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Many binary phenotypes do not follow a classical Mendelian
inheritance pattern. Interaction between genetic and envir-
onmental factors is thought to contribute to the incomplete
penetrance phenomena often observed in these complex
binary traits. Several two-locus models for penetrance have
been proposed to aid the genetic dissection of binary traits.
Such models assume linear genetic effects of both loci in
different mathematical scales of penetrance, resembling the
analytical framework of quantitative traits. However, changes
in phenotypic scale are difficult to envisage in binary traits
and limited genetic interpretation is extractable from current
modeling of penetrance. To overcome this limitation, we
derived an allelic penetrance approach that attributes
incomplete penetrance to the stochastic expression of the
alleles controlling the phenotype, the genetic background
and environmental factors. We applied this approach to

formulate dominance and recessiveness in a single diallelic
locus and to model different genetic mechanisms for the joint
action of two diallelic loci. We fit the models to data on the
genetic susceptibility of mice following infections with Listeria
monocytogenes and Plasmodium berghei. These models
gain in genetic interpretation, because they specify the
alleles that are responsible for the genetic (inter)action and
their genetic nature (dominant or recessive), and predict
genotypic combinations determining the phenotype. Further,
we show via computer simulations that the proposed models
produce penetrance patterns not captured by traditional
two-locus models. This approach provides a new analysis
framework for dissecting mechanisms of interlocus joint
action in binary traits using genetic crosses.
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Introduction

In quantitative genetics, the joint action of two loci is
usually assessed by models assuming linear genetic
effects on a given mathematical scale of the quantitative
trait (for example, Fisher, 1918; Cockerham, 1954;
Cheverud and Routman, 1995; Kao and Zeng, 2002;
Zeng et al., 2005). If models do not agree with
experimental data, one may say that an interaction –
epistasis – is present. The same reasoning is followed
when analyzing penetrance – defined as the probability
of a phenotype given a genotype – in the study of
complex binary traits (for example, Hodge, 1981; Risch,
1990; Risch et al., 1993; Vieland and Huang, 2003).
Although the choice of scale and linearity for quantita-
tive traits can be supported by some biological mechan-
isms (Omholt et al., 2000), there is no ‘natural’ scale for
penetrance in which current models have a specific
biological or causal interpretation (Cordell et al., 2001).
Moreover, the assumption of linearity on penetrance is
more of a statistical convenience rather than a true
genetic description. Therefore, clear genetic information
cannot be extracted from current two-locus models for
complex binary traits.

A study on the genetic interaction of Idd3 and Idd10
loci in the control of diabetes in mice thoroughly
discusses the difficulties of interpreting the traditional
two-locus models for penetrance (Cordell et al., 2001).
Bagot et al. (2002) experienced the same difficulties in a
study of the interaction between Berr1 and Berr2 loci in
the resistance to experimental cerebral malaria in mice.
Despite showing that some current models could fit the
data, both Cordell et al. (2001) and Bagot et al. (2002) were
unable to unravel which kind of genetic interaction
actually underlies those traits.

This paper aims to improve interpretability of current
two-locus models for complex binary traits. For this
purpose, we developed an allelic penetrance approach
that models dominance and recessiveness for a single
diallelic locus. Then, the framework is extended to the
two-locus case to describe three different genetic (inter)-
action mechanisms: (i) genetic heterogeneity, in which an
individual manifests the phenotype by possessing a
predisposing genotype at either locus; (ii) inhibition
action, whereby an allele of a given locus prevents an
allele of another locus from manifesting its effect; (iii)
allelic liability, in which the inheritance of the phenotype
is controlled by a given number of certain alleles at the
combined genotype of the two loci. These allelic
penetrance models have improved genetic interpreta-
tion, because they specify at each locus which allele is
responsible for the inheritance of the phenotype (here-
after referred to as phenotype-conferring alleles) and
their genetic behavior (dominant or recessive). This
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information is instrumental in designing the experiments
that may confirm suggested genetic (inter)actions.

We illustrate the advantage of using the allelic
penetrance models with data from an intercross and a
backcross experiment on the genetic control of suscept-
ibility of mice following infections with Listeria mono-
cytogenes (Boyartchuk et al., 2001) and Plasmodium berghei
(Bagot et al., 2002), respectively. We further show by
simulation that allelic penetrance models can generate
data that cannot be fitted by current models, and
therefore cover at least a different range of genetic
interaction.

Genetic modeling

Allelic penetrance approach
The inheritance of complex binary traits often shows
reduced penetrance. That is, individuals bearing the
same genotype can manifest either presence or absence
of the phenotype of interest. The classical interpretation
for this phenomenon postulates the existence of other
genetic and environmental factors that can modify the
action of the phenotype-conferring alleles (Nadeau,
2001). However, experimental genetics is rich in exam-
ples of reduced penetrance in pure lines that are
maintained under controlled laboratory conditions de-
signed to minimize environmental variation. One exam-
ple is the nonobese diabetic mouse strain, which
spontaneously develops autoimmune diabetes, but with
reduced penetrance (reviewed, for example, in Anderson
and Bluestone, 2005). Another example is given by
Lalucque and Silar (2004) that show that loss-of-function
mutations of two Kþ transporters in the euascomycete
fungus Podospora anserina exhibit reduced penetrance of
crippled growth, even when genetic and environmental
effects were virtually eliminated. These observations
suggest that somehow the genotype has an intrinsic
stochastic property of being expressed at the level of the
phenotype. In fact, Alper et al. (2006) suggested that
reduced penetrance can actually be attributed to a
stochastic expression of the alleles themselves. In this
regard, Rakyan et al. (2002) introduced the concept of
metastable epialleles when studying the coat color of
mice controlled by the agouti locus. An epiallele is an
allele that can stably exist in more than one epigenetic
state, resulting in different phenotypes. A metastable
epiallele is an epiallele at which the epigenetic state can
switch and its establishment is a probabilistic event.
Once established, the state is mitotically inherited.
Therefore, there is a need to account for probabilistic
allelic effects in current genetic models.

We propose an allelic penetrance approach to model
penetrance of a single diallelic locus. Following the
above observations, penetrance is decomposed in a sum
of two components: an internal component attributable to
the probability of the alleles of the genotype expressing
the phenotype and an external component pertaining to
the probability of the phenotype being affected by
(genetic and/or environmental) factors other than the
locus under study. The probability of an allele expressing
the phenotype is hereafter referred to as allelic pene-
trance.

Consider a diallelic locus A with a dominant allele A
over an allele a with respect to the phenotype. Let pg be

the penetrance of genotype g¼AA, Aa, aa, respectively.
Denote the penetrances of alleles A and a by pA and pa,
respectively. Since allele A is dominant, the phenotype is
determined by the expression of at least one allele A.
Assuming independent allelic expressions, dominance
is equivalent to an independent action of the alleles
A towards the expression of the phenotype. As
defined above, the internal component of penetrance is
given by

pint
g ¼

p2
A þ 2pAð1 � pAÞ if g ¼ AA

pA if g ¼ Aa
0 if g ¼ aa

8<
: ð1Þ

Two comments can be made regarding the above
equation: (i) pa does not model the internal component
of penetrance, because the recessive allele a cannot
contribute to the expression of phenotype; (ii) in the
homozygous genotype AA, both alleles A can be
expressed, and thus monoallelic expression phenomena
are excluded from the present modeling.

