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Abstract

Evolutionary computation provides a useful method for training neural networks in the face of multiple local
optima. This paper begins with a description of methods for quantitative structure activity relationships (QSAR). An
overview of artificial neural networks for pattern recognition problems such as QSAR is presented and extended with
the description of how evolutionary computation can be used to evolve neural networks. Experiments are conducted
to examine QSAR for the inhibition of dihydrofolate reductase by pyrimidines using evolved neural networks. Results
indicate the utility of evolutionary algorithms and neural networks for the predictive task at hand. Furthermore,
results that are comparable or perhaps better than those published previously were obtained using only a small
fraction of the previously required degrees of freedom. © 2002 Elsevier Science Ireland Ltd. All rights reserved.
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1. Introduction

The effectiveness of drug discovery can be en-
hanced through the accurate prediction of biolog-
ical activity or chemical properties of a molecule
from a set of structure-based descriptors. A gen-
eral assumption of this approach is that the activ-
ity or property of a molecule is implicit in its
physical structure. Quantitative structure–activity
relationships (QSAR) are used to develop statisti-

cal models relating structure to activity. Follow-
ing the identification of a relatively small set of
related or unrelated molecules with known activi-
ties or properties, many descriptors for these
molecules are determined. These are grouped gen-
erally into three major classes: hydrophobic, elec-
tronic, and steric effects, however, several
subdivisions of each may be used. Once a suitable
statistical model is developed, it can be used to
predict the activity of a novel compound and may
also provide insight toward the mechanism of
action for a particular drug.

Over the past decade, artificial neural networks
have been applied on QSAR in the analysis of
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2,4-diamino-5-(substituted benzyl)pyrimidines (So
and Richards, 1992), 2,4-diamino-6-dimethyl-5-
phenyldihydrotriazines as dihydrofolate reductase
(DHFR) inhibitors (Andrea and Kalayeh, 1991),
and neural networks have been recognized as an
important tool in drug discovery (Kovesdi et al.,
1999; Schneider, 2000). DHFR catalyzes the
NADPH-dependent reduction of 7,8-dihydrofo-
late (H2F) to 5,6,7,8-tetrahydrofolate (H4F) and
is necessary for maintaining intracellular levels of
H4F, an essential cofactor in the synthetic path-
way of purines, thymidylate and several amino
acids. Evolved neural networks for QSAR have
also been proposed (So and Karplus, 1996a,b,
1997a,b; So et al., 2000). Here we review the
concepts of evolved artificial neural networks for
pattern recognition and indicate the effectiveness
of evolved artificial neural networks for QSAR by
using a small subset of available features to pre-
dict activity for a set of 74 2,4-diamino-5-(substi-
tuted benzyl)pyrimidines. Relative to previous
literature (Hirst et al., 1994), the evolved neural
network was capable of similar predictive accu-
racy to the model given in Hirst et al. (1994) using
only three of the 27 indicated input features.

1.1. Artificial neural networks for pattern
recognition

Artificial neural networks (or simply neural net-
works) are computer algorithms based loosely on
modeling the neuronal interconnections of natural
organisms. They are stimulus–response transfer
functions that accept some input and yield some
output. They are used to typically learn an input–
output mapping over a set of examples.

Neural networks are parallel processing struc-
tures consisting of nonlinear processing elements
interconnected by fixed or variable weights. They
are quite versatile, for they can be constructed to
generate arbitrarily complex decision regions for
stimulus–response pairs. That is, in general, if
given sufficient complexity, there exists a neural
network that will map every input pattern to its
appropriate output pattern, so long as the input–
output mapping is not one-to-many (i.e. the same
input having varying output). Neural networks
are therefore well suited for use as detectors and

classifiers. The classic pattern recognition al-
gorithms require assumptions concerning the un-
derlying statistics of the environment. Neural
networks, in contrast, are nonparametric and can
effectively address a broader class of problems
(Lippmann, 1987).

