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1. INTRODUCTION

THE majority of investigations into the inheritance of continuously
varying characters using inbred lines have been concentrated exclusively
on the F, and subsequent generations in the selfing series, with the
result that the potentialities of backcross generations for quantitative
inheritance have never been fully explored. True they are usually
more difficult to produce than the F,, but the extra labour required is

TABLE 1
Scaling tests for the second backcross data of Mather and Vines (1946)

Test Flowering time Final height

B, 2-got-1-84 —0-35:+2°55

B, 4324 1-70% —9-644-2'57%*

By, 3-66-+1-89 —0-57+2-86

B,. 3-604-2:14 —12-964-295%*
* P = 0'05. ** P = < 0-00I.

amply repaid in the form of additional information both on the
components themselves and on the linkage relationships of the genes
concerned. Although these generations are not commonly included
in biometrical experiments, Mather and Vines (1952) have used them
in conjunction with the F,, F3 and F, generations to study the inherit-
ance of flowering time and final height in varieties 1 and 5 of Nicotiana
rustica. Because the experiment containing the recurrent backcross
generations gave very heterogeneous second degree statistics—
particularly the covariances—Mather and Vines concluded that their
future use in quantitative inheritance must be suspect until such time
as further experiments could clarify the situation. Consequently these
generations were excluded from their experiments in subsequent years.
Mather and Vines did point out however that the performance of the
backcross generations might have been affected in some way by their
parents having been raised in a glasshouse during the preceding winter.
They suggested that such conditions could have produced seed which
for developmental reasons was more variable than normal.
F2 85
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Re-examination of Mather and Vines’ data in the light of more
recent developments in biometrical genetics makes it possible to glean
some further information about the behaviour of recurrent backcrosses.
Individual scaling tests similar in nature to the A, B and C tests devised
by Mather (1949) reveal only one departure from zero of borderline
significance amongst the second backcross generations for flowering
time, whereas for height two of them—the B;, and B,, tests—show
highly significant differences from expectation (see tables 1 and 5).
This result lends some support to Mather and Vines’ suspicions about
these generations, at least for one of the characters under investigation.
More precise evidence on this point comes from a joint scaling test (see
Cavalli, 1952; Jinks, 1955) in which it is possible to fit a model based
on weighted least squares estimates of the mid-parent M, additive
[d], dominance [k], additive X additive [¢], additive X dominance [ j]
and dominance X dominance [/] parameters to the generation means
thereby gaining some insight into the type of genetic system controlling
the characters in question. It should be mentioned that these para-
meters are defined around the F, mean after the mixed metric model
devised by Hayman and Mather (1955). The goodness of fit of any
particular model can be determined by means of a 2 test. Re-analysis
of the appropriate data in Mather and Vines’ experiment reveals the
presence of interactions between non-allelic genes for both characters
but especially amongst those genes controlling the expression of height.
Considering this character first, if the second backcross generations are
excluded from the scaling test a model based only on additive and
dominance effects is sufficient to fit the remaining data adequately, a
result which would seem to implicate the recurrent backcrosses as the
chief source of the apparent non-allelic interactions. Turning to
flowering time, a simple additive and dominance model does not fit
the data satisfactorily even after omission of the second backcross
generations. If, however, these generations are retained and the
F, and BIP generations removed instead, such a model can account
for the variation observed between the generation means. Thus for
flowering time it is these latter generations, not the recurrent back-
crosses, which are responsible for the presence of non-allelic inter-
actions. The high covariances between first backcross plants and their
second backcross progenies mentioned by Mather and Vines may
conceivably be due to a genotype X environment interaction particularly
in view of the fact that the first backcross plants were grown in a glass-
house the preceding winter. Moreover evidence accumulated over
the years in connection with other experiments using the backcross
generation of N. rustica indicate that with few exceptions they behave
normally in respect of both final height and flowering time. Clearly
therefore there are no compelling reasons for rejecting backcross
generations as being of only limited value in experiments on quantita-
tive characters, though more work is obviously required to assess the
usefulness of the second backcross generation.
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For this reason an experiment with N. rustica which included these
generations was initiated in 1960 and repeated in 1961 and 1g62. The
present paper describes these experiments in detail and attempts to
determine the part which backcross generations can play in studying
the inheritance of continuously varying characters.

2. THE EXPERIMENTAL DESIGN

The two inbred varieties of V. rustica used in the present experiment
were the same two varieties used by Mather and Vines. In all three
years, 1960, 1961 and 1962 the following generations were grown:
Py (= V1), Py (= V5), Fy, Fy, By, By, Byy, By, By, By, Bys and By,
Individual plants chosen at random from amongst the first backcross
generations—B; and B,—were crossed in turn to both P, and P, and
selfed to give the second backcross (B,;, B;s, By and B,,) and first
backcross selfed (B,, and B,,) generations. As will be seen later the
use of a common female parent yields additional information about the
components of variation. The detailed structure of the experiment is
given for all three years in table 2. A randomised block design, in
which randomisation was at the level of the individual plant, was
employed throughout. In 1960 there were 3 replicates, but in 1961
and 1962 there were only 2 giving 3000, 4500 and 3520, as the total
number of plants grown in each year respectively. Because of in-
sufficient glasshouse space the 2 blocks of the 1961 and 1962 experiments
had to be sown approximately a month apart. This meant that each
block became virtually a separate experiment.

Seeds from the various families were sown in appropriately
numbered paper pots containing John Innes No. 1 compost mixture.
Two seeds were sown in each pot and after approximately a fortnight
the seedlings were thinned out leaving only the centre plant in each pot.
This procedure was adopted in order to minimise the risk of conscious
selection. Subsequently the plants were transferred to frames and
were finally planted in the experimental field, still in their paper pots,
in rows set 27 inches apart with 12 inches between plants within rows.
Flowering time in days from an arbitrary date and final height in
inches were recorded in all experiments.