In this framework, we also include the action of factors
external to the locus under study. This was based on
observations that disease phenotypes are expressed in
absence of disease-conferring genotypes at a given locus.
These observations suggest a phenocopy mechanism
by which genetic or nongenetic factors are expressed
when phenotype-conferring alleles are not present. Thus,
we postulate that the effect of external factors is only
relevant for penetrance when phenotype-conferring
alleles, in this case alleles A, are not expressed. This
implies that external factors do not affect the allelic
penetrance of the phenotype-conferring allele and are
not accountable when calculating internal penetrance.

In this line of thought, the external component of
penetrance refers to the probability of the action of
external factors to the locus in promoting the phenotype.
It is described mathematically by the product of the
probability of having no expression of alleles A towards
the phenotype (1–pg

int) with the probability of the external
factors favoring the phenotype of interest (pext)

pext
g ¼ ð1 � pint

g Þpext

ð1 � pAÞ2pext if g ¼ AA
ð1 � pAÞpext if g ¼ Aa
pext if g ¼ aa

8<
: ð2Þ

The final expression of the penetrance is then the sum
of internal and external components, that is,

pg ¼ pint
g þ pext

g

¼
p2

A þ 2pAð1 � pAÞ þ ð1 � pAÞ2pext if g ¼ AA
pA þ ð1 � pAÞpext if g ¼ Aa
pext if g ¼ aa

8<
: ð3Þ

Consider now that the phenotype is controlled by the
expression of the recessive allele a. In this situation, the
phenotype is observed only when the dominant allele A
is not being expressed and at least one allele a is being
expressed. In this line of thought, the internal component
of penetrance becomes

pint
g ¼

0 if g ¼ AA
pað1 � pAÞ if g ¼ Aa
p2

a þ 2pað1 � paÞ if g ¼ aa

8<
: ð4Þ

Following similar rationale as described for the dom-
inance situation, the external component of penetrance
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refers to the probability of having phenotypic expression
of external factors when the phenotype is not caused by
the expression of alleles a. Thus, we have

pext
g ¼ ð1 � pint

g Þpext

¼
pext if g ¼ AA
½1 � pað1 � pAÞ�pext if g ¼ Aa

ð1 � paÞ2pext if g ¼ aa

8<
: ð5Þ

Finally, summing (4) and (5) the penetrance is given by

pg ¼ pint
g þ pext

g

¼
pext if g ¼ AA
pað1 � pAÞ þ ½1 � pað1 � pAÞ�pext if g ¼ Aa

p2
a þ 2pAð1 � paÞ þ ð1 � paÞ2pext if g ¼ aa

8<
: ð6Þ

It is worth noting that recessiveness is modeled
by as many parameters as genotypes, and thus it can
be regarded as a default model for the action of a single
locus. Moreover, the above equation can describe
dominance when pA¼ 0 (compare with Equation (3)).
Therefore, dominance is a special case of recessiveness.

The comparison of Equations (3) and (6) shows two
important features of the modeling. One feature is that
when a locus is dominant or recessive, the penetrance of
the heterozygous genotype is not equal to the penetrance
of either homozygous genotype, except when the allelic
penetrance of one of the alleles is equal to 1. This is in
contrast to the classical assumption that penetrance
in the heterozygous genotype is equal to one of the
homozygous genotypes (Vieland and Huang, 2003).
Moreover, penetrance patterns of dominance and reces-
siveness are derived under the allelic penetrance
approach, while in current models are assumed and
not derived. Interestingly, when both alleles have
complete penetrance in absence of external influence
(pext¼ 0), Equations (3) and (6) give rise to traditional
Mendelian dominant and recessive patterns of inheri-
tance. Therefore, the allelic penetrance approach can be
seen as a generalization of Mendelian inheritance for
reduced penetrance scenarios. Another feature is that
Equations (3) and (6) are not complementary. This is
explained by two reasons: (i) the absence of expression of
a dominant allele does not necessarily imply the
expression of the recessive allele, because both alleles
have allelic penetrances; (ii) since the external factors are
only relevant in the absence of the expression of the
phenotype-conferring alleles, different conditions are
found for the action of external factors with respect to
the dominant or recessive phenotype-conferring allele.
Thus, under the allelic penetrance approach, dominance
and recessiveness are not dual concepts.

Two-locus models based on allelic penetrance
Several two-locus models for penetrance have been
discussed in the past (reviewed in Cordell et al., 2001).
They can be generically written as

gðpgAgB
Þ ¼ agA

þ bgB
ð7Þ

where pgAgB
is the penetrance of genotype gA (AA, Aa and

aa) of locus A and of genotype (BB, Bb and bb) of locus B,
g( � ) is a function that defines each model: (i) identity for
the additive model (Risch, 1990); (ii) logarithm for the
multiplicative model (Hodge, 1981); (iii) complementary
logarithm for the heterogeneity model (Risch, 1990;

Vieland and Huang, 2003); (iv) logarithm of the odds
for the logistic model (Baxter, 2001; Stewart, 2002); and
(v) cumulative distribution of a standard normal variable
for the liability model (for example, Pearson, 1900;
Dempster and Lerner, 1950; Risch et al., 1993). Some
authors declare dominance and/or recessiveness at each
locus if aAA¼ aAa¼ aA and bBB¼bBb ¼bB (Strauch et al.,
2003; Vieland and Huang, 2003).

However, in this situation, one cannot distinguish
whether the phenotype is produced by the recessive or
by the dominant allele at each locus. Therefore, the above
models cannot per se identify either the phenotype-
conferring alleles or their genetic nature (dominant or
recessive).

To overcome this problem, we use the allelic pene-
trance approach in alternative to classical two-locus
models. To this end, we extended the decomposition of
penetrance for the two-locus case, that is,

pgAgB
¼ pint

gAgB
þ pext

gAgB
ð8Þ

where pint
gAgB

and pext
gAgB

are the internal and the external
components of penetrance for the combined genotype
(gA,gB), respectively. As stated in the single locus case,
external factors are only relevant when the alleles of the
two interacting loci are not expressing the phenotype.
Therefore, the external component of penetrance can be
factorized as

pext
gAgB

¼ ð1 � pint
gAgB

Þpext ð9Þ
which substituted in Equation (8) leads to the following
general formula of two-locus penetrance

pgAgB ¼ pint
gAgB

þ ð1 � pint
gAgB

Þpext ð10Þ
Different genetic interaction mechanisms can be con-
sidered by specifying the internal penetrance as follows.

Independent action models (IAMs): The independent
action models (IAMs) are based on genetic heterogeneity,
in which the expression of two loci are independent
causes of the phenotype. We consider that each locus
has a phenotype-conferring allele, which can be either
dominant or recessive. Thus, there are four types of
IAMs according to the genetic behavior of the
phenotype-conferring alleles at each locus: dominant–
dominant, dominant–recessive, recessive–dominant and
recessive–recessive.