Multilayer perceptrons, also sometimes de-
scribed as feed forward networks, are probably the
most common architecture used in supervised
learning applications (where exemplar patterns
are available for training). Each computational
node sums N weighted inputs, where wij is the
weight between nodes i and j, and ai is the activa-
tion of the ith node, subtracts a threshold value,
�j, and passes the result through a logistic (sig-
moid) function, generating the output:

f(�j)= (1−e−�j)−1,

where �j= (� aiwij)−�j, i=1, …, N. Single per-
ceptrons (i.e. feed forward networks consisting of
a single input node) form decision regions sepa-
rated by a hyperplane. If the input from the given
different data classes are linearly separable, a
hyperplane can be positioned between the classes
by adjusting the weights and bias terms. If the
inputs are not linearly separable, containing over-
lapping distributions, a least mean square (LMS)
solution is typically generated to minimize the
mean squared error between the calculated output
of the network and the actual desired output.
While single perceptrons can generate hyperplane
boundaries, perceptrons with a hidden layer of
processing nodes have been proven to be capable
of approximating any measurable function
(Hornik et al., 1989), indicating their broad utility
for addressing general pattern recognition
problems.

Another versatile neural network architecture is
the radial basis function network. Rather than
partitioning the available data using hyperplanes,
the radial basis function network clusters avail-
able data, often with the use of approximate
Gaussian density functions. The network com-
prises an input layer of nodes corresponding to
the input feature dimension, a single hidden layer
of nodes with computational properties described
below, and output nodes, which perform linear
combinations on the hidden nodes. Each connec-



D.G. Landa�azo et al. / BioSystems 65 (2002) 37–47 39

tion between an input and hidden node carries
two variable parameters corresponding to a mean
and standard deviation. Poggio and Girosi (1990)
proved that linear combinations of these near-
Gaussian density functions can be constructed to
approximate any measurable function. Therefore,
like the multilayer perceptron, radial basis func-
tions are universal function approximators.

Given a network architecture (i.e. type of net-
work, the number of nodes in each layer, the
connections between the nodes, and so forth), and
a training set of input patterns, the collection of
variable weights determines the output of the
network to each presented pattern. The error
between the actual output of the network and the
desired target output defines a response surface
over an n-dimensional hyperspace, where there
are n parameters (e.g. weights) to be adapted.
Multilayer feed forward perceptrons are the most
commonly selected architecture and training these
networks can be accomplished through a back
propagation algorithm that implements a gradient
search over the error response surface for the set
of weights that minimizes the sum of the squared
error between the actual and target values.

Although, the use of back propagation is com-
mon in neural network applications, it is quite
limiting. This procedure is mathematically
tractable and provides guaranteed convergence,
but only to a locally optimal solution. Even if the
network’s topology provides sufficient complexity
to solve the given pattern recognition task com-
pletely, the back propagation method may be
incapable of discovering an appropriate set of
weights to accomplish the task. When this occurs,
the operator has several options: (1) accept sub-
optimal performance; (2) restart the procedure
and try again; (3) use ad hoc tricks, such as
adding noise to the exemplars; (4) collect new
data and retrain; or (5) add degrees of freedom to
the network by increasing the number of nodes
and/or connections.

Only this last approach, adding more degrees of
freedom to the network, is guaranteed to give
adequate performance on the training set, pro-
vided that sufficient nodes and layers are avail-
able. Yet this also presents problems to the
designer of the network, for any function can map

any measurable domain to its corresponding
range if given sufficient degrees of freedom. Un-
fortunately, such overfit functions generally
provide very poor performance during validation
on data acquired independently. Such anomalies
are encountered commonly in regression analysis,
statistical model building, and system identifica-
tion. Assessing the proper trade-off between the
goodness-of-fit to the data and the necessary de-
grees of freedom requires information criteria
(e.g. Akaike’s information criterion, minimum de-
scription length principle, predicted squared error,
or others) (see Fogel, 1991a for a discussion of
these criteria). By relying on the back propagation
method, the designer almost inevitably accepts
that the resulting network will not satisfy the
maxim of parsimony, simply because of the defec-
tive nature of the training procedure itself. The
problems of local convergence with the back
propagation algorithm indicate the desirability of
training with stochastic optimization methods,
such as simulated evolution, which can provide
convergence to globally optimal solutions.