3. THE FIRST DEGREE STATISTICS
(i) Analysis of variance

The observed values of all the generation means in all seasons are
given together with their standard errors in table 3. An analysis of
variance carried out on these means for the two characters will indicate
not only if there are differences between years and generations but also
whether the generations respond differently to the external environ-
ment (cf. Jinks and Mather, 1955). The error for these analyses is
derived from the variation between replicate estimates of a generation
mean within years. As expected the characters show significant
differences between generations and years (table 4). Furthermore it is
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evident that the characters are being controlled by genes showing a
differential response to the environment. Closer examination of the
data does reveal, however, that for height the genotype X years
(environment) interaction arises chiefly from the anomalous behaviour

TABLE 4

Analysis of variance of the generation means for (a) flowering time and
(b) height, (1) for all years and (11) with the 1960 data excluded

(a) Flowering time

(i) (i)
Item

D.F. M.S. D.F. M.S.
Years . . . . 2 1761674 %% * 1 143°9562%***
Between generations F, . 1 10-3491 1 75932

remainder
Between remainder . . 10 40°4396%** 10 12:4781%*
Years X Generations . . 22 6-8244%** 19 2:3512%*
Between blocks within years . 4 13+4177%%* 2 6+7906* **
Within blocks . . . 44 0-8118 22 0-7106
Total . . . . . 83 47
(b) Height
@ (ii)
Item

D.F. M.S. D.F. M.S.
Years . . . . 422°6623%** 1 162:4963***
Between generations F, 2. 1 141-2781%** 1 83-7820%**

remainder
Between remainder . . 10 110°3766*** 10 41-2127%%*
Years X Generations . . 22 57332%** 11 1-1588
Between blocks within years . 4 214°5732%** 2 407-3660%**
Within blocks . . . 44 1°4927 22 20663
Total . . . . . 83 47
** P = g-01-0-001, **x P — < o-00I.

of some generations in the 1960 experiment, since exclusion of that
year’s data renders the interaction non-significant. For flowering
time, on the other hand, no one season can be held solely responsible
for its significance though the contribution of the 1960 results to the
genotype X environment interaction is disproportionately high. One
further point which emerges from this analysis is the significance of the
item measuring the differences between the F; and the other genera-
tions for height and its non-significance for flowering time. This
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obviously bears upon the question of heterosis and it will be discussed
further in a later section.

(i1) Scaling tests

Scaling tests similar to the A, B and C tests of Mather have been
devised for the second backcross and first backcross selfed generations.
The structure of these tests together with the errors to which they are
subject are given in table 5. Also included in this table are the
expectations of the various tests in terms of the first order interaction
parameters [z], [ j] and [/] and four second order parameters [w], [x],

TABLE 5

Scaling tests devised for the generations grown in the experiment together with their appropriate
variances and expectations. The standard error for each test is taken as V'V. Those
tests marked with one asterisk are expected to depart most significantly from zero assuming
(i] = (3] = [1] and +([w] = [x] = [y] = [z]) and those with two asterisks to
depart most significantly if [i] = [j] = (1] and — ([w] = [x] = [y] = [2])

Test Variance Expectation
A:  P,4+F,—2B, VP14 VF1+4VEL (7] :[j]zT [f]+%[w] —[«]+45]
B: P,+F,—2B, Vp2+VF1+4VE2 é([i]t&j]jlzl—%[w]—[x]—*%[J]
C: P,+B,+2F,—4F, VP14 VP2+4VFi+16VE2 2([{]+3[]—4[x))**
By 3B +F,—4B, 9VFi+VFi+16VEn #{[i—- [J]+[l] +3lw]— 4«1+ ]
Byy: P,+3F—4B, VP2+gVFi+16VER i((i]+{3]+[ﬂ i[w]—ix]— 4]
By:  Py+3F,—4B,, VPI+9VFi+16VB21 ([ +[§[]+[l]+ dlw]—Hx]+10)
Beg:  3Py+F,—4B,, 9VP2+ VFi+16VBzs %([l]+ [J]+ - i[w]— 2] —4(»]
Big: 5Py+2F,+P,—8Bis | 25VPI+4VFI+VPF3+64VEIs 2(ﬂ[l] %[l]+%[l]+ (] —2[%]+50]
Bas: 5P,+2F,+P,—8B,s | 25VP3+4VFi+VPI+64VE3s

2(2[l]+%[J]+2[l]~— Hew)—2x]—30)
—fel2)**

For definition of [w], [x], [ ] and [z] see text and table 7.

[ ] and [z] which will be defined more precisely at a later stage. The
object of these individual scaling tests is to pick out those generations
which are exhibiting non-allelic interactions, although the fact that a
particular test does not depart significantly from zero is not necessarily
conclusive proof of their absence from a given generation (see tables
5 and 6). Itis clear, however, that both characters are controlled by
Moreover the results of identical tests are not always
homogeneous over seasons or even between blocks within seasons.
Such differences are normally indicative of genotype X environment
interactions and hence they corroborate the results of the analysis of
variance. Overall, both characters are more or less equally susceptible

interacting genes.
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to non-allelic and environmental interactions, although these tests do
suggest a virtual absence of any interactions for height in 1962.

A more comprehensive picture of the genetic systems involved in
the control of these two characters can be obtained from the joint
scaling test of Cavalli (1952). Because twelve different generations
were grown in this experiment, it was possible to fit not only the para-
meters M, [d], [%], [{], [/] and [/] measuring the main effects and first
order interactions of the genes concerned, but also four additional
parameters [w], [x], [»] and [z] estimating the second order inter-
actions between additive X additive X additive, additive x additive X

TABLE 7

Expectations of the generation means in ferms of M, [d],

(b1, (i1, [, (1, (w1, [x], [y] and [2]

Coeflicients of:

Generation -
M | [d | [ [i] (] (| [wl | 1 | D11 [
P, 1 1 — 1 —3 |l -3
gz 1 —1 1 3 i —1 —+ | —1 ——-,‘E
1 1 .. .. s
B, 1 PRt PO O O .
B, 1 —4 1 } —+ . o
R IR A A A I
B L B O I . . B B Bl B
B! S O I S o I IO o O B B
12 16 116 llﬂ 614 ﬂl 14 ﬂ14
Bys I 3} 1 1 —% | e 3 | —1s %% | —ux
Bas I -1 1 1 T %% | —% |~ —9 | —%%

dominance, additive X dominance X dominance and dominance X
dominance X dominance respectively. For comparison with van der
Veen’s 6 notation (1959) w = iabc‘! X :jab|cs.y =ja‘bc a'nd g == l‘abc‘
Expectations for the twelve generations in terms of these ten parameters
are given in table 7. Clearly the results of the joint scaling tests merely
confirm previous results in indicating the presence of non-allelic
interactions amongst the genes governing both characters (table 8).
By successively fitting appropriate models to the data it is possible to
gauge the importance of the first order and second order interaction
effects in relation to the main effects of the genes concerned. For
example, by initially fitting a model based on M, [d] and [£] and then
one depending upon M, [d], [%], [¢], [s] and [/] to the same data, the
improvement in the goodness of fit of the latter model over the former
will show whether [7], [j] and [/] jointly account for a significant
amount of the variation present amongst the generation means.
Again the evidence points overwhelmingly to the presence of inter-
acting genes (table g). Indeed it appears that even the more complex
interactions embracing sets of three genes occur quite frequently.
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This is perhaps not surprising in view of the many genes which must be
concerned with the expression of flowering time and final height,
although there are of course numerous crosses between other N. rustica
varieties in which these two characters show no evidence of inter-
actions (see Jinks and Morley Jones, 1958). Whilst it is not possible