Derivation of the penetrances according to IAM is
almost straightforward. The internal component of
penetrance is simply defined by the probabilities of
expression of the phenotype-conferring alleles at either
locus. Since heterogeneity means independent action of
both loci, the internal component of penetrance satisfies
the probabilistic relationship for the union of two
independent events, each referring to the allelic expres-
sion of each locus, that is,

pint
gAgB

¼ fgA
þ fgB

� fgA
fgB

ð11Þ
where fgA

and fgB
are the probabilities of expression of

the phenotype-conferring alleles at genotypes gA and gB,
respectively. If the phenotype-conferring allele at one
locus is dominant, the corresponding fgi

then follows
Equation (1). Analogously, if the phenotype-conferring
allele is recessive, the respective fgi

is then determined
by Equation (4). Finally, external factors are included in
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the model through (10) with pint
gAgB

determined by (11).
Thus, in addition to external penetrance pext, IAMs are
parameterized as follows: by pA and pB for IAM
dominant–dominant; by pA, pB and pb for IAM domi-
nant–recessive; by pA, pa and pB for IAM recessive–
dominant; and by pA, pa, pB and pb for IAM recessive–
recessive. Following the comments about recessiveness
and dominance given in the single-locus modeling, IAM
recessive–recessive can be converted either into an IAM
dominant–recessive or in an IAM recessive–dominant
through pA¼ 0 and pB¼ 0, respectively. Moreover, the
IAM recessive–dominant and IAM dominant–recessive
are IAM dominant–dominant if pA¼ 0 and pB¼ 0.
Therefore, the IAM shows a nested structure.

The mathematical formulation of IAM is also able to
generate deterministic inheritance patterns (correspond-
ing to complete penetrance scenarios), when allelic
penetrances of phenotype-conferring alleles at either
locus are made equal to one and the external penetrance
equal to 0. Table 1 illustrates two examples of IAMs
under this condition, where the combined genotypes of
the two loci determining phenotype inheritance become
easily identifiable. For instance, in the IAM with a
dominant-conferring phenotype allele A at locus A and
a recessive phenotype-conferring allele b at locus B, the
phenotype is inherited when an individual has either the
homozygous or the heterozygous genotype AA and Aa at
locus A or has the homozygous genotype BB at locus B.
Thus, IAM can account simultaneously for reduced and
complete penetrance scenarios. It is worth noting that
classical two-locus models do not possess this feature as
they cannot account for deterministic situations.

Inhibition models (IMs): Bateson (1907, 1909) described
a genetic mechanism termed epistasis whereby an allele
of an epistatic locus prevents an allele of a hypostatic locus
from manifesting its effect. Since then, epistasis has been
used in many different contexts, often with conflicting

meanings, that led to several discussions about its formal
definition (Phillips, 1998; Cordell, 2002; Strauch et al.,
2003; Moore and Williams, 2005). As a consequence,
many authors proposed different models to detect
epistatic effects: additive models (Risch, 1990), multi-
plicative models (Hodge, 1981), and heterogeneity
models (Risch, 1990; Vieland and Huang, 2003). Failure
to fit the models is often claimed to be evidence of
epistatic interaction. The same can be said regarding
failure to fit IAMs.

Here, we recovered the original Bateson’s definition
of epistasis to develop inhibition models (IMs). In these
models, a locus confers the phenotype through the
expression of the respective phenotype-conferring allele
and the other locus inhibits the phenotypic expression of
the former by its inhibiting allele. The alternative alleles
have no conferring or inhibiting action on the phenotype.
Phenotype-conferring and -inhibiting alleles can be
considered either dominant or recessive.

Consider that locus A confers the phenotype of interest
and locus B inhibits the expression of the former. In
this case, the internal component of penetrance relates to
the probability of the phenotype-conferring alleles at
locus A being expressed when the phenotype-inhibiting
alleles at locus B are not expressing their inhibiting
action. Thus, the internal component of penetrance
satisfies

pint
gAgB

¼ fgA
ð1 � f	

gB
Þ ð12Þ

where fgA
is the probability of genotype gA expressing

the phenotype of interest and f	
gB

is the probability of
genotype gB having an inhibitory behavior. Dominance
and recessiveness are included in the model by replacing
fgA

and f	
gB

by the single-locus internal penetrances (1)
and (4), respectively. Finally, we include the action of
external factors in penetrance through Equation (10) with
internal component of penetrance given by the above
equation.

Table 1 Penetrance tables illustrating independent action models (IAMs), inhibition models (IMs) and cumulative action models (CAMs)
when the alleles have complete penetrance (that is, equal to 1) in the absence of external factors (pext¼ 0)

Genotypes Models

IAM(A/B)a IAM(A/b)b IM(A/B)c IM(A/b)d CAM2(A/B)e CAM3(A/B)f

AA
BB 1 1 0 1 1 1
Bb 1 1 0 1 1 1
bb 1 1 1 0 1 0

Aa
BB 1 1 0 1 1 1
Bb 1 1 0 1 1 0
bb 1 1 1 0 0 0

aa
BB 1 0 0 0 1 0
Bb 1 0 0 0 0 0
bb 0 1 0 0 0 0

aIAM with dominant phenotype-conferring alleles A and B at loci A and B, respectively.
bSame as in a but with a phenotype-conferring recessive allele b at locus B.
cIM with a dominant phenotype-conferring allele A at locus A and a dominant inhibiting allele B at locus B.
dSame as in c but with a recessive inhibiting allele b at locus B.
eCAM requiring the expression of at least two phenotype-conferring alleles A and B at loci A and B, respectively.
fSame as in e, but requiring at least three phenotype-conferring alleles A and B.
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N Sepúlveda et al

176

Heredity



IMs have different numbers of parameters depending
on the dominant and recessive nature of the phenotype-
conferring and -inhibiting alleles. For example, IM with a
dominant phenotype-conferring allele at locus A and a
recessive inhibiting allele b at locus B is parameterized by
pA, pB, pb and pext. Parameterization of the remaining
models follows the same reasoning as above. Like in
IAMs, the IMs also show a nested structure, where IMs
with some (phenotype-conferring or -inhibiting) domi-
nant alleles are nested in IMs with both recessive alleles,
and IMs with both dominant alleles are nested in IMs
with some dominant alleles.

Comparing Equations (11) and (12), it is easy to see
that IM and IAM produce distinct penetrance
patterns. This is better illustrated in complete penetrance
scenarios when the allelic penetrances are equal to one
and the external penetrance is equal to zero (see
examples in Table 1). In this table, the phenotype in a
IM with a dominant phenotype-conferring allele A at
locus A and a dominant inhibiting allele B at locus B is
inherited when an individual has either the homozygous
or the heterozygous genotype AA and Aa at locus A
(genotypes that confer the phenotype) and the homo-
zygous genotype bb at locus B (genotype that does not
induce inhibition).

Cumulative models: Some models for penetrance
are based on a latent Gaussian quantitative trait,
the so-called liability (Falconer, 1965). One approach
advocates that a fixed threshold exists in the liability
that divides individuals with or without the phenotype
(Pearson, 1900; Wright, 1934; Dempster and Lerner,
1950; Risch et al., 1993). Another approach is to say
that each individual has its own liability threshold,
which follows a Gaussian distribution in the population
(Curnow, 1972; Curnow and Smith, 1975). One can
also use logistic regression models, which approximate
the Gaussian liability distribution by the (standard)
Logistic distribution (Baxter, 2001). However, most
geneticists use them like epidemiologists do to estimate
risk factors for a disease in a given population (for
example, Cordell, 2002; Whittemore and Halpern, 2003;
North et al., 2005).