1.2. E�olutionary computation and neural
networks

Natural evolution is a population-based opti-
mization process. Simulating this process on a
computer results in stochastic optimization al-
gorithms that can often outperform classical
methods of optimization when applied to difficult
real-world problems. Historically, there have been
three main avenues of research in evolutionary
computation: evolutionary programming (EP),
evolution strategies (ES), and genetic algorithms
(GA) (Bäck et al., 1997). The methods are
broadly similar in that each maintains a popula-
tion of trial solutions, imposes random changes to
those solutions and incorporates the use of selec-
tion to determine which solutions to maintain into
future generations and which to remove from the
pool of trials. The methods used to differ in the
types of random changes that were used and the
methods for selecting successful trials. Fogel
(2000) provided a review of the similarities and
differences between these procedures, but indi-
cated the methods are now for all intents and
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purposes identical, and there appears to be no
scientific rationale for discriminating between ‘ge-
netic’ and ‘evolutionary’ computation.

This is particularly true in light of the ‘no free
lunch’ theorem of Wolpert and Macready (1997),
which in broad terms states that all algorithms
that do not resample points in a search space
perform the same on average when applied across
all possible functions. Thus, no choice of search
operator (e.g. crossover or mutation) can be uni-
formly superior. The choice must be matched to
the problem at hand. Fogel and Ghozeil (1997)
offered a related result indicating that there is no
advantage to any bijective mapping (representa-
tion) on any problem: a change in representation
can be offset by a change in variation operator to
generate an equivalent algorithm.

Each of the characteristics that made the previ-
ously different approaches to simulating evolution
unique has been shown to be without any basis
for any general mathematical advantage. More-
over, much of the early mathematical foundations
of ‘schema processing’ have recently been shown
to be in error (Macready and Wolpert, 1998; see
also Fogel and Ghozeil, 1997) or not relevant for
optimization (Altenberg, 1995; Vose and Wright,
2001). Rather than seek differences between ‘ge-
netic’ and ‘evolutionary’ computation, a more
effective approach appears to be to tailor the
representation, variation operators, and selection
procedures to the optimization task at hand. Evo-
lutionary computation offers a broad range of
choices for each of these considerations.

The procedures generally proceed as follows. A
problem to be solved is cast in the form of an
objective function that describes the worth of
alternative solutions. Without loss of generality,
suppose that the task is to find the solution that
minimizes the objective function. A collection
(population) of trial solutions is selected at ran-
dom from some feasible range across the available
parameters. Each solution is scored with respect
to the objective function. The solutions (parents)
are then mutated and/or recombined with other
solutions in order to create new trials (offspring).
These offspring are also scored with respect to the
objective function and a subset of the parents and
offspring are selected to become parents of the

next iteration (generation) based on their relative
performance. Those with superior performance
are given a greater chance of being selected than
are those of inferior quality. Fogel (2000) details
examples of evolutionary algorithms applied to a
wide range of problems, including breast cancer
detection (both from histologic and radiographic
data), pharmaceutical design, and a variety of
industrial settings.

Evolutionary computation has been demon-
strated as a useful means for training neural net-
works, particularly as compared to gradient-based
methods such as back propagation. For example,
Porto et al. (1995) compared back propagation,
simulated annealing and evolutionary program-
ming for training a fixed network topology to
classify active sonar returns. The results indicated
that stochastic search techniques such as anneal-
ing and evolution outperform back propagation
consistently, yet can be executed more rapidly on
an appropriately configured parallel processing
computer. After sufficient computational effort,
the most successful network can be put into prac-
tice. But the evolutionary process can be contin-
ued during application, so as to provide iterative
improvements on the basis of newly acquired
exemplars. The procedure is efficient because it
can use the entire current population of networks
as initial solutions to accommodate each newly
acquired datum. There is no need to restart the
search procedure in the face of new data, in
contrast with many classic search algorithms, such
as dynamic programming.

Designing neural networks through simulated
evolution follows an iterative procedure:
1. A specific class of neural networks is selected.

The number of input nodes corresponds to the
amount of input data to be analyzed. The
number of classes of concern (i.e. the number
of classification types of interest) determines
the number of output nodes.

2. Exemplar data is selected for training.
3. A population of P complete networks is se-

lected at random. A network incorporates the
number of hidden layers, the number of nodes
in each of these layers, the weighted connec-
tions between all nodes in a feedforward or
other design, and all of the bias terms associ-
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ated with each node. Reasonable initial
bounds must be selected for the size of the
networks, based on the available computer
architecture and memory.