TABLE ga

Significance levels of the main effects [d)] and [h], the first order interactions
[i1, [3] and [1] and second order interactions [w], [x], [y] and [z]

Flowering time

1961 1962
Parameters D.F. | x®for 1g6o
Block I Block II Block I Block II
[d)and [A] . 2 | 320°530*** | 13-414%* | 157:779%** | 134°134*** | 12g-175%¢*
(1, [j] and [7] . 3 84:039*** | 26-455%*** | 10°307* 32:330%*% | 40'434***
[w], (], [»] and [<] 4 66-855%** | 27:307%¥* | 19:737%** | 14-385** 5308 :
Remainder . 2 21-841%** 4984 0°504 13-201%** 5721 |
TABLE gb
Height
1961 1962
Parameters D.F. | x?for 1960
Block I Block II Block I Block IX
[d)and [F] . 2 [1626-516%** | 207-835%** 1145-102%** | 480-664%** | 466-556***
{1, [] and [{] . 3 0-806 20°557%*% | 22-722%%* 5°004 1-123
{z], [#], [»] and [2] 4 40°451*** | 5-602 6-136 5283 4317
Remainder . . 2 46-557*** 14-865%** 1°430 3037 5-858

* —P = 0-05-0-01. ** _P = o01-0-001. **x _P = <o0-001.

to draw firm conclusions on this point, it does appear from the
significance levels of these components over the different seasons that
non-allelic interactions figure more prominently in the expression of

flowering time than they do for height.

(iii) Components of heterosis

From the weighted least squares estimates of the components of the
generation means it is possible to predict the effects of heterosis and
compare this expectation with the value calculated directly from the
mean observed for parental and F, generations. Adopting the
definition of heterosis used by Jinks and Morley Jones (1958), that is
the difference between the mean of the F, generation and that of its
better parent (P,), the measure of heterosis Fy —P, = |[A] +1[/]
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+3[2]| —|[4] +[i] —3[ /1 +2[/] +[w] —3[*] +4[ 7] —}[<]|, which equals
|T] i1 +30] 4301 =1[d] =4[] +[w] +4[]]. Previous analysis
has already shown that for flowering time the F, mean is not signifi-
cantly different from the means of the remaining generations and,
moreover, since the F, mean generally lies within the parental range
there can be no heterosis for this character. For height, on the other
hand, the F, is consistently superior to the better parent, although this
difference generally fails to reach significance at the 5 per cent. level of
probability (table 10). It is noticeable that in 1960, when the effects
of heterosis are most marked, non-allelic interactions play a more
important part in the expression of this character, thus tending to
confirm the finding of Jinks and Morley Jones that interactions are a
major source of heterosis, although as the flowering time results
demonstrate interactions do not inevitably give rise to heterosis.

TABLE 10
The components of heterosis for height

Season 1961 1962
1960
Components Block I Block IT Block 1 Block II

|[8) =[]+ 3«1+ 321 I 889 ) 5'95 I 9-04 | I 5'52 1643
— 1]+ 31+ [e] ~|723 —l230 ~1552] —|363] |—|—067

+
Predicted heterosis 1-66 365 3°52 1-8g 7410
Obigrvcg heterosis 4°054-1:05%%% | 2:774-1-75 | 2-26-41-15% 1'554-098 | 2-09-4-1-51

(F1—Py)

* —P = 0'05-0'01. k¥ P = < 0'00I.

With regard to the type of genetic systems controlling these two
characters it is, as Jinks and Morley Jones point out, difficult to make
inferences about the kind of interaction from the magnitude of the
estimates. In practice the classification of interacting systems must
therefore depend on the relative signs of these components, particularly
those which are unaffected by the degree of association (r). Of the
components [d], [4], [<], [ /]and [/] Jinks and Morley Jones have shown
that only [A] and [/], that is those depending solely on dominance
effects, are independent of the degree of association. This system can
be extended to cover interactions between sets of three genes. Assuming
that the parents P, and P, differ at £ loci and that of these P, has £’ of
greater effect then of the $k(k —1)(k —2) possible combinations of three
genes, }k—*k'(k—k'—1)(k—k'—2) sets have 3 genes of increasing
effect in P,, }k'(k'—1)(k' —2) sets are between 3 decreasing genes,
k'[3(k—*k") (k—k' —1)] are between 2 increasing genes and 1 decreasing
gene and k —k'[}(k') (k' —1)] are combinations involving I increasing

G
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gene and 2 decreasing genes. Considering only [w], [x], [ ] and [z],
the two parental means can be written as

ﬁ; — L [4k(E—1) (k—2) — 3K (K —1) (K —2) —bK'(k —F') (k —&' —1)]aw
F LB (K —1) (K —2) -+ E (k—F") (kK —1)ow —3[3( —F)
(k—k —1)(k—2) -3’ (k —1) (k —2) —k'(k —&') (k —2) ] £ }[ (£ —F)
Be(k—1) —(K)b(k —1) [y —b[¥h(k —1) (—2)12.

If r is put equal to 1 —2_]]; (see Jinks and Morley Jones) this becomes

P kr? —1
p. = +r[Zw+k3(r2 —1)] —3% T ZxtrZ}y -2z,
s _

The coefficients in front of the parameters derive from the fact that in
the mixed metric model of Hayman and Mather the interactions are
defined around the F, generation mean. Not surprisingly only [z]
amongst the second order parameters remains unaffected by the degree
of association.