Hagen and Gilbertson (1973) suggest that the inheri-
tance of ‘lateral plate morphs’ in freshwater threespine
sticklebacks is determined by the number of certain
alleles at the combined genotype of two loci. In the
same line of thought, Stewart (2002) hypothesized
that the inheritance of multifactorial diseases is
controlled by a given number of disease-conferring
alleles in the genotype of an individual. In view of
these ideas, we propose the cumulative action models
(CAMs), where the expression of the phenotype is
controlled not only by the presence of a certain number
of phenotype-conferring alleles in the combined geno-
type of the two loci, but also by their expression. Note
that dominance and recessiveness are not included in the
model, because what matters here is the number of the
phenotype-conferring alleles being expressed. This im-
plies that alleles that are not conferring the phenotype
are considered to have a null action for the expression of
the phenotype.

Let xi represent the number of phenotype-conferring
alleles in the genotype of locus i¼A, B. Let also Yi be the
random variable that indicates the number of those

alleles expressing the phenotype. According to the allelic
penetrance approach, Yi|xi has a Binomial distribution
with xi trials and probability of success given by the
allelic penetrance pi of the phenotype-conferring allele at
locus i¼A, B. Assuming independence between YA and
YB, the probability mass function of the total number
Y of phenotype-conferring alleles expressing the pheno-
type given by the combined genotype (xA,xB) is deter-
mined by

P½Y ¼yjxA; xB�

¼
XxA

t¼0

P½YA ¼ ljxA; xB�P½YB ¼ y � ljxA; xB�
ð13Þ

where

P½Yi ¼ yijxA; xB� ¼
xi

yi

� �
pyi

i ð1 � piÞxi�yi ð14Þ

Consequently, CAM entails the following internal
component of penetrance

pint
xAxB

¼ P½YXkjxB; xB�

¼
XxBþxB

y¼k

P½Y ¼ yjxA; xB�; k ¼ 1; . . . ; 4 ð15Þ

where P[Y¼ y|xA, xB] is given by (13). As in IAM, the
effect of the external factors is included in the model by
(10) with pint

gAgB
as calculated by (15). Thus, CAMs have

three parameters: the two allelic penetrances of the
phenotype-conferring alleles at each locus and external
penetrance pext. In contrast with IAM and IM, CAM have
no nested structure, and thus they have to be fitted
accordingly.

It is worth noting that the assumed independence
between YA and YB implies that CAM is conceptually
akin to independent action of the two loci at the level
of the allelic expression. However, one cannot say
that the action of the two loci is independent at the
level of the phenotype. Take, for example, the CAM
requiring the simultaneous expression of at least
three phenotype-conferring alleles at the combined
genotype of the two loci. In spite of the allelic expression
being independent, the action of a single locus is
insufficient to confer the phenotype, as opposed to
IAM. The phenotype is only observed when the two loci
act together.

As in previous models, when the alleles have
complete penetrance in absence of external factors,
CAM can also describe specific complete penetrance
scenarios (see examples in Table 1). For instance, in
the CAM requiring the simultaneous expression of at
least two phenotype-conferring alleles A and B at loci A
and B, the phenotype is inherited when an individual
has either the homozygous genotypes AA or BB at each
locus or has the combined genotype Aa/Bb. However,
when the allelic threshold of CAM is 1 or 4, the
correspondent complete penetrance tables are coincident
to an IAM with dominant phenotype-conferring alleles at
both loci and to IM with a recessive phenotype-
conferring allele at one locus and a dominant inhibiting
allele at the other locus, respectively. This coincidence
has been pointed out by Li and Reich (2000), who
showed that different genetic interaction mechanisms
can be specified by the same requisite for the inheritance
of phenotype.
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Statistical inference
Some statistical considerations have to be put forward
when fitting the above models to experimental data. We
assume that the likelihood of the data is

L ¼
Y

gA;gB

ngAgB.

ngAgB1

� �
ðpgAgB

ÞngAg
B1 ð1 � pgAgB

ÞngAg
B2 ð16Þ

where ngAg
Bk

is the number of sampled individuals
with combined genotype ( gA,gB) and phenotype k¼ 1, 2,
ngAgB.

¼ ngAgB1þ ngAgB2 , and pgAgB
is the penetrance of

combined genotype (gA,gB). The (log-)likelihood is then
maximized with respect to the allelic and external
penetrances. At this point, it is worth noting that one
cannot know whether a particular allele is being
expressed in each individual, and thus data is incom-
plete (or missing) under the allelic penetrance models. In
this case, the maximization of the likelihood is easily
achieved via the Expectation–Maximization algorithm
that is particularly suitable for missing data problems
(Dempster et al., 1977). The algorithm is described in the
appendix and was implemented in R language (Ihaka
and Gentleman, 1996).

We perform the traditional Wilks’ likelihood ratio test
to evaluate the goodness-of-fit of the models. The test is
based on the following test statistic

Qv ¼ �2
X
gA;gB

X
k¼1;2

ngAg
Bk
ðln m̂gAg

Bk
� ln ngAg

Bk
Þ

where m̂gAg
Bk

is the expected value of ngAg
Bk

under the
model being tested. Standard statistical theory predicts
that, for large samples, the distribution of Qv under the
null hypothesis follows a chi-square distribution wp

2

where p is the difference between the number of
combined genotypes in the data and the parameter
number of the model under test. The level of significance
was setup at 5%.

As alluded previously, the IAM and IM have nested
structures. In this situation, one may first evaluate the
goodness-of-fit of the most general IAM and IM, which
are the ones with recessive allelic action at each locus.
Then, if these models agree with the data, they can be
compared with models specifying some dominant allelic
action. In general, one can compare models M1 and M2

with M1CM2 using the Wilks’ likelihood ratio condi-
tional statistic

QvðM1jM2Þ ¼ �2
X

gA;gBk

ngAg
Bk
ðln ~mgAg

Bk
� ln m̂gAg

Bk
Þ

where ~mgAg
Bk

and m̂gAg
Bk

are the expected values of
ngAg

Bk
under models M1 and M2, respectively. Generically,

the distribution of Qv(M1|M2) for large samples is
under the null hypothesis wp

2, where p is the diference
between the number of parameters of M1 and M2.
However, in the IAM and IM, M1 is obtained from
M2 via an allelic penetrance equal to 0. For example,
testing IAM dominance–recessive against IAM reces-
sive–recessive is equivalent to test the penetrance of
the dominant allele at locus A equal to 0. Since an
allelic penetrance is a probability, testing a probability
equal to 0 falls into a situation where the w2 approxima-
tion to the Wilks’ test statistic may not be accurate
(Self and Liang, 1987). A good approximation is to cut
in half the P-value obtained from a w1

2 (Self and Liang,
1987). CAMs are not nested and they are fitted using the
above-described unconditional testing. On the other

hand, the mathematical structures of the three classes
of models do not allow for fitting comparison by classical
likelihood ratio test.