4. Each of these ‘parent’ networks is evaluated
on the exemplar data. A payoff function is
used to assess the worth of each network. A
typical objective function is the root mean-
squared error (RMSE) between the target and
the actual output summed over all output
nodes; this technique is often chosen because it
simplifies calculations in the back propagation
training algorithm. As evolutionary computa-
tion does not rely on similar calculations, any
arbitrary payoff function can be incorporated
into the process and can be made to reflect the
operational worth of various correct and in-
correct classifications. Furthermore, informa-
tion criteria such as Akaike’s information
criterion (AIC) (Fogel, 1991b) or the minimum
description length principle (Fogel and Simp-
son, 1993) can provide mathematical justifica-
tion for assessing the worth of each solution,
based on its classification error and the re-
quired degrees of freedom.

5. ‘Offspring’ are created from these parent net-
works through random mutation. Simulta-
neous variation is applied to the number of
layers and nodes, and to the values for the
associated parameters (e.g. weights and biases
of a multilayer perceptron, weights, biases,
means and standard deviations of a radial
basis function network). A probability distri-
bution function is used to determine the likeli-
hood of selecting combinations of these
variations. The probability distribution can be
preselected a priori by the operator or can be
made to evolve along with the network,
providing for nearly completely autonomous
evolution (Fogel, 2000).

6. The offspring networks are scored in a similar
manner as their parents.

7. A probabilistic round-robin competition is
conducted to determine the relative worth of
each proposed network. Pairs of networks are
selected at random. The network with superior
performance is assigned a ‘win’. Competitions
are run to a preselected limit. Those networks

with the most wins are selected to become
parents for the next generation. In this man-
ner, solutions that are far superior to their
competitors have a corresponding high proba-
bility of being selected. The converse is also
true. This function helps prevent stagnation at
local optima by providing a parallel biased
random walk.

8. The process iterates by returning to step (5).

1.3. Application of e�ol�ed neural networks for
quantitati�e structure–acti�ity relationships

Neural networks are useful for QSAR because
there are many potential parameters for each
molecule and the contribution of each parameter
is not known apriori. The number of input
parameters (and their combination) is sufficiently
large such that an exhaustive search is not compu-
tationally feasible. One method to reduce this
dimensionality is to make assumptions about the
most-relevant parameters on the basis of some
information criterion or other measure. However,
this type of reduction may lead to convergence on
local minima. Evolutionary computation can be
used as a tool to rapidly search for the appropri-
ate number of input parameters while avoiding
premature convergence due to inappropriate
heuristics.

An early attempt for evolved neural networks
in QSAR was offered in Tetko et al. (1994), which
used EP for structure–activity relationships
(SAR). QSAR methods focus on quantitative val-
ues to describe biological activity, whereas SAR
methods focus on broader classifications of activi-
ties for prediction of overall worth. In their work,
EP was used to search for parameter sets with the
best expected error of activity classification. Tetko
et al. (1994) demonstrated that EP could be used
to anticipate the hypoglycemic activity of
flavonoids using a set of 52 molecules divided into
two groups: active and non-active. Ninety-three
parameters were used for each molecule (electro-
static, topologic and spatial characteristics).

At nearly the same time, Luke (1994) offered a
method for the use of EP for QSAR. As many as
53 parameters were used for 31 analogues of
antifilarial antimycin as reported from a data set
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in the literature. A population of N predictors was
generated at random. The fitness for each predic-
tor (with respect to a payoff function described in
the article) was calculated. Each predictor was
allowed to create a new predictor. The 2N predic-
tors were ranked and the n least-fit predictors
were removed from the population, restoring the
population size to N. This process was iterated for
a set number of generations. In his analysis, Luke
noted that ‘in this study, evolutionary program-
ming [was] chosen over a genetic algorithm for the
simple reason that the latter may have problems
when the number of descriptors increases in a
QSAR/QSPR (quantitative structure–property re-
lationship) investigation. Though the … data has
53 descriptors, it is not hard to imagine a set of
data containing 1000 descriptors. If a researcher
wants to find good predictors that only use three
of the descriptors (nterm=3) the ni vector con-
tains 997 zeroes and three nonzero values. If both
parents have nterm=3, it is very likely that nterm
will not be 3 in an offspring … in a standard
genetic algorithm, the offspring … replaces the
least fit predictor in the set … whether or not the
offspring’s fitness is better than the solution it is
producing. Therefore, there is no guarantee that
the overall fitness of the population will increase
from generation to generation in the case where a
large number of descriptors are present’ (p. 1281).
Four data sets were used in this study, each of
which was borrowed from other sources in the
literature.