With sets of g interacting genes it is possible to specify the relation-
ships between the components of generation means so as to yield
genetic ratios corresponding to those expected on the basis of inter-
actions in the classical Mendelian sense. This classification is merely
an extension of the one devised by Hayman and Mather covering
interactions between pairs of non-allelic genes. Since the classification
of the gene system must depend primarily on the relative signs of the
first and second order parameters both in relation to each other and to
the main effects, the interacting systems fall into four main categories
which can be defined as follows:

() d=h=1li=j=1=1w=x=y=2)]
() d=h=—Hi=j=1=—h=x=r=2)]

(i) d=h= —3[i—=j =/ =3w=2x=y=2)] and finally
(V) d=h=Hli=j=1= —(w=x=p=2)]

Of these four basic types the first is a classical complementary inter-
action requiring the presence of all three genes and which yields a
27:97 ratio in the F, generation. The second is a duplicate interaction
giving a 63:1 ratio in the F,; the third requires that at least two genes
be present for an interaction to occur but that the addition of the third
gene has no effect. This gives a 54:10 ratio in the F,, whilst the last
type yields a duplicate interaction for the first two genes with the
third gene having an effect over and above that of the first two thereby
giving an F, ratio of 27:36:1.

Remembering that of the parameters only [%], [/] and [z] are
independent of the degree of association and considering flowering time
first, in 1960 [%] and [z] are both significantly negative whilst [[] is
significantly positive, which is indicative of a duplicate type interaction
between sets of three genes. In 1961 and 1962, on those occasions
when these three parameters are significant, [£] and [/] take the same
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sign but [2] is now positive. This situation appears to square with a
duplicate type interaction for the first two genes with the presence of
the third gene producing an additional response. It would seem there-
fore that flowering time is controlled in the main by genes which show
a preponderance of duplicate type interactions. This conclusion is
borne out by the results, since in 1960 and 1961, when these components
are significant, the majority of the generations have a mean flowering
time greater than the mid-parent, that is closer to P, the later flowering
parent than P, (see table 3). For height, on the other hand, little can
be said about the type of interactions which occur if only because of the
insignificance of the interaction parameters, particularly [/] and [z].
Indeed it is obvious from table g that the interactions as a whole account
for a much smaller amount of the variation relative to the main effects
than they do for flowering time. At first sight these results may appear
to conflict in that despite the prevalence of interactions for flowering
time it does not show any heterosis. But heterosis can only arise through
the action of dispersed complementary genes, whereas the tests indicate
that the interactions are chiefly of a duplicate type for flowering time
and duplicate interactions cannot result in heterosis.

To summarise, both characters are controlled by genes which,
besides showing additivity and dominance, interact amongst them-
selves and with the external environment, although the evidence does
suggest that height is perhaps less affected by such interactions than
flowering time. Heterosis is absent for flowering time, whilst it only
proves to be of significance for height in that season when interactions
are most widespread even though the F, generation is consistently
taller than the better parent.

4., THE SECOND DEGREE STATISTICS
(i) Non-segregating generations

Variation within non-segregating generations must be environ-
mental in origin and therefore any heterogeneity amongst these
variances will reflect a lack of stability on the part of that particular
generation in its response to different environments. The homogeneity
of these variances within and between seasons can be readily tested by
means of a Bartlett test, from which it is apparent that height is the
more stable of the two characters (table 11). There is no evidence to
suggest that the F; is any more stable than either of the inbred lines.
On the contrary, there is every reason to believe that overall it is less
stable than P, and possibly P, also. This view supports the conclusions
reached by Jinks and Mather (1955) namely that in V. rustica flowering
time was the least stable of all the characters which they examined and
that the F, was no more stable than the parents.

(i) Unweighted estimation of the components of variance

Thus far we have only been concerned with estimating those
components pertaining to generation means. However, to obtain a
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clearer picture of the respective roles of dominance and linkage it is
necessary to turn to the components of the second degree statistics—
variances and covariances. Excluding linkage for the moment and
assuming the absence of non-allelic interactions, it is possible to define

TABLE 114

Variances of the non-segregating generations for flowering time
over blocks and seasons

™~ Generation P, P, F,

Season D.F. M.S. D.F. M.S. D.F. M.S.

Block I . .| 18 7'10 19 3083 39 3666

160! Block II . .| 19 19-06 19 34°66 39 3334

Block IIT . ‘ 19 3003 19 5510 39 31°55

1o [Block I ..} 19 2578 17 4770 37 3508

9N\ BlockII . .| 16 12:65 17 3:91 36 975

6p [Block I . <17 7°59 17 567 38 8-87

1902\ glock 1T . .| 18 7-04 16 883 36 2064
Heterogeneity { Within seasons 4 11-67* 4 23-83%** 4 19-64%**
x? Between seasons 2 8-61* 2 22-57R** 2 14°28%%*

TABLE 11b
Height
Generation P, P, F,

Season DF.| MS. |DF. M.S. D.F. M.S.

Block I . . 18 30-98 19 70°57 39 3958

19604 Block IT . . 19 20°37 19 49°40 39 16-59

Block IIT . . 19 942 19 2769 39 19°94

Block 1 . . 18 12:78 17 4446 37 22°50

19613 Block IT . . | 16 674 | 17 1509 36 18-8o

Block I . . 18 9°45 19 13-84 39 11-18

1962\ Block II . .| 19 | 2317 | 18 26-82 39 3456
Heterogeneity { Within seasons . 4 11-63* 4 9-60 4 20745%*#*

x? \ Between seasons 2 598 2 9 18* 2 212

* —P = o'05-0'01. *** _P = <o-001.

these statistics in terms of four components, an environmental com-
ponent (E;) and three genetic components (D), (H) and (F). Of these
the former measures additivity, (H) dominance, whilst the latter is a
cross-product term in 4 and % which is the only component to take
sign depending upon whether increasing or decreasing alleles are the
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more frequently dominant.
actions has already been established, the estimates of these components
will be inflated in value because they will each contain some of the

variation properly attributable to interactions.
therefore be exercised in interpreting the estimates obtained.