In practical terms, several models may fit the data
well, and thus one should have good criteria to help to
decide which genetic joint actions should be evaluated
experimentally. To do this, we devised a measure to
compare competing genetic models based on the
decomposition of penetrance shown in Equation (10).
For a given model, the idea is to compare the internal
component of penetrance with total penetrance. One way
to do it is to consider the ratio between the penetrance of
the population attributable to the internal component of
penetrance (that is, attributable to joint action of the two
loci itself) and the penetrance of the population
explained by both internal and external components of
penetrance, that is,

IPC ¼
P

gA;gBp
int
gAgB

fgAgBP
gA;gB pint

gAgB
þ ð1 � pint

gAgB
Þpext

h i
fgAgB

ð17Þ

where fgAgB is the frequency of the combined genotype
(gA,gB) in the population. High IPC values mean that the
observed penetrance is well explained by the joint action
of the two loci, while low IPC values show that external
factors are the main contribution for the observed
penetrance. In this line of thought, if one is interested
in the two-locus joint action per se, one should confirm
experimentally the models exhibiting the highest IPC
values.

Examples

The following examples refer to data derived from
experimental crosses between a susceptible and a
resistance strain. Our analysis used the following
notation for the allelic penetrance models. There are
two loci A and B with alleles a1 and a2 and with alleles b1

and b2, respectively, where the alleles a1 and b1 are
derived from the susceptible strain and the alleles a2 and
b2 are derived from the resistance strain. In the models,
we use when necessary upper and lower cases to
represent dominant and recessive alleles, respectively.
IAM(A1/b2) represents an independent action model with
phenotype-conferring alleles A1 and b2 at each locus.
IM(A1

i /B2
c) is an IM with phenotype-conferring allele B2

and -inhibiting allele A1, where the superscripts c and i
denote phenotype-conferring and -inhibiting action,
respectively. CAMk(a2/b1) is a CAM requiring jointly the
expression of at least k phenotype-conferring alleles a2

and b1.

Application to intercross data
Boyartchuk et al. (2001) reported the genetic mapping of
susceptibility to infection by Listeria monocytogenes in
mice. These authors performed an intercross experiment
between the susceptible strain BALB/cByJ and the
resistant strain C57BL/6. Two loci at chromosomes 5
and 13 (here referred as A and B, respectively) were
identified to be strongly associated with susceptibility.
The observed phenotype data for each genotype combi-
nation is shown in Table 2. Boyartchuk et al. (2001)
pointed out that the alleles a2 and b1 seem to contribute to
susceptibility. This observation suggests that these two
alleles might be the phenotype-conferring alleles for
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susceptibility, and a1 or b2 the inhibiting alleles. In
contrast, the phenotype-conferring alleles for resistance
might be a1 and b2, and a2 or b1 the inhibiting alleles.

The allelic penetrance approach is designed to study
reduced penetrance phenotypes. As both resistance and
susceptibility showed complete penetrance in parental
strain (Boyartchuk et al., 2001), there was no clear choice
for the phenotype of interest. In this case, we decided to
separately analyze susceptibility and resistance, and look
for the most suitable models (see Table 3).

With respect to resistance, we first fitted IAM(a1/b2).
The P-value of the goodness-of-fit test for this model was
0.03, and thus this model does not fit the data well.
However, estimates of pb1

and pext are close to 0, a
situation where the P-value may not be accurate (Self
and Liang, 1987). To overcome this problem, we
simulated 1000 data sets under the fitted model,
calculating in each one the corresponding likelihood
ratio statistic. An empirical P-value is given by the
proportion of tests that accepted the model. In this way,
we obtained an empirical P-value of 0.07. In spite of

being accepted at the 5% level of significance, we rejected
this model, because the quality of the fit is far from being
satisfactory. Owing to nested structure of IAM, IAM
with some dominant phenotype-conferring or -inhibiting
alleles were not tested.

Next, we fitted IM(a1
c/b1

i ) and IM(a2
i /b2

c). The goodness-
of-fit tests for these models revealed that both models do
not describe the data well (P¼ 0.02 for IM(a1

c/b1
i ) and

P¼ 0.01 for IM(a2
i /b2

c)). Once again IMs with some
dominant alleles were not fitted due to the same reason
as in IAM. Therefore, there is no evidence for an
inhibition action between the two loci. Finally, we
evaluated the fit of different CAM with phenotype-
conferring alleles a1 and b2. The goodness-of-fit tests
show that CAM do not capture reasonably the observed
penetrance pattern (Po0.05). Thus, none of the proposed
models was able to fit reasonably the penetrance pattern
of resistance.

In relation with susceptibility, we fitted IAM(a2/b1) as
opposed to the IAM(a1/b2) fitted to resistance. This
model shows a reasonable fit to data (P-value¼ 0.13).
This was also confirmed by an empirical P-value of 0.14
obtained as described above for resistance. Conditionally
to IAM(a2/b1), we asked whether the alleles a2 or b1

would be dominant rather than recessive. The P-values
of goodness-of-fit tests for IAM(A2/b1) and IAM(a2/B1)
show evidence for the first model and against the second.
Then, conditionally to IAM(A2/b1), we evaluate the
hypothesis of the allele b1 being dominant. The P-value
of the goodness-of-fit test disfavors this hypothesis
(Po10�3). Therefore, there is evidence for IAM(A2/b1).
The internal component of penetrance in this model
accounts for 90% of the total penetrance, additionally
supporting the existence of other ‘minor’ loci in the
genetic background. In contrast to IM specified for
resistance, we fitted IM(a2

c/b2
i ) and IM(a1

i /b1
c). Both

models do not fit the data (P-valueso0.01), and thus as
in resistance there is no inhibition action between the two
loci for susceptibility. Finally, CAM with phenotype-
conferring alleles a2 and b1 cannot also fit the data well.

Table 2 Data of Listeria experiment regarding loci A and B at
chromosomes 5 and 13, respectively, where a1 and b1 denote the
alleles derived from the susceptible strain, whereas a2 and b2

represent the alleles derived from the resistant strain

Genotypes Susceptibility Resistance Penetrance

Locus A Locus B

a1a1 b1b1 4 3 0.57
a1a1 b1b2 4 15 0.21
a1a1 b2b2 1 11 0.08
a1a2 b1b1 23 1 0.95
a1a2 b1b2 10 21 0.32
a1a2 b2b2 6 7 0.46
a2a2 b1b1 10 0 1.00
a2a2 b1b2 8 4 0.66
a2a2 b2b2 5 4 0.55

Penetrance refers to susceptibility.