Following this work, So and Karplus (1996a,b)
investigated both EP and GAs for the training of
neural nets for QSAR on the same initial data set
as Luke (1994) using 53 parameters for 31 an-
timycin candidates. Their results suggested that,
although both procedures arrived at the best solu-
tion in under 10 generations, the average fitness of
the population was significantly higher when us-
ing an EP approach. So and Karplus used only
the EP algorithm in the remainder of their analy-
sis. This same approach was applied to a homoge-
neous set of 57 classical 1,4-benzodiazepin-2-ones
with binding affinities for the BZ/GABAA recep-
tor. The data set used for this investigation was
reported elsewhere in the literature and in this
study. Once again, the authors used EP approach

to show ‘the general utility of the genetic neural
network (GNN) methodology in dealing with
data sets of high dimensionality’ (p. 5255). So and
Karplus extended their work with two additional
papers in 1997 regarding 3D QSAR with ‘genetic’
neural networks (even though the procedure em-
ployed was in fact more akin to EP).

2. Methods and results

For the experiments presented here, data on the
biological activities for 55 2,4-diamino-5-(substi-
tuted benzyl)pyrimidines were used (Hirst et al.,
1994). Biological affinities were measured by
the association constant (log Ki) to DHFR from
Escherichia coli MB1428. These data were used to
test the performance of neural networks trained
using backpropagation versus those trained using
evolutionary computation. Hirst et al. (1994) di-
vided these data into five sets of 11 molecules
each. Using leave-one-out cross-validation (Efron,
1982), each of these data sets was used as a test
set with the other four sets serving as training
sets. Therefore, each of the 55 pyrimidines ap-
peared only once over all of the test sets.

Each of the 55 molecules in the data set con-
tained three positions suitable for replacement
(the 3-, 4-, and 5-positions of the phenyl ring) by
a different substituent (i.e. �OH, �O(CH2)6CH3,
etc.) and the activity for each of these substituent
combinations was measured. The data reported in
Hirst et al. (1994) suggested that addition of
hydroxyl groups at positions 3 and 5, and a
hydrogen at position 4 produced an activity
(3.04), which was significantly below the mean of
the remaining data (�=7.115, �=0.935). This
data point was removed from all training and
testing data sets as a significant outlier, despite it
being used by Hirst et al. (1994).

All substituents were assigned attributes in
Hirst et al. (1994) with regards to polarity, size,
flexibility, number of hydrogen-bond donors and
acceptors, presence and strength of �-donors and
-acceptors, polarizability of the molecular or-
bitals, the �-effect, and branching. Therefore,
each substituent position was characterized by a
vector of 10 numbers containing the attribute
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information. It remains unclear from Hirst et al.
(1994) whether all 10 of these attributes were used
for each of the three positions or if the value for
the branching attribute was removed as an input
vector to the neural network. Given this uncer-
tainty, we chose to use all 30 attributes describing
each of 55 molecules in the database for develop-
ment of an evolved neural network.

A neural network with a fixed architecture con-
sisting of 30 inputs, three hidden nodes, and one
output (as similar as possible to the description
provided by Hirst et al., 1994) was used for
prediction of activity. For all training sets, a
population of 200 parents and 100 offspring was
used to evolve the appropriate weights for each
connection in the neural network to increase the
predictive accuracy over time. Every generation,
each parent network architecture generated off-
spring network architectures by varying all of its
weighted connections simultaneously, following a
Gaussian distribution with zero mean and an
adaptable standard deviation. The update rule for
the standard deviation followed the standard
method shown in Bäck et al. (1997), Fogel (2000),
where lognormal perturbations are applied to the
standard deviations before generating offspring.
Specifically, offspring were created using the fol-
lowing equations:

(1) � �i=�i×exp(�N(0, 1)+� �Ni(0, 1)),

i=1, …, n

(2) x �i=xi+� �i N(0, 1), i=1, …, n

where i denotes the ith dimension of the solution
vector x or strategy parameter vector �, N(0, 1) is
a standard Gaussian random variable, Ni(0, 1)
designates that a standard Gaussian random vari-
able is sampled anew for each ith dimension, and
� and � � are constants set equal to 1/sqrt(2n) and
1/(2sqrt(n)), respectively, where n is the number of
dimensions in x and �. The weights of each
connection on each member of the initial popula-
tion were distributed uniformly at random in the
range (−0.5, 0.5) and the initial standard devia-
tion in each dimension for each parent was set to
0.05.