TABLE

12

The expectations of the statistics used to calculate the components of variation
together with their observed values for flowering time

101

Since the presence of non-allelic inter-

Some caution must

1960 1961 1962
Statistic Composition |Rank
Block I | Block II |Block II11] Block I | Block II| Block I | Block II

E, E, 27-81 3010 3706 35°91 g-02 7-81 14°45

Vire 1D+ }H+E, 1 4831 | 4040 | 7479 | 6717 | 3803 | 4788 | 45903

VB1 {D—-4F+1H 1 | 5962 | 4104 | 66:58 | 59-12 905 | 2276 | 2989
+E,

VBe iD+I§F+iH 1 | 4628 | 5378 | 3858 | 3952 | 1307 | 2053 | 4248
+

VBn %D—ilF+%H 2 | 6524 | 4569 | 4456 | 5108 | 1091 | 28-04 | 2831
+E

Va1 ID+IF+3H 2 | 69'95 | 3982 | 5401 | 3885 | 11°51 | 2624 | 2849
+E,

VB1s 3D+ 3H+E, 2 | 5644 | 5597 | 3749 | 5216 | 2058 | 31°01 | 41'52

VB21 %D—EF+%H 2 3o'24 | 4061 37°92 | 4942 807 | 2310 | 2335
+

VBee %D+ilF+iH 2 | 5162 | 4396 | 4a2:31 | 4667 9:36 | 1238 | 2720
+E,

Vaes D 4-IH+E, 2 68+31 55'24 77-82 5645 15-21 3682 56-03

VEii H%D—3F+8%H| 1 12:39 | 11°04 | 12703 | 18:56 | 10-26 771 774
+1/0(VB11)

V12 TeD+3F4+%H| 1 24'81 | 1067 | 1582 | 1506 423 936 672

o +1/n(VB12)

VEI§ ID—1F45H | 1 19-27 | 1448 | 2364 | 5465 | 14'97 7°47 9°56
+1/n(VB18)

WEIBiz | 5D —+%H I 5:61 444 3'47 6-96 2:98 | —311 | —o0'72

WEIi/B1R | $D— HF++%H| 9:31 10-36 9'24 | 19:64 7-22 2-12 2'14

WaIg/B18 | $D+3%F—3%H | 1 8-82 2-61 8:42 10-66 3-80 0:31 | —0°'59

VEz1 HD—3F+H| 1 23+22 8-09 767 | 19'54 3-37 6:25 9:69
+1/n(VB21)

Vis2 %D +iF+5H| 1 28-17 | 2312 | 13:99 | 2465 345 4:69 633
+ 1/n(VB22)

VB2s ID+IF+5H | 1 28-25 | 2712 | 32'77 | 3055 7-80 672 9°50
+1/n(VB28)

WE21/B22 s —ieH 1 18-80 10°11 6-81 11°20 0-84 2-58 231

Wazl/Be8 | $D—eF—eH | 1 13°00 | 11'27 | 10°49 | 1395 1-89 2:07 484

Waae/B2s | iD+%F++H]| 1 18-86 | 1693 | 1749 995 2:52 246 424

n = number of individuals within a family of that particular generation.

Unweighted estimates of the components of variance were computed

by the least squares technique described by Mather (1949), after
appropriate adjustments had been made for genetic sampling errors,
from the observed values given in tables 12 and 13. The genetic
picture which emerges from these estimations is predominantly one of
additivity for both characters with little evidence from the components

G2
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themselves for either dominance or one type of allele being more
frequently dominant than the other (table 14). Furthermore, these
estimates confirm that the suggestion of heterosis for height must stem
from non-allelic interactions rather than over-dominance, since nowhere
does H quite reach significance at the 5 per cent. level of probability.
Thus the ratio VVH/D which measures apparent dominance can never
be significantly greater than 1 here.

To obtain a more comprehensive picture of how flowering time and
height are inherited it is necessary to take linkage effects into account.

TABLE 13
Observed values of the statistics used for calculating the components of variation of height
1960 1961 1962
Statistic
Block I | Block 11{Block I11| Block I | Block 11| Block I | Block I1
E, 4518 2574 19-25 25-56 14-65 11-°43 2402
ViFe 52-89 | 2819 | 6055 | 5686 | 35:66 | 3116 | 4759
VB1 6477 38-04 22-04 36-25 25-81 18-19 2955
VB2 66-04 | 4166 | 44'75 | 3412 | 29:31 | 2369 | 3440
VB11 4027 2391 2271 2540 19-08 1179 22-84
VBi2 56-03 3590 41-02 35°24 20-88 14-09 22°15
VB18 5850 | 25'08 | 28-99 | 32:93 | 2375 | 18-93 | 3373
VB21 3963 29°72 26-80 32-28 1748 2006 2267
VBe2 boro7 | 3571 | 3519 | 3529 | 1655 | 19'54 | 3745
VBes 8443 | 2842 | 39'56 | 4569 | 23°51 | 22722 | 26-62
Vi1 8-72 443 5-06 12°01 12-08 598 475
VBi2 459 9:37 | 1397 | 1708 729 823 | 1511
V318§ 24'51 | 1079 | 12:96 | 24:36 | 13-96 7°48 573
WHBI1/Bi2 136 2-09 1-95 537 476 0°15 336
WB11/B18 8-02 488 536 1277 8-14 498 3°55
Wa12/B18 —0°39 3:51 | —1i-29 10°94 431 2:06 402
VB21 8-g0 7'92 871 12755 7-66 7-68 9-16
VB22 2151 30-61 32-06 20-87 7'42 3-25 1565
VB28 17°90 9-20 28-46 2695 1025 458 9-65
WEBZi/B22 —2%43 | —1'79 | —543 622 3-01 172 7°34
WaZ1/B28 5°63 3-63 475 11-06 4°52 310 6:65
WB22/B28 —o'58 049 9'44 | 1296 485 1-90 6-33

This can be achieved by redefining the components so as to relate
them to the number of cycles of recombination undergone by the plants
or families comprising a particular statistic (i.e. ranking—see table 12).
Definitions of the exclusive components required to take full account
of linkage in this experiment are given in table 15 and their calculated
values in table 16. By successive fitting of inclusive and exclusive
models to the data and analysis of the resultant squared deviations
between the observed and expected values of the statistics it becomes
possible to determine whether a significant amount of the variation
present can be attributed to linkage. The deviation S.S. obtained
from fitting the inclusive model will include variation due to three
sources; linkage, residual interaction and error, whereas the exclusive
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S.S. can contain only variation from the last two sources. Both this
analysis in which seasons are considered separately and that in which
seasons are analysed jointly in order to test consistency over blocks and
seasons have been described in detail by Mather (1949) and by Mather
and Vines (1952) so only an outline of the analysis will be presented
here. There are 22 basic equations and hence 22 degrees of freedom
for differences between observed and expected of which 4 are used in
fitting initially the inclusive components D, F, H and E;. The exclusive
analysis involves a further 4 components leaving 14 d.f. for the measure-
ment of residual interactions. Because the blocks of the 1961 and 1962
experiments were separated in time it was decided to allow for differ-
ences between them in the analysis. This slight modification means
that the estimate of error variation consists solely of the blocks
X statistics interaction which it must always do if there are significant
differences between blocks.