Table 3 Likelihood ratio (Qv) tests and maximum likelihood parameter estimates for the allelic penetrance models to the Listeria data set

Phenotype Model Qv d.f. P-value p̂a1
p̂a2

p̂b1
p̂b2

p̂ext

Resistance IAM(a1/b2) 10.75 4 0.03 0.34 0.79 0.00 0.44 0.00
IM(a1/b1) 17.15 4 0.002 0.61 0.04 0.98 0.93 0.17
IM(b2/a2) 11.39 4 0.02 0.22 0.38 0.00 0.78 0.08
CAM1(a1/b2) 16.03 6 0.01 0.21 — — 0.43 0.00
CAM2(a1/b2) 15.10 6 0.02 0.71 — — 0.63 0.12
CAM3(a1/b2) 36.83 6 o10�3 1.00 — — 0.62 0.35
CAM4(a1/b2) 49.48 6 o10�3 0.96 — — 0.96 0.44

Susceptibility IAM(a2/b1) 7.72 4 0.13 0.22 0.35 0.89 0.60 0.11
IAM(A2/b1)a 0.91 — 0.17 — 0.32 0.60 0.89 0.10
IAM(a2/B1)a 16.93 — o10�3 0.15 0.37 0.32 — 0.15
IAM(A2/B1)b 16.73 — o10�3 — 0.34 0.32 — 0.05
IM(a2/b2) 14.65 4 0.005 0.07 1.00 0.00 0.57 0.18
IM(b1/a1) 13.99 4 0.007 0.41 0.85 0.99 0.77 0.24
CAM1(a2/b1) 24.80 6 o10�3 — 0.34 0.32 — 0.05
CAM2(a2/b1) 15.69 6 0.02 — 0.33 0.89 — 0.24
CAM3(a2/b1) 13.01 6 0.04 — 0.85 1.00 — 0.33
CAM4(a2/b1) 46.98 6 o10�3 — 1.00 1.00 — 0.48

Abbreviations: CAM, cumulative action model; d.f., degrees of freedom; IAM, independent action model; IM, inhibition model.
aConditional tests given IAM(a2/b1).
bConditional test given IAM(A2/b1).
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With these results, we conclude that susceptibility might
be controlled by an independent action of a dominant
allele derived from the resistant strain at locus A and a
recessive allele derived from the susceptible strain at
locus B.

We also fitted the traditional two-locus models:
additive, multiplicative, heterogeneity, liability and
logistic models. The results revealed that all models
could describe the data (data not shown). One usually
interprets these results as lack-of-interaction between the
loci. Thus, a classical heterogeneity model holds where
the two loci seem to act independent of each other, in
close agreement with the best-fitted allelic penetrance
model IAM(A2/b1). This shows that the IAM added
information to the genetic action in determining the
alleles causing the phenotype as well as their genetic
nature. Finally, it is worth noting that the likelihoods of
current and allelic penetrance models are not compar-
able, because the parameter number among these models
is different.

Application to backcross data
Bagot et al. (2002) performed a genetic mapping study
in mice for the susceptibility to experimental cerebral
malaria (ECM) following Plasmodium berghei ANKA
infection. A cross was performed between the ECM
resistant strain WLA and the ECM susceptible strain
C57BL/6J, where F1 progeny was ECM resistant and was
backcrossed with the susceptible parental strain.

Two disease-associated loci in different autosomes
(Berr1 and Berr2) were detected using standard genetic
mapping tools. The observed phenotypic frequencies for
each genotype combination of Berr1 and Berr2 are shown
in Table 4. Since the F1 progeny was backcrossed with the
susceptible parental strain, we chose susceptibility as the
phenotype of interest.

Data from backcross experiment have only four
combined genotypes of the two loci. Thus, the variants
of IAMs and IMs that include recessive alleles have more
parameters than the number of genotypic combination.
In this case, the models are not estimable (see Discus-
sion). This is a consequence of modeling internal
penetrance of recessive alleles at each locus by two
allelic penetrances, one for the dominant allele and
another for the recessive allele (see Equation (4)). Since
the WLA strain was 100% resistant to the disease, while
the other strain was not fully susceptible (Bagot et al.,
2002), we could avoid overparameterization by assuming
that the internal component of penetrance of a recessive
phenotype-conferring (or inhibiting) allele follows Equa-
tion (4) with pA¼ 1. In this case, penetrances for all
models add up to three parameters: one allelic pene-
trance for each locus and the external penetrance pext.
With this assumption, it is easy to see IAM and IM will
not have a nested structure, and thus we evaluated the fit
of these models using unconditional Wilks’ likelihood
ratio tests.

A careful observation of Table 4 shows that penetrance
increases with the number of alleles derived from the
susceptible strain. This suggests that phenotype-confer-
ring alleles should be a1 and b1, while inhibiting alleles
should be a2 and b2. The goodness-of-fit tests revealed
that IAM(a1/b1), CAM2(a1/b1) and CAM3(a1/b1) provide
the best fit for the ECM data (Table 5); other models were

fitted but exhibited lack of fit at the level of significance
of 5% (data not shown). The first model suggests an
independent action of two recessive alleles of the
susceptible strain, while the other two support a
cooperative action of both loci, requiring simultaneous
expression of at least two or three conferring alleles of
the susceptible strain at the combined genotype. With
respect to IPC (see last row of Table 5), the internal
component of penetrance of IAM(a1/b1) and CAM3(a1/b1)
explains around 80% of the total penetrance, whereas
in the case of CAM2(a1/b1) it explains 100% of the total
penetrance. However, these estimates might be inflated,
because many genotypic combinations are missing from
the data by experimental design.

Simulations

The previous section illustrated the application of the
allelic penetrance models to intercross and backcross
data. An important issue is to assess whether the
traditional models would capture the penetrance pat-
terns generated by the allelic penetrance models. To
address this issue, we performed a small simulation
study. We generated 250 F2 individuals from an inter-
cross experiment, where two loci A and B located in
different autossomes (with independent Mendelian
segregation) interact according to the proposed models.
Then, we fitted the traditional models (additive, multi-
plicative, heterogeneity, liability and logistic) to 1000 data
sets simulated from the proposed models with a given
parameter set. We then computed the proportion of times
that the Wilks’ likelihood ratio test provided evidence for
these models. The level of significance of each test was

Table 4 Phenotypic data of experimental cerebral malaria backcross
experiment for loci Berr1 and Berr2, where a1 and b1 denote the
alleles derived from the susceptible strain, whereas a2 and b2

represent the alleles derived from the resistant strain

Genotypes Susceptibility Resistance Penetrance

Berr1 Berr2

a1a1 b1b1 35 10 0.78
a1a1 b1b2 25 23 0.56
a1a2 b1b1 27 21 0.52
a1a2 b1b2 9 40 0.18

Penetrance refers to susceptibility.

Table 5 Likelihood ratio (Qv) tests and maximum likelihood
parameter estimates for the best-fitted allelic penetrance models to
the experimental cerebral malaria data set

Fitted penetrances Best-fitted models

IAM(a1/b1) CAM2(a1/b1) CAM3(a1/b1)

a1a1/a2a2 0.76 0.73 0.79
a1a1/b2a2 0.53 0.49 0.51
a1a2/a2a2 0.58 0.58 0.55
a1a2/b2a2 0.17 0.27 0.19
p̂a1 0.66 0.44 0.78
p̂b1

0.70 0.61 0.89
p̂ext 0.18 0.00 0.17
Qv 0.161 2.720 0.087
P-value (1 d.f.) 0.688 0.099 0.769
IPC 0.79 1.00 0.77

Abbreviations: d.f., degrees of freedom.
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N Sepúlveda et al

180

Heredity



setup at 5%. The implementation of the simulation
procedure was performed in R language (Ihaka and
Gentleman, 1996) and was tested by fitting the model to
the data it generated (see the control acceptance ratio in
Figure 1).

In the simulation, we assume that the internal
component of penetrance of a recessive allele is given
by Equation (4) with pA¼ 1, while for a dominant allele
follows Equation (1). Thus, all allelic penetrance models
have only three parameters: one allelic penetrance for
each locus plus the external penetrance. We studied the
situation where the allelic penetrances of each locus are
equal to one another and pext¼ 0.10 and 0.20. Figure 1
shows the results of varying the allelic penetrance for
some of the proposed models. The simulations for the
remaining models show similar patterns and are avail-
able from the authors upon request.