Selection was based on each neural network’s
total RMSE on the training data, with a stochas-

tic tournament being used to determine which
parent and offspring networks survived into the
next generation. For this tournament, each net-
work was paired up against 10 other randomly
selected networks from the population; compari-
sons in performance were made in each pairing
with a ‘win’ being assigned to the network having
lower RMSE. After all such pairings were com-
pleted, those networks with the most wins were
selected to be parents for the successive
generation.

For each evolution, the number of generations
was varied from 10 to 200 to determine the most
appropriate point to stop neural network training
to avoid under- or overfitting of the data. Perfor-
mances were measured on data held out from
training based on the Spearman rank correlation
coefficient (following Hirst et al., 1994) and the
RMSE. Values for these two performance criteria
are shown in Fig. 1. Using the Spearman rank
correlation coefficient, the variance in the data is
much larger than expected and cannot be used
easily for addressing performance. Using the
RMSE performance criterion, the measure is min-
imized at 50 generations and its variance is much
smaller over subsequent generations. Given this,

Fig. 1. The performances of evolved neural networks with 30
inputs based on Spearman rank correlation coefficient (×)
and RMSE (�) given for the total number of generations in
each evolutionary trial for data set 1. Performance was mea-
sured on the test set. The number of generations was varied
from 10 to 200 to determine the most appropriate point to
stop neural network training.
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Table 1
Testing set performance as measured by RMSE and Spearman rank correlation coefficient

Number of Evolved neural networks Hirst et al. (1994)
inputs

Spearman rank correlationMean squared error Spearman rank correlation
coefficient coefficient

303 3 30 27

0.075 0.817Set 1 0.7180.075 0.788
Set 2 0.081 0.116 0.733 0.327 0.228
Set 3 0.111 0.122 0.652 0.335 0.702

0.172 0.7730.097 0.443Set 4 0.838
0.101Set 5 0.117 0.647 0.516 0.753

0.120 (0.034) 0.724 (0.074) 0.468 (0.161) 0.6600.093 (0.015)Mean (�)

The best-evolved neural network with three inputs achieved a higher Spearman rank correlation coefficient (0.724) than the network
with 27 inputs presented in Hirst et al. (1994) (0.660). Furthermore, comparison between the best-evolved neural networks
comprising three or 30 input features in terms of RMSE favors the smaller neural network.

the remaining sets 2–5 were then trained and
tested using this same architecture and parameters
for 50 generations of evolution. Performance over
all sets is shown in Table 1 relative to the perfor-
mance offered in Hirst et al. (1994).

Some attributes carry more correlation to the
known activity than others. A statistical approach
was used to determine those attributes with statis-
tically significant correlation with the known ac-
tivity. Specifically, a stepwise regression was used
with the values of F to enter and F to remove of
4.000 and 3.996, respectively. This analysis sug-
gested that only one attribute for each of the three
positions was well correlated to known activity.
Polarizability (the response of the electron distri-
bution to changes in the solvent or with other
polar agents) was selected for positions 1 and 2,
while polarity (a measure of the positive or nega-
tive charge) was selected for position 3. A new
neural network architecture consisting of these
three inputs, three hidden nodes and one output
was used in a subsequent round of evolution. For
each evolution, the number of generations was
varied from 10 to 200 to determine the most
appropriate point to stop neural network training.
As with the previous neural network, perfor-
mances were measured based on the Spearman
rank correlation coefficient and the RMSE. Val-
ues for these two performance criteria are shown

in Fig. 2. Based on RMSE, the most appropriate
number of generations for training was again
taken to be 50 for set 1. The remaining sets
2–5 were then trained and tested using this
same architecture and the results are presented in
Table 1.

