
crossover was prohibited, the dashed line indicates the performance under mandatory crossing,
and solid line indicates the performance under “free” crossing (see text). The figure is from
Reed et al. (1967). The title of “Darwinian” was given to describe the experiments with
parameters varying over many settings controlled by possibly many “genes,” as compared with
a later “Mendelian” experiment in which parameters were controlled essentially by single bits
that generated all-or-none probabilities of betting high, low, or pass with a high or low hand.

A separate experiment was also presented which was designed to eliminate the interaction
among various parameters. Five parameters were considered, coded in binary. There were two
frameworks for eomparison: (1) in the “Darwinian” test, the sums of all five parameters for each
of two players in a population were compared, with the larger sum being assigned the win, and
(2) in the “Mendelian” test, only the sums of the leading bits for each parameter were compared.
All players were initialized with zeroes in all bits. The same procedures as above were adopted
for self-adaptation, mutation, and crossover, but the population size was increased to 10,000. In
these two cases, crossing over was seen to dramatically improve performance on the Mendelian
set up, but again provided no benefit in the Darwinian experiments (Fig. 2).
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Figure 2.  The mean number of optimized players in the (a) Mendelian and (b} Darwinian
experiments designed to eliminate the interaction among various parameters. Each curve is the
average of four trials. The dotted line corresponds to no crossover, the dashed line corresponds
to mandatory crossover, and the solid line corresponds to “free” crossover (self-adapted). The
results in the Mendelian case favored free and mandatory crossover; however, in the Darwinian
case, there was essentially no observed difference between the methods. The figure is from Reed
el al. (1967).

3. Discussion

Several sentences in Reed et al. (1967) convey the surprise of the result that crossing over might
provide no benefit to the speed of adaptation (or perhaps even a negative effect). Separability
(i.e., independent parameters) was in part identified as a key to expecting effective discrete
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recombination methods. Unfortunately, this result did not gain wide notice. Only as recently as
Salomon (1996) was it {re)demonstrated thal the design of evolutionary algorithms relying on
crossover and small mutation rates (i.e., canonical genetic algorithmas) is best suited for problems
posing independent parameters, and that the optimization performance of such techniques can
be greatly reduced under coordinate rotations that induce parametric interdependencies. In
retrospect, Reed et al. (1967) provided a preexisting counterexample to the speculation in
Holland {1975) that a reproductive plan involving a high rate of one-point crossover and low
rate of mutation operating on binary encodings would be penerally able to exploil epistaiic
relationships among parameters.

Although Holland (1975) did not include experimental evidence to support the accompanying
theory, the contemporary publication of De Jong (1975) did indicate the potential utility of ge-
netic algorithms for function optimization. Unfortunately, the collection of benchmark funetions
that were studied have more recently been shown to be mostly separable, and therefore these
results did not address the ability of a canonical genetic algorithm to handle epistatic effects,
as found so often in real-world problems. Indeed, Davis (1991) offered a simple randomized
hill-climbing procedure that served to essentially optimize each parametfer in these functions
individually, and this trivial algorithm outperformed the genetic alporithm across almost all
cases examined, including those from De Jong (1975). Although De Jong (1975) served as a
basis for all further genetic algorithm studies and applications into the late 1980s [Goldberg,
1989, p. 107), looking back, this emphasis was misplaced and accepted too easily. The avail-
able literature is now laden with examples indicating, in contrast with some strong claims of
the universal importance of crossover in evolutionary algorithms (Goldberg and Lingle, 1985;
Whitley and Hanson, 1989; and others), that there are cases both supporting and discouraging
the use of recombination (Fogel, 1988; Fogel and Atmar, 1890; Schaffer and Eshelman, 1991;
Biack and Schwefel, 1993; Fogel and Atmar, 1994; Chellapilla, 1997, 1998; Angeline, 1997; and
many others). Moreover, the “No Free Lunch” theorems of Wolpert and Macready (1997) es-
sentially demonstrated that no single variation operator can have universal benefit across all
problems, and Fogel and Ghozeil (1997a) indicated that there are fundamental equivalences be-
tween crossover and “mutation” operators (i.e., a two-parent crossover operator can be recast
a5 a two-parent variation that does not employ the mechanism of crossover).

Reed et al. (1967) offered an interesting analysis of the issue of separability in two appendices.
The first recapitulated Fisher's (1930) result of the speed of evolution, the competitive advantage
that accrues to a species that interbreeds. This speed is defined as:

g
E = EIS,.E, (1)

where ¢ is the time, typically the number of generations, n is the number of positively selected
mutations (M, ..., M) expanding in the population, 51, ..., 5, are the selective values of the
mutations, and i, is the fraction of the gene population inheriting the mutation M.. The mean
speed of evolution for long time T as taken in relation to the time each individual mutation
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requires to increase from minimal representation to covering the entire population is:

n

s s .
b(T}zL:f 8, %4t~ 3 B,(T) = 15, (2)
r=]i 0 et oy

where § is the mean of the selective values of the n mutations for the time period T. § can be
taken as a unit of the speed of evolution over T, leading to a statement of Fisher's Law:
“The maximum speed of evolution a species is capable of (or potential speed of
evolution) is proportional to the number of genes. A species unable to interbreed is
to be considered in this connection as a species with only one gene” (Reed et al
1967).