The season by season analyses given in table 17 provide no evidence
either of linkage or residual disturbance for height. This agrees
reasonably well with the results of the scaling tests carried out earlier.
But for flowering time there is good evidence for linkage in two of the
seasons—1960 and 1g62—where this item is significant or bordering on
significance even when tested against the residual interaction mean
square. Yetin 1961 there is not the slightest trace of linkage. Further-
more previous analyses suggest that non-allelic interactions constitute
a major source of variation in this character but the item measuring
residual disturbances is nowhere significant. The answer to this
apparent contradiction lies partly in the fact that the linkage item itself
can contain some of the variation due to interactions and partly in the
experimental design. The spatial separation of individual plants within
families both in the glasshouse and the field; the different sowing dates
of the blocks in the two seasons; the environmental instability of the
character are all factors which will contribute to and hence tend to
increase the estimate of error and thereby decrease the sensitivity of the
test of significance. These factors will of course affect height also but
to a lesser extent.

Turning to the joint anaiysis of seasons, as expected there is no
reason to believe that linkage is affecting the genes controlling height
(table 18). There is, however, evidence for residual disturbances
since the main item is significantly larger than the residual interaction
X year item. For flowering time, on the other hand, there is evidence
for an overall linkage effect. Analysis reveals D to be the most
important of the linkage components since out of a total linkage S.S.
of g6o it alone accounts for just over 8oo. This indicates that in the
inbred lines coupling and repulsion linkages do not balance, but rather
there is a marked excess of one linkage phase over the other. However,
this point will be raised again later. It is also evident from these
analyses that linkage is not entirely consistent over seasons due
presumably to the 1961 results. The calculated values of the exclusive
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components likewise reflect this inconsistency. Thus the H components
range from being significantly negative in 1960 and 1961 (Block I) to
being significantly positive in 1961 (Block II) and 1962 (see table 16).
Negative values for these components are meaningless and are probably
the direct result of the interactions known to exist. Whilst the hetero-
geneity of the components is greater between than within seasons for
both characters this difference does not prove to be significant. Mather
and Vines (1952) and Jinks (1956), however, both found that, whereas
for height the components were equally stable within and between

TABLE 18

Analysis of variation for flowering time and height-seasons jointly. Model (i) includes dominance
effects, model (i1) is a purely additive model

.. Character Flowering time Height
(i) (ii) @) (i)
Item \ D.F. M.S. D.F. M.S. D/F. M.S. D.F. M.S.
Linkage . 4 241-62 1 803-84 4 55-68 1 030
Residual interaction 14 8o-24 19 6774 14 -08 19 9532
Heterogeneity between
years:
Linkage . . . 8 147-64 2 135°50 8 3903 2 714
Residual interaction 28 65-43 38 80-00 28 29-85 38 3839
Components 8 811-91 4 | 161328 8 513-80 4 965-99
Heterogeneity within
years:
Linkage . . . 16 94-22 4 1-21 16 68-17 4 65°43
Residual interaction 56 3074 76 4828 56 1337 76 26-16
Components 16 552°19 8 | 100731 16 439°72 8 766-39

seasons, for flowering time the components were considerably more
variable between seasons. The comparison of these results with either
of the previous experiments is not strictly valid for reasons which have
already been disclosed.

After fitting inclusive and exclusive models to the data based on
additive, dominance and environmental effects, models were then fitted
which depended solely on additive and environmental effects. It is of
interest to combine the resultant analyses of the two models as they may
shed further light on the inheritance of the characters under investiga-
tion. Basically this enables the inclusive and exclusive H and F com-
ponents to be examined more fully. There can be little doubt that
these two components play only an insignificant role in the expression
of flowering time, the major genetic component being additive (see
table 1g). For height, however, the situation is rather different, since
the item measuring overall dominance is approaching significance at
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the 1 per cent. level of probability when tested against the main
residual interaction item. Dominance cannot therefore be ignored here,
it is not just a reflection of the non-allelic interactions which are known
to be present.

In conclusion, the pattern of inheritance emerging from these
unweighted analyses differs markedly between the two characters.
Flowering time is controlled by genes which are mainly additive in
effect and are probably linked whereas height is governed by unlinked
genes which exhibit dominance.

(ili) Weighted estimation of the components of variation
Hitherto we have considered only the unweighted least squares
estimates of the components which, though easy to perform, suffer

TABLE 19
Analysis of variation for flowering time and final height-combining models (i) and (ii)

\ Character Flowering time Height
\\
T
T
Item \\ D.F. M.S. M.S.
Inclusive component—H . L . 49779
Inclusive component—F 1 } ©59 16578
Linkage—due to D’s 1 803-84 0:30
Linkage—due to H’s and Fs 3 5422 74°13
Residual interaction . 14 8o-24 66-08
Between years
Inclusive H and F 4 9442 81-20
Linkage—D’s 2 135'50 714
Linkage—H’s and F’s 6 151-69 4965
Residual interaction . 28 6543 29-85
Components—inclusive D and E 4 161328 96599
Within years
Inclusive H and F 8 5565 51°29
Linkage—D’s . 4 1°21 6543
Linkage—H’s and F’s 12 12522 69-08
Residual interaction 56 3074 1337
Components—inclusive D and E 8 100731 766-39

from the drawback that they take account neither of the correlations
which must exist between some of the calculated values of the statistics,
nor of the differing precisions with which they are observed experi-
mentally. Adopting a weighted procedure which can take account of
both these factors should enable more efficient estimates of the
components to be obtained.