Fig. 2. The performances of evolved neural networks with
three inputs based on Spearman rank correlation coefficient
(×) and RMSE (�) as a function of the number of genera-
tions per evolutionary trial. Performance was measured on the
test set given for the total number of generations in each
evolution for data set 1. The number of generations was varied
from 10 to 200 to determine the most appropriate point to
stop neural network training.
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3. Discussion

An assumption of all QSAR approaches is that
the activity or property of a molecule is implicit in
its physical structure. QSAR can then be used to
develop statistical models relating known struc-
tures to activities. Given that there are many
potential parameters for each molecule, neural
network approaches have proven successful for
activity prediction. Classical methods for training
neural networks using backpropagation have been
applied to QSAR problems with limited success
(see above). As an alternative to backpropaga-
tion, evolutionary computation can be used as a
tool to rapidly search for an appropriate set of
weights that connect the nodes. Following evolu-
tion, the best-evolved neural network can then be
used as a predictor for previously unknown sam-
ples in testing data. Here, we applied evolved
neural networks for the inhibition of DHFR by
pyrimidines as a test of the validity of this ap-
proach against a previous experiment using neural
networks trained via backpropagation (Hirst et
al., 1994).

To compare the performance of our neural
network, we employed the Spearman rank corre-
lation coefficient. This statistic measures the de-
gree of linear association between two random
variables. It is thought to be useful when either
the data consist of ranks or when the data set is
small enough to be ranked easily (Milton and
Tsokos, 1983). The Spearman rank correlation
coefficient was calculated for each independent
run of evolution in training set 1 over a specified
number of generations (10, 20, 30, …). For each
of these generations, the data presented in Fig. 1
show that the Spearman rank correlation coeffi-
cient varies drastically by generation, whereas an-
other potential performance metric, the RMSE,
does not show a similar spread.

These data cast doubt on the utility of the
Spearman rank correlation coefficient as a means
of comparison and as a means of measuring the
performance of any predictive model on these
data. (These results may suggest a broader inquiry
into the variability of the Spearman rank correla-
tion coefficient more generally.) However, com-
parison of the evolved neural network to the data

reported in Hirst et al., (1994) requires the use of
the Spearman coefficient. The data in Table 1
suggest that the evolved neural network with 30
inputs, three hidden nodes, and one output node
performed qualitatively worse than the network
given in Hirst et al. (1994). However, the RMSE
over all test sets for this same network topology
was quite low (0.120), suggesting that the evolved
neural network performed quite well. The vari-
ance associated with the Spearman rank correla-
tion coefficient may due to a nonlinear association
between the parameters in question.

The stepwise regression suggested that only
three of the 30 available inputs might be adequate
for the task at hand. Using the Spearman rank
correlation coefficient as a measure of perfor-
mance, the best evolved network relying on these
three input features performed at a level compara-
ble to that offered in Hirst et al. (1994). This new
result should be favored in light of the maxim of
parsimony, using only 10% of the previous de-
grees of freedom.

If attention is turned to the RMSE as a mea-
sure of performance instead of Spearman rank
correlation coefficient, the best-evolved neural
network with three inputs versus 30 inputs
demonstrates a lower RMSE (0.093 vs. 0.120,
respectively). Further study will be required to
assess any statistically significant difference, but
again the maxim of parsimony favors the smaller
network.

It is important to note that for the research
presented here, one outlier from the original data
was removed (see above). This outlier was a po-
tential source of confusion for any neural network
given that it was markedly different from any
other training data and would likely be a source
of significant error in training and testing. It
remains unclear if this outlier was a typographical
error in Hirst et al. (1994), but we assume that it
was used in the development of their neural net-
work. The many noncorrelated inputs and this
outlier molecule cast doubt on the validity of the
performances given in Hirst et al. (1994).

It is also important to note that regardless of
the measure of performance shown here, the
statistical approach (relying on stepwise regres-
sion) to the physicochemical data prior to the
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choice of input vectors assisted the development
of a more useful predictor. Given a fixed architec-
ture, this approach may help identify inputs that
have little or no correlation with activity. How-
ever, using evolutionary computation, the topol-
ogy of the neural network could be evolved
simultaneously with the weights (Angeline et al.,
1994). This would allow evolution to discover
increasingly useful network topologies. Additional
penalties could be applied for network size, giving
a reward for smaller topologies of equal or better
predictive accuracy.
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