Reed el al. (1967) concluded that achieving this maximum speed depends on having mutations
expanding in different genes not interacting with each other epistatically such that they remove
or revert the selective value of one of the mutations. This is the effect that was observed under

"1

primary experiments with the simplified game of poker.

The second appendix derived a similar result for p quantitative (phenotypic) characters
#1,..., Ty (such as height, weight, ete.) of individuals in a population. Consideration was Elven
to the time variation of the mean values T, ..., Tp:

OB il i D8I s T
SHELT 2V % (3)

i=1
where V¥ is the covariance of z; and x;, and s(.) is the selective value of the set of phenotypic
characters. This led to a first approximation for the speed of evolution as:
AL - ] EE
ol i._'rz::l i 0z 0z b
Reed et al. (1967) commented: “A main property of these formulas to which we wish to attract
the reader’s attention is that neither the number of genes nor the contribution of individual
oenes to the variances and covariances V¥ appear in the expressions of E and dT,./di. This
means that it makes no difference for the speed of evolution £ nor for the time variation of the
means & whether the quantitative characters ¢, ..., z, are controlled by several genes or by a
single gene, In other words, the question whether the species does or does not have a breeding
and crossover mechanism has no effect for the speed of quantitative ... evolution, at least in the
first approximation range in which the above formulas are valid.”
Readers who are familiar with the schema theorem of Holland (1975) will note a similarity
between that theorem and the Fisherian relationships indicated above.? Discounting the dis-
ruptive effects of crossover and mutation, the theorem states that under proportional selection:

E P(H,t+1) = P(H, t}@, (5)

*Holland (1997) noted that the schema theorem is an extension of Fisher's law expanded to handle the case
af gene combinations,
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where H is a particular schema (hyperplane), P(H,1) is the proportion of the population at
time { containing H, f(H,t) is the mean fitness of all individuals in the population at time ¢
that contain H, and f is the mean fitness of all individuals in the population. In other words,
discounting the possibility of random variation on fitness (see Fogel and Ghozeil, 1997h), the
expected proportion of the population to contain /7 in the next time step is proportional to the
mean fitness of individuals that contain I relative to the mean fitness of the population. This
sampling rate was deemed “nearly optimal® in light of mathematical analysis in Holland (1975)
regarding the optimal allocation of trials to a k-armed bandit (each arm was analogous to a
hyperplane) in light of minimizing expected losses.!

According to Eq. 5, schemata spread on average in each generation in proportion to realized
mean fitness, but when Eq. 5 is iterated over successive generations, the mean realized fitnesses
FUH ), fUH L4+ 1), ..., are not constant, nor even necessarily samples from a stat ionary dis-
tribution. Epistatic effects may serve to mitigate the propagation of different schemata. Thus
no long-term predictions regarding the sampling rate of various schemata can be made with
certainty o priori. Rather than being a “fundamental theorem of genetic algorithms” (cf. Gold-
berg, 1989, p. 33), the schema theorem can only reliably describe the statistical expectation of
the propagation of schemata in a single generation based on their observed mean fitness (i.e.,
not when treated as random variables) and provides no general method for preseribing how to
design a more efficient search algorithm. The application of the theorem breaks down under the
possibility of epistatic effects, a result anticipated by Reed et al. (1967): “Evidently, Fisher's
lawy was never meant to be applied to a case like this...."

4. Conclusions

Evolutionary computation could have benefited greatly from a more careful early study of the
evidence and analysis reported in Reed et al. (1967). Not enly was this one of the first sys-
lematic comparisons of various search operators, indicating primary data that could have had
a significant effect on the emphasis on recombination in evolutionary alporithms, it was also
profoundly forward looking in terms of incorporating sophisticated concepts of self-adaptation
and competitive fitness evaluations. The simulations involved multiple trials with population
sizes that were quite likely the largest applied up to the time of publication. If submitted for
peer review today, the paper would likely be accepted for publication, Few contributions to the
literature can withstand 30 vears of time in this manner.

The student of evolutionary computation must acknowledge that many previous surveys of
the field and its historical development have not served them well. This poses a significant chal-
lenge of reassessing the contribution of papers that have been misrepresented or misinterpreted,
and uncovering other “fossils” that remain to be discovered. It also places the burden of the
historian on the student of evolutionary computation, requiring them to assess earlier work in

*Macready and Wolpert (1996) asserted mathematically that this analysis is in error, and Rudelph {1957)
provided a counterexample showing that the derivation in Helland (1975} does not vield minimal expected losses.
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the context of the time it was offered, rather than current wisdem. This is particularly difficult
when considering not only the obvious limited computing machinery, but also the unavailability
of any method for easily communicating research results to the scientific community {e.z., in-
ternet or email). Despite these difficulties, there are now opportunities to rediscover and pursue
research that has not received due attention. Reed et al. (1967} is merely one of many early
explorations into evolutionary computation with the potential to have a profound impact on
future investigations.
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