One general observation is that the ability of the
traditional models to fit the simulated data decreases
as the allelic penetrance increases. In one extreme, the
traditional models can fit simulated data well from
low allelic penetrances, because the penetrances of the
proposed models are mostly controlled by pext, and thus
they can be described by a linear model including only a
global effect (equal to pext). In the other extreme, the
traditional models cannot reproduce simulated data
from high allelic penetrances, because such data are
close to a deterministic situation, and therefore any
(statistical) linear model is expected to fail in those cases.

The other general observation is that the liability and
logistic models are quite similar in terms of fitting
the simulated data. This is in close agreement with
Chambers and Cox (1967), who reported that these two
models can only be distinguished for large sample sizes.
Furthermore, these two models seem to be the ones that
best fit the data simulated from CAM. Since CAM are
based on a latent trait representing the number of
phenotype-conferring alleles being expressed, we spec-
ulate that the discrete distribution of this trait may be
reasonably approximated by the Normal or the Logistic
distribution on which the liability and logistic models are
based on.

The heterogeneity and multiplicative models are the
ones that best reproduce data generated from IAM and
IM, respectively. This can be explained by the fact that
the heterogeneity and the multiplicative model are
described by pij¼ ai þbj�aibj and pij¼ aibj, respectively,
which resemble the internal penetrances of the above-
mentioned proposed models (see Equations (11) and (12),
respectively).

In summary, the traditional models do not have the full
ability to describe data generated from the proposed
models, particularly when the two interacting loci have
moderate to high effects on penetrance (corresponding to
moderate to high allelic penetrances). Therefore, in
addition to the possibility of describing reasonable
genetic interaction mechanisms, the proposed models
produce penetrance patterns not covered by the tradi-
tional two-locus models, showing their potential useful-
ness in exploring genetic interaction in experimental data.

Discussion

An allelic penetrance approach was proposed to model
genetic interactions in complex binary traits. The whole

framework is based on a decomposition of penetrance in
a sum of an internal component pertaining to the
expression of the alleles of the genotypes and an external
component attributable to other factors acting on the
phenotype. The modeling presupposes the same ‘mean
effect’ of the genetic background and/or environmental
factors on penetrance of all genotypes. This assumption
seems only reasonable when the genetic background is
not homogeneous, such as in the second-generation
crosses analyzed. Thus, the modeling of external
component needs to be refined to describe better the
effect of different genetic backgrounds or environmental
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Figure 1 Examples of simulation results: estimated proportion of
the Wilks’ likelihood ratio tests accepting the traditional models for
data simulated by three allelic penetrance models. Each data point
represents estimations for 1000 datasets at given allelic penetrance
with external penetrance equal to 0.10. The control line represents
the acceptance ratio of the model generating the data.
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factors on penetrance. It would be particularly interest-
ing to apply the proposed approach to congenic mice
strains and human data. Refinement of the external
component will also be useful to include data concerning
parental strains and F1 generation in the analysis of genetic
interaction. Interesting guidelines to deal with genetic
backgrounds are provided by Hansen and Wagner (2001).

We proposed two-locus allelic penetrance models
based on genetic heterogeneity, Bateson’s epistasis and
allelic liability. It is worth noting that these three classes
of genetic joint actions do not cover all possible two-
locus interactions. In fact, Li and Reich (2000) alluded to
other types of interactions, namely, jointly dominant/
recessive models, modifying effect and interference
models. We did not consider them in this paper, because
they are rarely reported in the literature.

We showed that the proposed modeling is sensitive to
the choice of the phenotype of interest. In the cerebral
malaria example, we chose susceptibility as the pheno-
type of interest, because the F1 generation was back-
crossed with the susceptible strain to increase disease
incidence. In the case of intercrosses, the prior choice of
the phenotype may not be so straightforward as
illustrated by the Listeria sample. In general, if one is
studying a binary trait using wild-type versus mutant
strains, the concept of canalization may be used to
identify the phenotype of interest as a deviation of the
wild-type phenotype. However, in cases of phenotypes
generated by exogeneous stimuli, such as resistance or
susceptibility to infections, it could be difficult to define a
priori the phenotype of interest. In such cases, we suggest
to analyze separately resistance and susceptibility and
search the models that best fit the data.

We illustrated the fitting of the proposed models in two
data sets from mouse experiments. In both examples, the
two-locus joint action of the best-fitted models explains
per se 80–100% of total penetrance. Therefore, the external
factors have a minor contribution to the fitting.

In the Listeria example, susceptibility appears to be
mediated by an independent action with a dominant
allele of the susceptible strain in the chromosome 5 locus
and a recessive allele of the resistant strain in the
chromosome 13 locus. To validate the model, one can
breed two single congenic mice, one with the allele at
chromosome 5 locus from the resistant strain being bred
in the susceptible strain and the other with the allele at
chromosome 13 locus from susceptible strain being bred
in the resistant strain. These congenic strains should be
more susceptible to Listeria infection than the respective
parental strain. Boyartchuk et al. (2001) showed that the
C57BL/6 strain was fully resistant to a Listeria infection.
This observation may be explained by a putative
phenotype-inhibiting role of the genetic background in
the resistant parental strain, which is not included in the
proposed modeling.

In the experimental cerebral malaria example, our
results indicate that susceptibility seems to be controlled
by an independent action of recessive alleles derived
from the susceptible strain at Berr1 and Berr2. They also
suggest that the phenotype may be inherited by a genetic
action requiring the simultaneous expression of at least
two or three alleles of the susceptible strain at the
combined genotype of the two loci. Bagot et al. (2002)
show that F1 generation mice were all resistant to the
disease. This result seems to rule out the CAM requiring

jointly at least two phenotype-conferring alleles being
expressed, whereas it favors the other two models. To
validate the models, our results predict that single-locus
congenic mice in a resistance background should be
susceptible or remain resistant to the disease if the two-
locus interaction follows either IAM or CAM3, respectively.

One limitation of the allelic penetrance models relates
with the fitting of backcross data: some models show
more parameters than the data allow. As a consequence,
parameters cannot be uniquely determined and esti-
mated. In statistical terms, the models are said to be
nonidentifiable, and thus nonestimable (Paulino and
Pereira, 1994). In the cerebral malaria example, this
problem was overcome by attributing complete allelic
penetrance to the nonconferring alleles, because the
susceptible parental strain exhibited reduced penetrance
for susceptibility, while its resistant parental strain
showed complete penetrance. Therefore, usage of the
models in backcross data is possible when the phenotype
of interest shows reduced penetrance in the respective
parental strain whereas the absence of it has complete
penetrance in the other strain. However, to avoid this
kind of assumptions, we will study in the future in which
situations the models are identifiable.