A weighted least squares analysis designed to meet these require-
ments has been programmed for the Elliott 401 computer at
Rothamsted, full details of which have been given by Cooke et al. (1962).
Before the estimation could proceed, however, the data had to be
tailored to fit the capacity of the computer. This entailed firstly a
reduction in the number of statistics from 22 to 16; secondly, that the
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maximum number of components to be estimated should not exceed 8.
The requisite cut in the number of statistics was achieved by calculating
pooled estimates for those statistics having identical expectations.
Inspection of table 12 shows that Vg and Vgz; Vg and Vg and
Wsigsne and Wiz can be combined in this way. Likewise all the
information yielded by the rank 2 variances can be condensed into
three statistics. As regards the components, the inclusive estimates
present no problems since there are invariably only four to be estimated,
whilst in the exclusive analyses this difficulty can be overcome by

putting the V2z H component equal to 3(V;p,+Vp,) as in the un-
weighted estimations (see table 15). A sampling variance matrix
which incorporated all these features has been devised by my colleague
Mr R. Morley Jones. This matrix formed the basis for all the weighted
analyses, though certain minor modifications had to be made to the
expectations of the statistics in order to accommodate seasonal differ~
ences in the genetic sampling terms arising from structural alterations
in the experimental design. None of the information contained in the
data has been sacrificed during the formation of this matrix by
combining certain of the statistics or by eliminating one of the
components, but these manipulations do mean that the x2 testing the
goodness of fit of the model to the data is now based on correspondingly
fewer degrees of freedom.

Substantially the same genetic picture emerges from the weighted
inclusive and exclusive analyses as was obtained from the corresponding
unweighted analyses. Again, however, the interpretation of the
results is beset with difficulties since the models are fitted on the
assumption of no non-allelic interactions. That several of the models
do not fit the data adequately is a clear demonstration that such inter-
actions exist. Consequently to obtain valid estimates of the standard
errors of the components in those particular models the elements of the
inverted sampling variance matrix have to be scaled up by a factor
based on the observed x? divided by its expected value, i.e. the degrees
of freedom. Having done this, it is obvious that the major genetic
component for both characters is additive (Table 20). Equally it is
apparent that for height, dominance cannot be entirely disregarded as
the H component is either significant or verging on significance
on several occasions, a result which is in complete agreement with
that obtained from the unweighted analyses.

Turning to the exclusive analyses, again there is no suggestion that
the genes controlling height are linked. But for flowering time there is
evidence both from the component values given in table 21, and from
the tests of goodness of fit of particular models (table 22) that the genes
concerned are linked. For any one block, the difference between the
x2 values of the inclusive and exclusive models provides a measure of
linkage, whilst the x2 remaining after having fitted the exclusive model
estimates the disturbance due to residual interactions. Dividing by the
appropriate degrees of freedom converts the x2? values into mean
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squares whence it becomes possible from a variance ratio test to deter-
mine whether the linkage effect is genuine or merely a reflection of
residual interactions. Such a test is only valid however if the inter-
actions affect all the components to an equal extent., Since we have no
evidence to the contrary it will be assumed that this requirement is
fulfilled. On the basis of this test it is clear that the only real evidence
for linkage comes from the 1962 experiment. But since it has already
been established that the principal effect of linkage is on the D com-
ponent, significant differences between the rank estimates of this

TABLE 224
The detection of linkage in the weighted analyses—flowering time—degrees of freedom and
mean squares. Linkage has been tested against residual interactions and this latter item
has been tested against experimental error

1g6o 1961 1962
Item D.F.
Block I | Block II |Block III} Block I Block II | Block I ] Block I
Linkage . . o4 417 1-76 027 279 3-31 4:24%**  6-14*
i Residual interaction . 8 2-31% 1°41 0-84 5'56%**%  4:93*** o055 1'13
TABLE 22%
Height
1g6o 1961 1962
Item D.F.
Block I {Block IT{Block III{ Block I Block IT | Block Y } Block IT
. Linkage . . ) 3-64* 3-38 | V.small 1-39 2-95 0-09 0-77
Residual interaction . 8 0-52 2-65%*% 2:.34% 2-o3* 1-25 075 2-46*
* P = o-05—o0-0I. ** P == 0-01—0-00I. *#**x P = < o0-00I.

component will also indicate to a certain extent the presence of linkage.
After allowing for the correlation between the additive components,
D, is significantly larger than D, in 1960, suggesting that the genes are
linked in repulsion in the two parental varieties.

Finally concerning the questions of the relative efficiencies of the
weighted and unweighted analyses, it proves difficult to make a valid
comparison since the method evolved by Nelder (1g60) assumes that
interactions are non-existent. Nelder’s method can be used, however,
providing only those results known to be largely free of such interactions
are considered, namely the height data of 19g62. Of the genetic
components H is the least efficiently estimated by the unweighted
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technique, whereas relatively little information about D, F and E,, is
sacrificed by this analysis. These results agree with those obtained by
Cooke et al. (1962) in an investigation involving inbred lines of
Drosophila melanogaster.

5. CORRELATIONS BETWEEN FLOWERING TIME
AND FINAL HEIGHT
Throughout these analyses the two characters under investigation
have been considered separately. It is known, however, that a cor-
relation exists between them in so far as the earlier-flowering plants
tend to be the shorter and vice versa. The weighted analyses reveal
that there is a correspondence between the total sums of squares for
the two characters over blocks and seasons (table 23). This indicates

TABLE 23

Weighted inclusive total sums of squares for flowering time and
final height over blocks and seasons

1960 1961 1962
Character
Block I | Block II | Block III | Block I Block II Block I Block II
Flowering time 489°37 471°77 463-25 1126-13 1040-64 87446 839°53
Height 470°38 48565 471°14 110378 102963 84369 84074

that the correlation extends beyond the generation means to include
the variances and covariances. Moreover this correlation exists for
individual statistics such as V,r,, Vg, etc. This appears to imply that
the two characters have genes in common, although differences in the
mode of inheritance suggest that some of the genes are at separate
though closely linked loci. It would seem, however, that further
research is required to elucidate the causes of this correlation.