The standard models for genetic interaction are
commonly used to detect the existence of some kind of
epistasis, but they cannot infer its nature (Cordell, 2002).
One advantage of the models presented here is the
possibility of identifying the nature of the genetic
interaction, even in the absence of prior evidence for
interaction. This suggests a two-step procedure: (i) fit
classical two-locus models, and if they do not fit the data,
(ii) use models proposed here to infer plausible mechan-
isms of epistasis. Notwithstanding, our models may also
be useful in cases where epistasis is absent. In fact, when
the traditional heterogeneity model holds, our independent
action models can infer which are the phenotype-confer-
ring alleles at each locus as well as their genetic behavior.
This is illustrated by the Listeria and cerebral malaria
examples discussed above, for which there is evidence for
the classical heterogeneity model (data not shown).

The simulation study corroborated the notion that the
proposed models produce penetrance patterns not
captured by the traditional two-locus models, especially
when the two loci have a moderate to strong impact on
penetrance. In conclusion, the allelic penetrance models
produce genetic interpretations of real data and can
simulate data that is not explained by any of the
traditional models of binary traits. Therefore, these
models may prove useful in revealing genetic interac-
tions that may have been hitherto undetectable.
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Appendix A

EM Algorithm
Here, we provide an EM algorithm to estimate the
different allelic penetrance models by maximum like-
lihood. As a simplification, we consider models where
the internal penetrance of a locus is modeled by a single
parameter (that is, Equation (1) for dominance and
Equation (4) with pA¼ 1 for recessiveness). In this
context, all models have three parameters: pext and two
allelic penetrances for each locus, that will be denoted
hereafter by pA and pB. The general case follows the same
reasoning as described here and is available from the
authors upon request.

The EM algorithm was originally developed to
facilitate the maximum likelihood estimation in missing
data problems (Dempster et al., 1977). This algorithm
was also found useful for cases where real data are not
missing, but are conceptually incomplete, as in the
allelic penetrance models. Indeed, the observed data
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have limited information about the allelic expression
events occurred in the construction of the phenotype of
each individual.

To simplify the derivations, we denote the phenotype
by z¼ 0, 1 and the combined genotype of an individual
by xy, where x and y represent the number of phenotype-
conferring alleles in the genotype of locus A and B,
respectively (x¼ 0, 1, 2 and y¼ 0, 1, 2 for an intercross,
and x¼ 1, 2 and y¼ 1, 2 for a backcross). Following this
notation, the observed data are the frequencies nxyz of
individuals with genotype xy and phenotype z. The
frequency of individuals with genotype xy is represented
by nxy¼nxy0þnxy1.

Recall the decomposition of penetrance given in
Equation (10). The internal penetrance of the allelic
penetrance models is based on the following random
variables: A*|xy and B*|xy are independently distrib-
uted as Bin(x, pA) and Bin(y, pB), representing the number
of alleles being expressed at locus A and B, respectively.
Therefore, the joint probability of (A*, B*)¼ (v, w) is given by

yxyvw ¼ P½ðA	;B	Þ ¼ ðv;wÞjxy�

¼ x
v

� �
px

Að1 � pAÞx�v y
w

� �
pw

B ð1 � pBÞy�w ð18Þ

In this context, the internal component of penetrance is

pint
xy ¼

X
ðv;wÞ2Pxy

yxyvw

where Pxy is the set of values (v, w) given xy that produce
the phenotype of interest (see Table 6 for the definition of
Pxy for the different two-locus interaction models). The
external penetrance is modeled by a Bernoulli trial E that
indicates whether the external factors are expressing the
phenotype of interest given that the phenotype-confer-
ring allelic expression is absent. That is,

P½E ¼ ejðv;wÞ=2Pxy� ¼ pe
extð1 � pextÞ1�e

Thus, we have

pext
xy ¼ pext

X
ðv;wÞ=2Pxy

yxyvw

If one could have the information of A*|xy, B*|xy and
E|(v,w)ePxy for all the individuals, the complete data would
be the vector of frequencies {nxyvw* , nxyvwe

þ }, where nxyvw* is
the frequency of individuals with (v, w)2Pxy, and nxyvw

þ is the
frequency of individuals with (v, w)=2Pxy, and E¼ e. Its
sampling distribution (or the likelihood function) would
then be a Multinomial-product distribution, that is, one
Multinomial distribution for each combined genotype xy

L ¼
Y
x;y

nxy!
Y

ðv;wÞ2Pxy

y
n	

xyvw

xyvw

n	
xyvw!

�
Y

ðv;wÞ=2Pxy

ðyxyvwpextÞn	
xyvw1 ½yxyvwð1 � pextÞ�n

	
xyvw0

nþ
xyvw1!n

þ
xyvw0!

where yxyvw is given by Equation (18). One can easily prove
that the maximum likelihood estimators of pA, pB and
pext are

p̂A ¼
P

x;y

P
ðv;wÞ2Pxy

vn	
xyvwþ

P
ðv;wÞ=2Pxy

vðnþ
xyvw1 þ nþ

xyvw0Þ
h i

P
x;y xnxy

p̂B ¼
P

x;y

P
ðv;wÞ2Pxy

wn	
xyvwþ

P
ðv;wÞ=2Pxy

wðnþ
xyvw1 þ nþ
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h i

P
x;y ynxy

ð19Þ

p̂ext ¼
P

x;y

P
ðv;wÞ=2Pxy

nþ
xyvw1P

x;y

P
ðv;wÞ=2Pxy

ðnþ
xyvw1 þ nþ

xyvw0Þ

The complete data relate to the observed data as follows

nxy1 ¼
X

ðv;wÞ2Pxy

n	
xyvwþ

X
ðv;wÞ=2Pxy

nþ
xyvw1

nxy0 ¼
X

ðv;wÞ=2Pxy

nþ
xyvw0

Thus, the E-step of the k-th iteration refers to the calculation
of the expected values of {nxyvw* , nxyvwe

þ }, conditional to {nxyz}.
It is easy to verify that, for all (v,w)APxy

m
þðkÞ
xyvw1 ¼E½n	

xyvwjfnxyzg; pðk�1Þ
A ; pðk�1Þ

B ; pðk�1Þ
ext �
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and, for all (v,w)ePxy
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where yxyvw

(k�1) is given by (18) with pA and pB replaced by pA
(k�1)

and pB
(k�1), respectively. Then, in the M-step of the kth

iteration, pA
(k), pB

(k) and pext
(k) follow Equation (19) with nxyvw* ,

nxyvw0
þ and nxyvw1

þ replaced by mxyvw
*(k) , mxyvw0

þ (k) and mxyvw1
þ (k) ,

respectively. The E- and M-steps are alternated repeatedly
until the difference between log-likelihood functions of two
consecutive iterations changes by an arbitrary small amount
(e.g., 10�6).

Table 6 Definition of Pxy¼ {(v, w)A{0,y, x}� {0,y, y}: conditions}
for the different allelic penetrance models

Model Conditions

IAM(A/B) vX13wX1
IAM(A/b) vX13(y¼ 24wX1)
IAM(a/B) (x¼ 24vX1)3wX1
IAM(a/b) (x¼ 24vX1)3(x¼ 24wX1)
IM(A/B) vX14w¼ 0
IM(A/b) vX14[yp23(y¼ 24w¼ 0)]
IM(a/B) (x¼ 24vX1)4w¼ 0
IM(a/b) (x¼ 24vX1)4[yo23(y¼ 24w¼ 0)]
CAM1(A/B) v+wX1
CAM2(A/b) v+wX2
CAM3(a/B) v+wX3
CAM4(a/b) v+w¼ 4
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