6. DISCUSSION

The inheritance of flowering time and final height in the 1 X 5 cross
of . rustica has been extensively studied from different viewpoints by
various workers including Mather and Vines (1952), Breese (1954),
Jinks and Mather (1955) and Opsahl (1956) and it is therefore of some
interest to compare and contrast previous results with those presented
here. The first two investigations, which used the F, selfing series of
generations, revealed non-allelic interactions in both characters, but
were unable to detect dominance for either flowering time or height.
Evidence of linkage for flowering time was obtained in both experi-
ments. Jinks and Mather’s investigation was concerned primarily
with stability in homozygotes and heterozygotes. They found that the
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F, was no more stable than its parents, a conclusion which is completely
supported by the present experiment. In an attempt to discriminate
between linkage and interactions Opsahl developed a novel approach
using F, backcross generations. This increased the precision of his
experiment thereby enabling him to show that height was relatively
free from interactions and that the genes controlling this character
exhibited dominance. From the sequential analyses which he devised
he was unable to detect linkage unambiguously for flowering time
because of the large residual disturbances.

The results presented here are in general agreement with those from
Opsahl’s experiment. There are, however, certain features of this
experiment, concerned primarily with the first and second degree
components, which require explanation. It is perfectly clear from the
components of generation means that if all the genes governing flower-
ing time and final height are taken into consideration, then both
characters show additive and dominance effects. This is because the
models fitted specifically allow for gene interactions and this in turn
enables average additive and dominance effects which are free of inter-
actions to be estimated. Why then is it necessary to obtain estimates of
the components of variance? The reasons are twofold; firstly to
determine the role of linkage in the inheritance of a given character and
secondly to calculate the relative magnitudes of additivity and
dominance, since the components of the means only estimate the
balance of these effects over all genes and as such they cannot, for
example, yield an estimate of dominance. When fitting models to the
variances and covariances no allowances for interactions are possible
because there are never enough statistics available to permit them all to
be estimated. Consequently these effects will be incorporated into
those components which are being estimated and also into their errors.
Discrepancies can therefore arise between the components of means
and those of variances. But, since the former can take account of
interactions, greater reliability can be placed on the qualitative genetic
picture which they give as opposed to the one presented by the
components of second degree statistics.

Focusing our attention now on the relative merits of the backcross
and F, selfing series approaches to quantitative inheritance, un-
doubtedly the extra demands both on time and labour made by the
backcrosses must be entered on the debit side of the account. Assuming
that the species concerned can be readily selfed it will take at least four
times as long to generate the complete set of backcross progenies than
it will to obtain the F, generation. There are, however, other factors
to be reckoned with in biometrical investigations which should out-
weigh the purely technical considerations. Basically these factors come
under the heading of what might be termed the overall experimental
efficiency. This can be subdivided into two parts, general and specific,
of which the former is a property of the number of families and
individuals raised in a given experiment. Clearly the number of

H2
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plants grown should be sufficient to ensure that statistics based on them
are estimated with reasonable precision. The specific portion of the
overall efficiency will depend in turn upon the actual generations
grown in an experiment; the number of statistics which can be derived
from those generations and finally the amount of information which the
available statistics can supply about the components being estimated.
Judging the two approaches on the basis of these criteria, the backcross
technique is unquestionably the more efficient.

In the first place the backcross approach yields considerably more
information both about the components of means and of variances. It
permits all the first and second order interaction parameters to be
estimated if needs be, whereas, excluding the parental generations, the
selfing series can only yield information about [%], [/] and [z] irrespective
of the model being used to define the parameters. Likewise two
generations of backcrossing provide at least 21 statistics with which to
estimate the genetic components of variance, whereas selfing would
have to be continued at least until the F; generation before an
equivalent number of statistics could be obtained. Moreover the
backcross method is, comparatively speaking, an efficient method of
estimating H, since none of the available statistics in the current experi-
ment has a coefficient of less than % for this component. As one
progresses down the selfing series, on the other hand, the coefficient in
H decreases according to the formula (})7~*(}) =7, where r = rank and
n the generation such that n=r-4+r1=2. A similar, though less rapid,
decline would be observed in the H coefficient if backcrossing were
continued beyond the second generation, but as some 20 statistics have
already been amassed by this time there is no real need to raise
succeeding backcross generations. The other components, being more
efficiently estimated, are rather less sensitive than H to compositional
changes in the experiment.

An added advantage which is conferred by the present experimental
procedure is that, since all covariance statistics are essentially cor-
relations between half sibs, they will be largely free from any of the
more gross effects of genotype X environment interactions. For this
reason parent-offspring correlations, such as Wg;;55, which involve
plants grown in successive seasons under entirely different environ-
mental conditions, have been deliberately excluded from the list of
available statistics. In the F, selfing series all the covariances are of
this latter type. Normally genotype X environment interactions reduce
the parent-offspring correlation, but under very exceptional circum-
stances it is conceivable that the observed correlation could be higher
than its expected value.

On the balance therefore backcrossing would appear to be the
better of the two approaches for investigating the inheritance of
quantitative characters. Still further improvements would be possible,
however, if statistics yielding more information about H could be
devised. Overcoming this obstacle would entail an extensive crossing
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programme involving principally the F, and 1st backcross generations.
Plants chosen at random from these generations would have to be
selfed and crossed in turn to each parent and the F, generation. This
would give a set of 18 closely interwoven generations providing between
them well over 4o statistics, 6 of which would contain coefficients of 1H.
Such a crossing programme may in certain instances make prohibitive
demands on both time and labour, but given suitable material this
design will furnish detailed information about the components of
variation and many other aspects of quantitative inheritance.

7. SUMMARY

A biometrical investigation into the inheritance of flowering time
and final height in V. rustica has been carried out over a period of three
successive years by means of recurrent backcross generations derived
from the two inbred varieties 1 and 5.

Both characters are subject to environmental and non-allelic
interactions, though there is evidence suggesting that height is less
susceptible to them than flowering time. From the components of
generation means it is clear that the genes controlling both characters
show additivity and dominance, whilst for flowering time the genes
concerned exhibit duplicate type interactions. The genetic picture
which emerges from both the weighted and unweighted estimations of
the components of variation is predominantly one of additivity.
Despite the prevalence of interactions there is reasonable evidence for
dominance amongst the genes controlling height, and likewise for
breakable repulsion linkages between those genes concerned with the
expression of flowering time.

A comparative study of the recurrent backcross and F, selfing series
approaches from a biometrical standpoint indicates that, technical
considerations apart, the former is to be preferred on the grounds of
greater experimental efficiency. However, this design is not by any
means the most efficient attainable, and an alternative is suggested
which should in theory supply valuable information on many of the
problems encountered in investigations of continuous variation.
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